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1. Introduction

Principal components analysis (PCA) (Alpaydin, 2010; Jolliffe, 2002) is an effective
unsupervised feature extraction algorithm for pattern recognition, classification, computer
vision or data compression (Bravo et al., 2010; Zhang et al., 2006; Kim et al., 2005;
Liying & Weiwei, 2009; Pavan et al., 2007; Qian & James, 2008). The goal of PCA is to obtain
a compact and accurate representation of the data that reduces or eliminates statistically
redundant components. Basic approaches for PCA involve the computation of the covariance
matrix and the extraction of eigenvalues and eigenvectors. A drawback of the basic
approaches is the high computational complexity and large memory requirement for data
with high vector dimension. Therefore, these approaches may not be well suited for real time
applications requiring fast feature extraction.

A number of fast algorithms (Dogaru et al., 2004; El-Bakry, 2006; Gunter et al., 2007;
Sajid et al., 2008; Sharma & Paliwal, 2007) have been proposed to reduce the computation
time of PCA. However, only moderate acceleration can be achieved because most of these
algorithms are based on software. Although hardware implementation of PCA and its
variants are possible, large storage size and complicated circuit control management are
usually necessary. The PCA hardware implementation may therefore be possible only for
small dimensions (Boonkumklao et al., 2001; Chen & Han, 2009).

An alternative for the PCA implementation is to use the generalized Hebbian algorithm
(GHA) (Haykin, 2009; Oja, 1982; Sanger, 1989). The principal computation by the GHA
is based on an effective incremental updating scheme for reducing memory utilization.
Nevertheless, slow convergence of the GHA (Karhunen & Joutsensalo, 1995) is usually
observed. A large number of iterations therefore is required, resulting in long computational
time for many GHA-based algorithms. The hardware implementation of GHA has been found
to be effective for reducing the computation time. However, since the number of multipliers
in the circuit grows with the dimension, the circuits may be suitable only for PCA with small
dimensions. Although analog GHA hardware architectures (Carvajal et al., 2007; 2009) can
be used to lift the constraints on the vector dimensions, these architectures are difficult to be
directly used for digital devices.
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In light of the facts stated above, a digital GHA hardware architecture capable of performing
fast PCA for large vector dimension is presented. Although large amount of arithmetic
computations are required for GHA, the proposed architecture is able to achieve fast training
with low area cost. The proposed architectures can be divided into three parts: the synaptic
weight updating (SWU) unit, the principal components computing (PCC) unit, and memory
unit. The memory unit is the on-chip memory storing synaptic weight vectors. Based on the
synaptic weight vectors stored in the memory unit, the SWU and PCC units are then used to
compute the principal components and update the synaptic weight vectors, respectively.

In the SWU unit, one synaptic weight vector is computed at a time. The results of precedent
weight vectors will be used for the computation of subsequent weight vectors for expediting
training speed. In addition, the computation of different weight vectors shares the same circuit
for lowering the area cost. Moreover, in the PCC unit, the input vectors are allowed to be
separated into smaller segments for the delivery over data bus with limited width. Both the
SWU and PCC units can also operate concurrently to further enhance the throughput.

To demonstrate the effectiveness of the proposed architecture, a texture classification system
on a system-on-programmable-chip (SOPC) platform is constructed. The system consists of
the proposed architecture, a softcore NIOS II processor (Altera Corp., 2010), a DMA controller,
and a SDRAM. The proposed architecture is adopted for finding the PCA transform by the
GHA training, where the training vectors are stored in the SDRAM. The DMA controller is
used for the DMA delivery of the training vectors. The softcore processor is only used for
coordinating the SOPC system. It does not participate the GHA training process. As compared
with its software counterpart running on Intel i7 CPU, our system has significantly lower
computational time for large training set. All these facts demonstrate the effectiveness of the
proposed architecture.

Fig. 1. The neural model for the GHA.

2. Preliminaries

Figure 1 shows the neural model for GHA, where x(n) = [x1(n), ..., xm(n)]T, and y(n) =
[y1(n), ..., yp(n)]

T are the input and output vectors to the GHA model, respectively. The output
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FPGA Implementation for GHA-Based Texture Classification 3

vector y(n) is related to the input vector x(n) by

yj(n) =
m

∑
i=1

wji(n)xi(n), (1)

where the wji(n) stands for the weight from the i-th synapse to the j-th neuron at iteration n.
Each synaptic weight vector wj(n) is adapted by the Hebbian learning rule:

wji(n + 1) = wji(n) + η[yj(n)xi(n)− yj(n)
j

∑
k=1

wki(n)yk(n)], (2)

where η denotes the learning rate. After a large number of iterative computation and
adaptation, wj(n) will asymptotically approach to the eigenvector associated with the j-th
principal component λj of the input vector, where λ1 > λ2 > ... > λp. To reduce the
complexity of computing implementation, eq.(2) can be rewritten as

wji(n + 1) = wji(n) + ηyj(n)[xi(n)−
j

∑
k=1

wki(n)yk(n)]. (3)

A more detailed discussion of GHA can be found in (Haykin, 2009; Sanger, 1989)

3. The proposed GHA architecture

Fig. 2. The proposed GHA architecture.

As shown in Figure 2, the proposed GHA architecture consists of three functional units:
the memory unit, the synaptic weight updating (SWU) unit, and the principal components
computing (PCC) unit. The memory unit is used for storing the current synaptic weight
vectors. Assume the current synaptic weight vectors wj(n), j = 1, ..., p, are now stored
in the memory unit. In addition, the input vector x(n) is available. Based on x(n) and
wj(n), j = 1, ..., p, the goal of PCC unit is to compute output vector y(n). Using x(n), y(n)
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and wj(n), j = 1, ..., p, the SWU unit produces the new synaptic weight vectors wj(n + 1), j =
1, ..., p. It can be observed from Figure 2 that the new synaptic weight vectors will be stored
back to the memory unit for subsequent training.

3.1 SWU unit

The design of SWU unit is based on eq.(3). Although the direct implementation of eq.(3)
is possible, it will consume large hardware resources. To further elaborate this fact, we
first see from eq.(3) that the computation of wji(n + 1) and wri(n + 1) shares the same term

∑
r
k=1 wki(n)yk(n) when r ≤ j. Consequently, independent implementation of wji(n + 1) and

wri(n + 1) by hardware using eq.(3) will result in large hardware resource overhead.

Fig. 3. The hardware implementation of eqs.(5) and (6).

To reduce the resource consumption, we first define a vector zji(n) as

zji(n) = xi(n)−
j

∑
k=1

wki(n)yk(n), j = 1, ..., p, (4)

and zj(n) = [zj1(n), ..., zjm(n)]
T. Integrating eq.(3) and (4), we obtain

wji(n + 1) = wji(n) + ηyj(n)zji(n), (5)

where zji(n) can be obtained from z(j−1)i(n) by

zji(n) = z(j−1)i(n)− wji(n)yj(n), j = 2, ..., p. (6)

When j = 1, from eq.(4) and (6), it follows that

z0i(n) = xi(n). (7)

Figure 3 depicts the hardware implementation of eqs.(5) and (6). As shown in the figure,
the SWU unit produces one synaptic weight vector at a time. The computation of wj(n + 1),
the j-th weight vector at the iteration n + 1, requires the zj−1(n), y(n) and wj(n) as inputs.
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Fig. 4. The architecture of each module in SWU unit.

In addition to wj(n + 1), the SWU unit also produces zj(n), which will then be used for the
computation of wj+1(n+ 1). Hardware resource consumption can then be effectively reduced.

One way to implement the SWU unit is to produce wj(n + 1) and zj(n) in one shot. In SWU
unit, m identical modules may be required because the dimension of vectors is m. Figure 4
shows the architecture of each module. The area cost of the SWU unit then will grows linearly
with m. To further reduce the area cost, each of the output vectors wj(n + 1) and zj(n) are
separated into b segments, where each segment contains q elements. The SWU unit only
computes one segment of wj(n + 1) and zj(n) at a time. Therefore, it will take b clock cycles
to produce complete wj(n + 1) and zj(n).

Let
ŵj,k(n) = [wj,(k−1)q+1(n), ..., wj,(k−1)q+q(n)]

T, k = 1, ..., b. (8)

and
ẑj,k(n) = [zj,(k−1)q+1(n), ..., zj,(k−1)q+q(n)]

T, k = 1, ..., b. (9)

be the k-th segment of wj(n) and zj(n), respectively. The computation wj(n) and zj(n) take b
clock cycles. At the k-th clock cycle, k = 1, ..., b, the SWU unit computes ŵj,k(n+ 1) and ẑj,k(n).
Because each of ŵj,k(n + 1) and ẑj,k(n) contains only q elements, the SWU unit consists of q
identical modules. The architecture of each module is also shown in Figure 4. The SWU unit
can be used for GHA with different vector dimension m. As m increases, the area cost therefore
remains the same at the expense of large number of clock cycles b for the computation of
ŵj,k(n + 1) and ẑj,k(n).

Figures 5, 6 and 7 show the operation of the q modules. For the sake of simplicity, the
computation of the first weight vector w1(n + 1) (i.e., j = 1) and the corresponding z1(n)
are considered in the figures. Based on eq.(7), the input vector zj−1(n) is actually the training
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Fig. 5. The operation of SWU unit for computing the first segment of w1(n + 1).

Fig. 6. The operation of SWU unit for computing the second segment of w1(n + 1).

vector x(n), which is also separated into b segments, where the k-th segment is given by

ẑ0,k(n) = [x(k−1)q+1(n), ..., x(k−1)q+q(n)]
T, k = 1, ..., b. (10)

They are then multiplexed to the q modules. The ẑ0,1(n) and ŵ1,1(n) are used for the
computation of ẑ1,1(n) and ŵ1,1(n + 1) in Figure 5. Similarly, the ẑ0,k(n) and ŵ1,k(n) are
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Fig. 7. The operation of SWU unit for computing the b-th segment of w1(n + 1).

Fig. 8. The operation of SWU unit for computing the first segment of w2(n + 1).

used for the computation of ẑ1,k(n) and ŵ1,k(n + 1) in Figures 6 and 7 for k = 2 and k = b,
respectively.

After the computation of w1(n + 1) is completed, the vector z1(n) is available as well. The
vector z1(n) is then used for the computation of w2(n + 1). Figure 8 shows the computation
of the first segment of w2(n + 1) (i.e., ŵ2,1(n + 1)) based on the first segment of z1(n) (i.e.,
ẑ1,1(n)). The same process proceeds for the subsequent segments until the computation of

171FPGA Implementation for GHA-Based Texture Classification

www.intechopen.com



8 Will-be-set-by-IN-TECH

the entire vectors w2(n + 1) and z2(n) are completed. The vector z2(n) is then used for the
computation of w3(n + 1). The weight vector updating process at the iteration n + 1 will be
completed until the SWU unit produces the weight vector wp(n + 1).

Fig. 9. The architecture of Buffer A in memory unit.

Fig. 10. The architecture of Buffer B in memory unit.
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Fig. 11. The architecture of Buffer C in memory unit.

3.2 Memory unit

The memory unit contains three buffers: Buffer A, Buffer B and Buffer C. As shown in Figure
9, Buffer A stores training vector x(n). It consists of q sub-buffers, where each sub-buffer
contains b elements. All the sub-buffers are connected to the SWU and PCC units.

The architecture of Buffer B is depicted in Figure 10, which holds the values of zj(n). Each
segment of zj(n) computed from SWU unit is stored in Buffer B. After all the segments are
produced, the Buffer B then deliver the segments of zj(n) to SWU unit in the first-in-first-out
(FIFO) fashion.

The Buffer C is used for storing the synaptic weight vectors wj(n), j = 1, ..., p. It is a two-port
RAM for reading and writing weight vectors, as revealed in Figure 11. The address for the
RAM is expressed in terms of indices j and i for reading or writing the i-th segment of the
weight vector wj(n).

Fig. 12. The architecture of PCC unit.

3.3 PCC unit

The PCC operations are based on eq.(1). Therefore, the PCC unit of the proposed architecture
contains adders and multipliers. Figure 12 shows the architecture of PCC. The training vector
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x(n) and synaptic weight vector wj(n) are obtained from the Buffer A and Buffer C of the
memory unit, respectively. When both x(n) and wj(n) are available, the proposed PCC unit
then computes yj(n). Note that, after the yj(n) is obtained, the SWU unit can then compute
wj(n + 1). Figure 13 reveals the timing diagram of the proposed architecture. It can be
observed from Figure 13 that both the yj+1(n) and wj(n + 1) are computed concurrently. The
throughput of the proposed architecture can then be effectively enhanced.

Fig. 13. The timing diagram of the proposed architecture.

3.4 SOPC-based GHA training system

The proposed architecture is used as a custom user logic in a SOPC system consisting of
softcore NIOS CPU (Altera Corp., 2010), DMA controller and SDRAM, as depicted in Figure
14. All training vectors are stored in the SDRAM and then transported to the proposed
circuit via the Avalon bus. The softcore NIOS CPU runs on a simple software to coordinate
different components, including the proposed custom circuit in the SOPC. The proposed
circuit operates as a hardware accelerator for GHA training. The resulting SOPC system is
able to perform efficient on-chip training for GHA-based applications.

4. Experimental results

This section presents some experimental results of the proposed architecture applied to texture
classification. The target FPGA device for all the experiments in this paper is Altera Cyclone
III (Altera Corp., 2010). The design platform is Altera Quartus II with SOPC Builder and NIOS
II IDE. Two sets of textures are considered in the experiments. The first set of textures, shown
in Figure 15, consists of three different textures. The second set of textures is revealed in
Figure 16, which contains four different textures. The size of each texture in Figures 15 and 16
is 320 × 320.

In the experiment, the principal component based k nearest neighbor (PC-kNN) rule is
adopted for texture classification. Two steps are involved in the PC-kNN rule. In the first
step, the GHA is applied to the input vectors to transform m dimensional data into p principal
components. The synaptic weight vectors after the convergence of GHA training are adopted
to span the linear transformation matrix. In the second step, the kNN method is applied to the
principal subspace for texture classification.
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Fig. 14. The SOPC system for implementing GHA.

Fig. 15. The first set of textures for the experiments.

Figures 17 and 18 show the distribution of classification success rates (CSR) of the proposed
architecture for the texture sets in Figures 15 and 16, respectively. The classification success
rate is defined as the number of test vectors which are successfully classified divided by the
total number of test vectors. The number of principal components is p = 4. The vector
dimension is m = 16 × 16. The distribution is based on 20 independent GHA training
processes. The distribution of the architecture presented in (Lin et al., 2011) with the same p is
also included for comparison purpose. The vector dimension for (Lin et al., 2011) is m = 4× 4.
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Fig. 16. The second set of textures for the experiments.

Fig. 17. The distribution of CSR of the proposed architecture for the texture set in Figure 15.

It can be observed from Figures 17 and 18 that the proposed architecture has better CSR. This
is because the vector dimension of the proposed architecture is higher than that in (Lin et al.,
2011). Spatial information of textures therefore is more effectively exploited for improving
CSR by the proposed architecture. In fact, the vector dimension in the proposed architecture
is m = 16 × 16. The proposed architecture is able to implement hardware GHA for larger
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Fig. 18. The distribution of CSR of the proposed architecture for the texture set in Figure 16.

vector dimension because the area cost of the SWU unit in the architecture is independent
of vector dimension. By contrast, the area cost of the SWU unit in (Lin et al., 2011) grows
with the vector dimension. Therefore, only smaller vector dimension (i.e., m = 4 × 4) can be
implemented.

To further elaborate these facts, Tables 1 and 2 show the hardware resource consumption of
the proposed architecture and the architecture in (Lin et al., 2011) for vector dimensions m =
4 × 4 and m = 16 × 16. Three different area costs are considered in the table: logic elements
(LEs), embedded memory bits, and embedded multipliers. It can be observed from Tables 1
and 2 that given the same m = 4 × 4 and the same p, the proposed architecture consumes
significantly less hardware resources as compared with the architecture in (Lin et al., 2011).
Although the area costs of the proposed architecture increase as m becomes 16 × 16, as shown
in Table 1, they are only slightly higher than those of (Lin et al., 2011) in Table 2. The proposed
architecture therefore is well suited for GHA training with larger vector dimension due to
better spatial information exploitation.

Proposed GHA with m = 4 × 4 Proposed GHA with m = 16 × 16
p LEs Memory Embedded LEs Memory Embedded

Bits Multipliers Bits Multipliers
3 3942 1152 36 63073 1152 569
4 4097 1152 36 65291 1152 569
5 4394 1280 36 70668 1280 569
6 4686 1280 36 75258 1280 569
7 4988 1280 36 79958 1280 569

Table 1. Hardware resource consumption of the proposed GHA architecture for vector
dimensions m = 4 × 4 and m = 16 × 16.
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GHA in (Lin et al., 2011) with m = 4 × 4
p LEs Memory Embedded

Bits Multipliers

3 22850 0 204
4 31028 0 272
5 38261 0 340
6 45991 0 408
7 53724 0 476

Table 2. Hardware resource consumption of the GHA architecture (Lin et al., 2011) for vector
dimension m = 4 × 4.

Fig. 19. The CPU time of the NIOS-based SOPC system using the proposed architecture as
the hardware accelerator for various numbers of training iterations with p = 4.

Figure 19 shows the CPU time of the NIOS-based SOPC system using the proposed
architecture as the hardware accelerator for various numbers of training iterations with p = 4.
The clock rate of NIOS CPU in the system is 50 MHz. The CPU time of the software
counterpart also is depicted in the Figure 19 for comparison purpose. The software training
is based on the general purpose 2.67-GHz Intel i7 CPU. It can be clearly observed from
Figure 16 that the proposed hardware architecture attains high speedup over its software
counterpart. In particular, when the number of training iterations reaches 1800, the CPU time
of the proposed SOPC system is 1861.3 ms. By contrast, the CPU time of Intel i7 is 13860.3 ms.
The speedup of the proposed architecture over its software counterpart therefore is 7.45.

5. Concluding remarks

Experimental results reveal that the proposed GHA architecture has superior speed
performance over its software counterparts. In addition, the architecture is able to attain
higher classification success rate for texture classification as compared with other existing
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GHA architectures. The architecture also has low area cost for PCA analysis with high
vector dimension. The proposed architecture therefore is an effective alternative for on-chip
learning applications requiring low area cost, high classification success rate and high speed
computation.
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