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1. Introduction

Subspace learning based pattern recognition methods have attracted considerable interests
in recent years, including Principal Component Analysis (PCA), Independent Component
Analysis (ICA), Linear Discriminant Analysis (LDA), and some extensions for 2D analysis.
However, a disadvantage of all these approaches is that they perform subspace analysis
directly on the reshaped vector or matrix of pixel-level intensity, which is usually unstable
under appearance variance. In this chapter, we propose to represent an image as a local
descriptor tensor, which is a combination of the descriptor of local regions (K*K-pixel patch)
in the image, and is more efficient than the popular Bag-Of-Feature (BOF) model for local
descriptor combination. As we know that the idea of BOF is to quantize local invariant
descriptors, e.g., obtained using some interest-point detector techniques by Harris & Stephens
(1998), and a description with SIFT by Lowe (2004) into a set of visual words by Lazebnik
et al. (2006). The frequency vector of the visual words then represents the image, and an
inverted file system is used for efficient comparison of such BOFs. However. the BOF
model approximately represents each local descriptor feature as a predefined visual word,
and vectorizes the local descriptors of an image into a orderless histogram, which may lose
some important (discriminant) information of local features and spatial information hold in
the local regions of the image. Therefore, this paper proposes to combine the local features of
an image as a descriptor tensor. Because the local descriptor tensor retains all information
of local features, it will be more efficient for image representation than the BOF model
and then can use a moderate amount of local regions to extract the descriptor for image
representation, which will be more effective in computational time than the BOF model. For
feature representation of image regions, SIFT proposed by Lowe (2004) is improved to be
a powerful local descriptor by Lazebnik et al. (2006) for object or scene recognition, which
is somewhat invariant to small illumination change. However, in some benchmark database
such as YALE and PIE face data sets by Belhumeur et al. (1997), the illumination variance
is very large. Then, in order to extract robust features invariant to large illumination, we
explore an improved gradient (intensity-normalized gradient) of the image and use histogram
of orientation weighed with the improved gradient for local region representation.

With the local descriptor tensor of image representation, we propose to use a tensor subspace
analysis algorithm, which is called as multilinear Supervised Neighborhood Preserving
Embedding (MSNPE), for discriminant feature extraction, and then use it for object or
scene recognition. As we know, subspace learning approaches, such as PCA and LDA
by Belhumeur et al. (1997), have widely used in computer vision research filed for feature
extraction or selection and have been proven to be efficient for modeling or classification.
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Recently there are considerable interests in geometrically motivated approaches to visual
analysis. Therein, the most popular ones include locality preserving projection by He
et al. (2005), neighborhood preserving embedding, and so on, which cannot only preserve
the local structure between samples but also obtain acceptable recognition rates for face
recognition. In real applications, all these subspace learning methods need to firstly reshape
the multilinear data into a 1D vector for analysis, which usually suffers an overfitting problem.
Therefore, some researchers proposed to solve the curse-of-dimension problem with 2D
subspace learning such as 2-D PCA and 2-D LDA by ming Wang et al. (2009) for analyzing
directly on a 2D image matrix, which was proven to be suitable in some extend. However,
all of the conventional methods usually perform subspace analysis directly on the reshaped
vector or matrix of pixel-level intensity, which would be unstable under illumination and
background variance. In this paper, we propose MSNPE for discriminant feature extraction on
the local descriptor tensor. Unlike tensor discriminant analysis by Wang (2006), which equally
deals with the samples in the same category, the proposed MSNPE uses neighbor similarity in

the same category as a weight of minimizing the cost function for Nth order tensor analysis,
which is able to estimate geometrical and topological properties of the sub-manifold tensor
from random points ("scattered data") lying on this unknown sub-manifold. In addition,
compared with TensorFaces by Casilescu & D.Terzopoulos (2002) method, which also
directly analyzes multi-dimensional data, the proposed multilinear supervised neighborhood
preserving embedding uses supervised strategy and thus can extract more discriminant
features for distinguishing different objects and, at the same time, can preserve samples’
relationship of inner object instead of only dimension reduction in TensorFaces. We validate
our proposed algorithm on different benchmark databases such as view-based object data sets
(Coil-100 and Eth-70) and Facial image data sets (YALE and CMU PIE) by Belhumeur et al.
(1997) and Sim et al. (2001).

2. Related work

In this section, we firstly briefly introduce the tensor algebra and then review subspace-based
feature extraction approaches such as PCA, LPP.

Tensors are arrays of numbers which transform in certain ways under coordinate

transformations. The order of a tensor X ∈ RN1×N2×···×NM , represented by a
multi-dimensional array of real numbers, is M. An element of X is denoted as Xi1,i2,··· ,iM

,
where 1 ≤ ij ≤ Nj and 1 ≤ j ≤ M. In the tensor terminology, the mode-j vectors of the

nth-order tensor X are the vectors in RNj obtained from X by varying the index ij while
keeping the other indices fixed. For example, the column vectors in a matrix are the mode-1
vectors and the row vectors in a matrix are the mode-2 vectors.

Definition. (Modeproduct). The tensor product X×dU of tensor X ∈ RN1×N2×···×NM and a

matrix U ∈ RNd×N ′
is the N1 × N2 × · · · × Nd−1 × N′ × Nd+1 × · · · × NM tensor:

(X×dU)i1,i2,··· ,id−1,j,id+1,··· ,iM
= ∑

id

(Xi1,i2,··· ,id−1,id,id+1,··· ,iM
Uid,j) (1)

for all index values. X×dU means the mode d’s product of the tensor X with the matrix U.
The mode product is a special case of a contraction, which is defined for any two tensors not
just for a tensor and a matrix. In this paper, we follow the definitions in Lathauwer (1997)
and avoid the use of the term ”contraction”.

92 Principal Component Analysis
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In tensor analysis, Principal Component Analysis (PCA) is used to extract the basis for each
mode. The proposed MSNPE approach is based on the basis idea of Locality Preserving
Projection (LPP). Therefore, we simply introduce PCA, LPP and a 2D extension of LPP as
the following.

(1) Principal component analysis extracts the principal eigen-space associated with a set

(matrix) X = [xi|
N
i=1] of training samples (xi ∈ Rn with 1 ≤ i ≤ N; N: sample number;

n: dimension of the samples). Let m be the mean of the N training samples, and C =
1
N ∑

N
i=1(xi − m)(xi − m)T be the covariance matrix of the xi. One solves the eigenvalue

equation λui = Cui for eigenvalues λi ≥ 0. The principal eigenspace U is spanned by the

first K eigenvectors with the largest eigenvalues, U = [ui|
K
i=1]. If xt is a new feature vector,

then it is projected to eigenspace U: yt = UT(xt − m). The vector yt is used in place of xt for
representation and classification.

(2)Locality Preserving Projection: LPP seeks a linear transformation P to project
high-dimensional data into a low-dimensional sub-manifold that preserves the local Structure
of the data. Let X = [x1, x2, · · · , xN ] denotes the set representing features of N training image

samples, and Y = [y1, y2, · · · , yN ] = [PTx1, PTx2, · · · , PTxN ] denotes the samples feature
in transformed subspace. Then, the linear transformation P can be obtained by solving the
following minimization problem with some constraints, which will be given later:

min
P

∑
ij

||yi − yj||
2Wij = min

P
∑
ij

||PTxi − PTxj||
2Wij (2)

where Wij evaluate the local structure of the image space. It can be simply defined as follows:

Wij =

{

1 if xi is among the k nearest neighbors of xj

0 otherwise
(3)

By simple algebra formulation, the objective function can be reduced to:

1

2 ∑
ij

(PTxi − PTxj)
2Wij = ∑

i

PTxiDiix
T
i P − ∑

ij

PTxiWijx
T
i P

= PTX(D − W)XTP = PTXLXTP

(4)

where each column Pi of the LPP linear transformation matrix P can not be zero vector, and a
constraint is imposed as follows:

YTDY = I ⇒ PTXDXTP = I (5)

where I in constraint term PTXDXTP = I or YTDY = I is an identity matrix. D is a diagonal
matrix; its entries are column (or row, since W is symmetric) sums of W, Dii = ∑j Wij; L =
D − W is the Laplacian matrix [5]. Matrix D provides a natural measure on the data samples.
The bigger the value Dii (corresponding to yi) is, the more importance is yi. The constraint

for the sample yi in YTDY = I is Dii ∗ yT
i yi = 1, which means that the more importance (Dii

is larger) the sample yi is, the smaller the value of yT
i yi is. Therefor, the constraint YTDY = I

will try to make the important point (has density distribution around the important point)
near the origin of the projected subspace. Then, the density region near the origin of the
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projected subspace includes most of the samples, which can make the objecrive function in

Eq. (2) as small as possible, and at same time, can avoid the trivial solution ||Pi||
2 = 0 for the

transformation matrix P.

Then, The linear transformation P can be obtained by minimizing the objective function under

constraint PTXDXTP = I:

argmin
PTXDXTP=I

PTX(D − W)XTP (6)

Finally, the minimization problem can be converted to solve a generalized eigenvalue problem
as follows:

XLXTP = λXDXTP (7)

In Face recognition application, He et al [8] extended LPP method into 2D dimension analysis,
named as Tensor Subspace Analysis (TSA). TSA can directly deal with 2D gray images, and
achieved better recognition results than the conventional 1D subspace learning methods such
as PCA, LDA and LPP. However, for object recognition, color information also plays an
important role for distinguishing different objects. Then, in this paper, we extend LPP to
ND tensor analysis, which can directly deal with not only 3D Data but also ND data structure.
At the same time, in order to obtain stable transformation tensor basis, we regularize a term
in the proposed MSNPE objective function for abject recognition, which is introduced in Sec.
3 in detail.

3. Local descriptor tensor for image representation

In computer vision, local descriptors (i.e., features computed over limited spatial support)
have been proven to be well-adapted for matching and recognition tasks as they are robust
to partial visibility and clutter. The current popular one for a local descriptor is the SIFT
feature, which is proposed by Lowe (2004). With the local SIFT descriptor, usually there
are two types of algorithms for object recognition. One is to match the local points with
SIFT features in two images, and the other one is to use the popular BOF model, which
forms a frequency histogram of a predefined visual-words for all sampled region features
by Belhumeur et al. (1997). For a matching algorithm, it is usually not enough to recognize
the unknown image even if there are several points that are well matched. The popular BOF
model usually can achieve good recognition performance in most applications such as scene
and object recognition. However, in BOF model, in order to achieve an acceptable recognition
rate, it is necessary to sample a lot of points for extracting SIFT features (usually more than
1000 in an image) and to compare the extracted local SIFT feature with the predefined visual
words (usually more than 1000) to obtain the visual-word occurrence histogram. Therefore,
BOF model needs a lot of computing time to extract visual-words occurrence histogram. In
addition, BOF model just approximately represents each local region feature as a predefined
visual-word; then, it may lose a lot of information and will be not efficient for image
representation. Therefore, in this paper, we propose to represent a color or gray image as
a combined local descriptor tensor, which can use different features (such as SIFT or other
descriptors) for local region representation.

In order to extract the local descriptor tensor for image representation, we firstly grid-segment
an image into K regions with some overlapping, and in each region, we extract some
descriptors (can be consider tensor) for local region representation. For a gray image, a
M-dimensional feature vector, which can be considered as a 1D tensor, is extracted from

94 Principal Component Analysis
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the local gray region. For a color image, a M-dimensional feature vector can be extracted
from each color channel such as R, G and B color channels. With the feature vectors of
the three color channels, a combined 2D M × 3 tensor can represent the local color region.
Furthermore we combine the K 1D or 2D local tensor (M-dimensional vector or M × 3 2D
tensor ) into a 2D or 3D tensor with of size M × K × L (L: 1 or 3). The tensor feature
extraction procedure of a color image is shown in Fig. 1(a). For feature representation of
the local regions such as the red, orange and green rectangles in Fig. 1 (a), the popular SIFT
proposed by Lowe (2004) is proved to be a powerful one for object recognition, which is
somewhat invariant to small illumination change. However, in some benchmark database
such as YALE and CMU PIE face datasets, the illumination variance is very large. Then,
in order to extract robust feature invariant to large illumination, we explore an normalized
gradient (intensity-normalized gradient) of the image, and use Histogram of Orientation
weighed with Normalized Gradient (NHOG) for local region representation. Therefore, for
the benchmark databases without large illumination variance such as COIL-100 dataset or
where the illumination information is also useful for recognition such as scene dataset, we
use the popular SIFT for local region representation. However, for the benchmark database
with large illumination variation, which will be harmful for subject recognition such as YALE
and CMU PIE facial datasets, we use Histogram of Orientation weighed with Normalized
Gradient (NHOG) for local region representation.

(1) SIFT: The SIFT descriptor computes a gradient orientation histogram within the support
region. For each of 8 orientation planes, the gradient image is sampled over a 4 by 4 grid
of locations, thus resulting in a 128-dimensional feature vector for each region. A Gaussian
window function is used to assign a weight to the magnitude of each sample point. This makes
the descriptor less sensitive to small changes in the position of the support region and puts
more emphasis on the gradients that are near the center of the region. To obtain robustness
to illumination changes, the descriptors are made invariant to illumination transformations of
the form aI(x) + b by scaling the norm of each descriptor to unity [8]. For representing the
local region of a color image, we extract SIFT feature in each color component (R, G and B
color components), and then can achieve a 128 ∗ 3 2D tensor for each local region.

(2) Histogram of Orientation weighed with the Normalized Gradient (NHOG): Given an
image I, we calculate the improved gradient (Intensity-normalized gradient) using the
following Eq.:

Ix(i, j) =
I(i + 1, j)− I(i − 1, j)

I(i + 1, j) + I(i − 1, j)

Iy(i, j) =
I(i, j + 1)− I(i, j − 1)

I(i, j + 1) + I(i, j − 1)

Ixy(i, j) =
√

Ix(i, j)2 + Iy(i, j)2

(8)

where Ix(i, j) and Iy(i, j) mean the horizontal and vertical gradient in pixel position i, j,
respectively, Ixy(i, j)means the global gradient in pixel position i, j. The idea of the normalized

gradient is from χ2 distance: a normalized Euclidean distance. For x-direction, the gradient is
normalized by summation of the upper one and the bottom one pixel centered by the focused
pixel; for y-direction, the gradient is normalized by that of the right and left one. With the
intensity-normalized gradient, we can extract robust and invariant features to illumination
changing in a local region of an image. Some examples with the intensity-normalized and
conventional gradients are shown in Fig. 2

95Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor
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(a)
(b)

Fig. 1. (a) Extraction of local descriptor tensor for color image representation; (b)NHOG
feature extraction from a gray region.
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(a)Samples of YALE facial database

(b)Samples of PIE facial database

Fig. 2. Gradient image samples. Top row: Original face images; Middle row: the
intensity-normalized gradient images; Bottom row: the conventional gradient images.

For feature extraction of a local region IR in the normalized gradient image shown in
Fig. 1(b), we firstly segment the region into 4 (2×2) patches,and then in each patch

extract a 20-bin histogram of orientation weighted by global gradient IR
xy calculated using

the intensity-normalized gradients IR
x , IR

y . Therefore, each region in a gray image can be

represented by 80-bin (20×4) histogram as shown in Fig. 1(b).

4. Multilinear supervised neighborhood preserving embedding

In order to model N-Dimensional data without rasterization, tensor representation is
proposed and analyzed for feature extraction or modeling. In this section, we propose a
multilinear supervised neighborhood preserving embedding by Han et al. (2011) Han et al.

97Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor
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(2011) to not only extract discriminant feature but also preserve the local geometrical and
topological properties in same category for recognition. The proposed approach decompose
each mode of tensor with objective function, which consider neighborhood relation and class
label of training samples.

Suppose we have ND tensor objects X from C classes. The cth class has nc tensor objects

and the total number of tensor objects is n. Let Xic
∈ RN1×N2×···×NL(ic = 1, 2, · · · , nc) be the

ith object in the cth class. For color object image tensor, L is 3, N1 is the row number, N2 is
the column number, and N3 is the color space components (N3=3). We can build a nearest
neighbor graph G to model the local geometrical structure and label information of X . Let W
be the weight matrix of G . A possible definition of W is as follows:

Wij =

{

exp−
‖Xi−Xj‖

2

t if sample i and j is in same class
0 otherwise

(9)

where ‖Xi − Xj‖
2 means Euclidean distance of two tensor, which is the summation square

root of all corresponding elements between Xi and Xj, and ‖ • ‖ means l2 norm in our paper.

Let Ud be the d-mode transformation matrices (Dimension: Nd × N′
d). A reasonable

transformation respecting the graph structure can be obtained by solving the following
objective functions:

min
U1,U2,··· ,UL

1

2 ∑
ij

‖Xi×1U1×2U2 · · ·×L UL −Xj×1U1×2U2 · · ·×L UL‖2Wij (10)

Algorithm 1: ND tensor supervised neighborhood
embedding

Input: Tensor objects X c
i from C classes, X c

i denots

the ith tensor object in the cth class
Graph-based weights: Building nearest neighbor
graph in same class and calculate the graph weight
W according to Eq. 9 and D from W

Initialize: Randomly initialize Ud
r ∈ RNd for d

=1,2,· · · , L
for t=1:T (Iteration steps) or until converge do

for d=1:L (Iteration steps) do
• Calculate Dd and Sd assuming Ui(i = 1, 2,
· · · , d − 1, d + 1, · · · , L) fixed.
• Solve the minimizing problem:

min
Ud

tr(UT
d (Dd − Sd)Ud) with eigenspace analysis

end for
end for
output: the MSNPE tensor Tj = U1 × U2×

· · · × UL, j = 1, 2, · · · , (N′
1 × N′

2 × · · · × N′
L).

Table 1. The flowchart of multilinear supervised neighborhood preserving embedding
(MSNPE).
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where Xi is the tensor representation of the ith sample; Xi×1U1 means the mode 1’s product of
the tensor Xi with the matrix U1, and Xi×1U1×2U2 means the mode 2’s product of the tensor
Xi×1U1 with the matrix U2, and so on. The above objective function incurs a heavy penalty if
neighboring points of same class Xi and Xj are mapped far apart. Therefore, minimizing

it is an attempt to ensure that if Xi and Xj are ′′close′′, then Xi×1U1×2U2 · · ·×L UL and

Xj×1U1×2U2 · · ·×L UL are ′′close′′ as well. Let Yi = Xi×1U1×2U2 · · ·×L UL with dimension

N1 × N2 × · · · × NL , and (Yi)
d = (Xi×1U1×2U2 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)

d with
dimension:Nd × (N1 × N2 × · · · × Nd−1 × Nd+1 × · · · × NL) is the d-mode extension of tensor

Yi, which is a 2D matrix. Let D be a diagonal matrix,Dii = ∑j Wij. Since ‖A‖2 = tr(AAT), we

see that

1

2 ∑
ij

‖Xi×1U1 · · ·×L UL −Xj×1U1 · · ·×L UL‖
2Wij

=
1

2 ∑
ij

tr(((Yi)
d − (Yj)

d)((Yi)
d − (Yj)

d)T)Wij

=tr(∑
i

Dii(Yi)
d((Yi)

d)T − ∑
ij

Wij(Yi)
d((Yj)

d)T)

=tr(∑
i

Dii(U
T
d (Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)

d

((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
d)TUd

− ∑
ij

Wij(U
T
d (Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)

d

((Xj×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
d)TUd)

=tr(UT
d (∑

i

Dii((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
d

((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
d)T

−∑
ij

Wij((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
d

((Xj×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
d)T)Ud)

=tr(UT
d (Dd − Sd)Ud)

(11)

where Dd = ∑i Dii(Xi×1U1 · · ·×d−1 Ud−1×d+1 Ud+1 · · ·×L UL)
d ((Xi×1U1 · · ·×d−1 Ud−1×d+1

Ud+1 · · ·×L UL)
d)T and Sd = ∑ij Wij(Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)

d ((Xj×1U1

· · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
d)T. In optimization procedure of each mode, we also

impose a constraint to achieve the transformation matrix (such as Ud in mode d) as the
following:

UT
d YdD(Yd)TUd = I ⇒ UTDdU = I (12)

For the optimization problem of all modes, we adopt an alternative least square (ALS)
approach. In ALS, we can obtain the optimal base vectors on one mode by fixing the base
vectors on the other modes and cycle for the remaining variables. The d-mode transformation
matrix Ud can be achieved by minimizing the following cost function:

argmin
UT

d DdUd=I

UT
d (Dd − Sd)Ud (13)

99Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor
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In order to achieve the stable solution, we firstly regularize the symmetric matrix Dd as Dd =
Dd + αI (α is a small value, I is an identity matrix of same size with the matrix Dd). Then, the
minimization problem for obtaining d-mode matrix can be converted to solve a generalized
eigenvalue problem as follows:

(Dd − Sd)Ud = λDdUd (14)

We can select the corresponding generalized eigenvectors with the first N′
d smaller

eigenvalues in Eq.(14), which can minimize the objective function in Eq.(13). However, the
eigenvectors with the smallest eigenvalues are usually unstable. Therefore, we convert Eq.
(14) into:

SdUd = (1 − λ)DdUd ⇒ SdUd = βDdUd (15)

The corresponding generalized eigenvectors with the first N′
d smaller eigenvalues λ in Eq.

(14) means those with the first N′
d larger eigenvalues β(1 − λ) in Eq. (15). Therefore, the

corresponding generalized eigenvectors with the first N′
d larger eigenvalues can be selected

for minimizing the objective function in Eq.(13). The details algorithm of MSNPE are listed in
Algorithm 1. In MSNPE algorithm, we need to decide the retained number of the generalized
eigenvectors (mode dimension) for each mode. Usually, the dimension numbers in most
discriminant tensor analysis methods are decided empirically or according to applications.
In our experiments, we retain different dimension numbers for different modes, and do
recognition for objects or scene categories. The recognition accuracy with varied dimensions
in different modes are also given in the experiment part. The dimension numbers is decided
empirically in the compared results with the state-of-art algorithms.

After obtaining the MSNPE basis of each mode, we can project each tensor object into these
MSNPE tensors. For classification, the projection coefficients can represent the extracted
feature vectors and can be inputted into any other classification algorithm. In our work, beside
Euclidean distance as KNN (k=1) classifier, we also use Random Forest (RF) for recognition.

5. Experiments

5.1 Database

We evaluated our proposed framework on two different types of datasets.

(i) View-based object datasets, which includes two datasets: The first one is the Columbia
COIL-100 image library by Nene et al. (1996). It consists of color images of 72 different
views of 100 objects. The images were obtained by placing the objects on a turntable and
taking a view every 5◦. The objects have a wide variety of complex geometric and reflectance
characteristics. Fig. 3(a) shows some sample images from COIL-100. The second one is the
ETH Zurich CogVis ETH-80 dataset by Leibe & Schiele (2003a). This dataset was setup by
Leibe and Schiele to explore the capabilities of different features for object class recognition.
In this dataset, eight object categories including apple, pear, tomato, cow, dog, horse, cup
and car have been collected. There are 10 different objects spanned large intra-class variance
in each category. Each object has 41 images from viewpoints spaced equally over the upper
viewing hemisphere. On the whole we have 3280 images, 41 images for each object and 10
object for each category. Fig.3(b) shows some sample images from ETH-80.

100 Principal Component Analysis
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Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor 11

(a)COIL-100 dataset;

(b) ETH80 dataset;

Fig. 3. Sample images from view-based object data sets.

(ii) Facial dataset: We use two facial datasets for evaluating the tensor representation with
the proposed NHOG for image representation. One is Yale databae which includes 15 people
and 11 facial images of each individual with different illuminations and expressions. Some
sample facial images are shown in the top row of Fig. 2(a). The other one is CMU PIE, which
includes 68 people and about 170 facial images for each individual with 13 different poses, 43
different illumination conditions, and with 4 different expressions. Some sample facial images
are shown in the top row of Fig. 2(b).

5.2 Methodology

The recognition task is to assign each test image to one of a number of categories or objects.
The performance is measured using recognition rates.

For view-based object databases, we take different experimental setup in COIL-100 and
ETH80 datasets. For COIL-100, the objective is to discriminate between the 100 individual

101Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor
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objects. In most previous experiments on object recognition using COIL-100, the number
of views used as training set for each object varied from 36 to 4. When 36 views are used
for training, the recognition rate using SVM was reported approaching 100% by Pontil &
Verri (1998). In practice, however, only very few views of an object are available. In our
experiment, in order to compare experimental results with those by Wang (2006), we follows
the experiment setup, which used only 4 views of each object for training and the rest 68
views for testing. In total it is equivalent to 400 images for training and 6800 images for
testing. The error rate is the overall error rate over 100 objects. The 4 training viewpoints are
sampled evenly from the 72 viewpoints, which can capture enough variance on the change
of viewpoints for tensor learning. For ETH-80, it aims to discriminate between the 8 object
categories. Most previous experiments using ETH-80 dataset all adopted leave-one-object-out
cross-validation. The training set consists of all views from 9 objects from each category. The
testing set consists of all views from the remaining object from each category. In this setting,
objects in the testing set have not appeared in the training set, but those belonging to the same
category have. Classification of a test image is a process of labeling the image by one of the
categories. Reported results are based on average error rate over all 80 possible test objects
by Leibe & Schiele (2003b). Similar to the above, instead of taking all possible views of each
object in the training set, we take only 5 views of each object as training data. By doing so we
have decreased the number of the training data to 1/8 of that used by Leibe & Schiele (2003b),
Marrr et al. (2005). The testing set consists of all the views of an object. The recognition rate
with the proposed scheme is compared to those of different conventional approaches by Wang
(2006) and those with MSNPE analysis directly on pixel-level intensity tensor.

For facial dataset, which has large illumination variance in images, we validate that the tensor
representation with the proposed NHOG for image representation will be much more efficient
for face recognition than that with the popular SIFT descriptor, which only is somewhat robust
to small illumination variance. In experiments Yale dataset, we randomly select 2, 3, 4 and 5
facial images from each individual for training, and the remainders for test. For CMU PIE
dataset, we randomly select 5 and 10 facial images from each individual for training, and the
remainder for test. We do 20 runs for different training number and average recognition rate
in all experiments. The recognitions with our proposed approach are compared to those by
the state-of-art algorithm by Cai et al. (2007a), Cai et al. (2007b).

6. Experimental results

(1) View-based object data sets

We investigate the performance of the proposed MSNPE tensor learning compared with
conventional tensor analysis such as tensor LDA by Wang (2006), which is also used
in view-base object recognition, and the efficiency of the proposed tensor representation
compared to the pixel-level intensity tensor, which directly consider a whole image as a tensor,
on COIL-100 and ETH80 datasets. In these experiments, all samples are also color images,
and SIFT descriptor for local region representation is used. Therefore, the pixel-level intensity
tensor is 3rd tensor with dimension R1× C1× 3, where R1 and C1 is row and column number
of the image, and the local descriptor tensor is with 128 × K × 3, where K is the segmented
region number of an image (here K=128). In order to compare with the state-of-art works
by Wang (2006), simple KNN method (k=1 in our experiments) is also used for recognition.
Experimental setup was given in Sec. 5, and we did 18 runs so that all samples can be as test.
Figure 6(a) shows the compared results of MSNPE using pixel-level tensor and local descriptor
tensor (denoted MSNPE-PL and MSNPE with KNN classifier, respectively, MSNPE-RF-PL
and MSNPE-RF with random forest) and traditional methods by Wang (2006) on COIL-100
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Methods DTROD DTROD+AdaB RSW LS
Rate(%) 70.0 76.0 75.0 65.0

Methods MSNPE-PL RF-PL MSNPE RF

Rate(%) 76.83 77.74 83.54 85.98

Table 2. The compared recognition rates on ETH-80. RSW denotes random subwindow
method Marrr et al. (2005) and LS denotes the results from Leibe and Schiele Leibe & Schiele
(2003b) with 2925 samples for training and 328 for testing. The others are with 360 samples
for training. MSNPE-PL and RF-PL mean MSNPE analysis on pixel-level intensity tensor
using simple Euclidean distance and random forest classifier, respectively; MSNPE and RF
mean the proposed MSNPE analysis on local SIFT tensor using simple Euclidean distance
random forest classifier, respectively.

dataset . The best result with the same experiment setup (400 training samples and 6800 test
samples) on COIL-100 is reported by Wang (2006), in which the average recognition rate
using tensor LDA and AdBoost classifier (DTROD+AdBoost) is 84.5%, and the recognition
rate of the tensor LDA and simple Euclidean distance(DTROD) by Wang (2006) (same as
KNN method with k=1) is 79.7. However, The MSNPE approach with pixel-intensity tensor
can achieve about 85.28% with same classifier (KNN), and 90% average recognition rate with
random forest classifier. Furthermore, the MSNPE approach with local SIFT tensor achieved
93.68% average recognition rate. The compared recognition rate results with the state-of-art
approaches are shown in Fig. 4 (a). Figure 4(b) shows the compared recognition rates of
one run on different mode dimension of MSNPE between using pixel-level intensity and
local SIFT tensor with random forest classifier. It is obvious that the recognition rates by
using pixel-level tensor have very large variance with differen mode dimension changing.
Therefore, we must select a optimized row and column mode dimension to achieve better
recognition rate. However, it is usually difficult to decide the optimized dimension number
of different modes automatically. If we just shift the mode dimension number a little from
the optimized mode dimension, the recognition rate can be decreased significantly shown in
Fig. 4(b) when using pixel-level tensor. For the local SIFT tensor representing an object image,
the average recognition rates in lager mode dimension changing (Both row and column mode
dimension numbers are from 3 to 8; color mode dimension is 3) are very stable.

For ETH-80 dataset, we also do similar experiments to COIL-100 using the proposed MSNPE
analysis with pixel-level and local SIFT tensor, respectively. The compared results with the
state of the art approach are shown in Table 2. From Table 2, it can be seen that our proposed
approach can greatly improve the overall recognition rate compared with the state of the art
method (from 60-80% to about 86%).

(2) Facial Datasets: With the two used facial datasets, we investigate the efficiency of the
proposed local NHOG feature on large illumination variance dataset compared with local
SIFT descriptor. We do 20 runs for different training number and average recognition rate.
For comparison, we also do experiments using the proposed MSNPE analysis directly on
the gray face image (pixel-level intensity, denoted MSNPE-PL), local feature tensor with
SIFT descriptor (denoted MSNPE-SIFT) and our proposed intensity-normalized histogram
of orientation (denoted MSNPE-NHOG). Table 3 gives the compared results using MSNPE
analysis with different tensors using KNN classifier (k=1) and other subspace learning
methods by Cai et al. (2007a), Cai et al. (2007b), Cai (2009) and Cai (n.d.) on YALE
dataset, and the compared results on CMU PIE dataset are shown in Table 4 with our proposed
framework and the conventional ones by Cai et al. (2007a) Cai et al. (2007b) Cai (2009) Cai
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(a)

(b)

Fig. 4. (a) The compared recognition rates on COIL-100 between the proposed framework
and the state-of-art approaches Wang (2006). (b) Average recognition rate with different
mode dimension using random forest classifier.
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Method 2 Train 3 Train 4 Train 5 Train
PCA 56.5 51.1 57.8 45.6

LDA 54.3 35.5 27.3 22.5

Laplacianface 43.5 31.5 25.4 21.7
O-Laplacianface 44.3 29.9 22.7 17.9

TensorLPP 54.5 42.8 37 32.7

R-LDA 42.1 28.6 21.6 17.4
S-LDA 37.5 25.6 19.7 14.9

MSNPE 41.89 31.67 24.86 23.06

MSNPE-SIFT 35.22 26.33 22.19 20.83
MSNPE-NHOG 29.74 22.87 18.52 17.44

Table 3. Average recognition error rates (%) on YALE dataset with different training number.

Method 5 Train 10 Train
PCA 75.33 65.5

LDA 42.8 29.7

LPP 38 29.6
MSNPE 37.66 23.57

MSNPE-NHOG 33.85 22.06

Table 4. Average recognition error rates (%) on PIE dataset with different training number.

(n.d.). From Table 3 and 4, it is obvious that our proposed algorithm can achieve the best
recognition performances for all most cases, and the recognition rate improvements become
greater when the training sample number is small compared to those by the conventional
subspace learning methods by Cai et al. (2007a), Cai et al. (2007b), Cai (2009) and Cai
(n.d.). In addition, as we have shown in the previous section, our proposed strategy can
be applied not only for recognition of face with small variance (such as mainly frontal face
database), but also for recognition of generic object with large variance. With generic object
dataset with large variance, the recognition rates are also improved greatly compared with
using pixel-level tensor.

7. Conclusion

In this paper, we proposed to represent an image as a local descriptor tensor, which is a
combination of the descriptor of local regions (K ∗ K-pixel patch) in the image, and more
efficient than the popular Bag-Of-Feature (BOF) model for local descriptor combination, and
at the same time, we explored a local descriptor for region representation for databases
with large illumination variance, Which is improved to be more efficient than the popular
SIFT descriptor. Furthermore, we proposed to use Multilinear Supervised Neighborhood
Preserving Embedding (MSNPE) for discriminant feature extraction from the local descriptor
tensor of different images, which can preserve local sample structure in feature space. We
validate our proposed algorithm on different Benchmark databases such as view-based and
facial datasets, and experimental results show recognition rate with our method can be greatly
improved compared conventional subspace analysis methods.
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