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1. Introduction 

Surveillance system (SS) development requires hi-tech support to prevail over the 

shortcomings related to the massive quantity of visual information from SSs [Fuentes & 

Velastin (2001)]. Anything but reduced human monitoring became impossible by means of 

its physical and economic implications, and an advance towards an automated surveillance 

becomes the only way out. 

When it comes to a computer vision system, automatic video event comprehension is a 
challenging task due to motion clutter, event understanding under complex scenes, multi-
level semantic event inference, contextualization of events and views obtained from 
multiple cameras, unevenness of motion scales, shape changes, occlusions and object 
interactions among lots of other impairments.  In recent years, state-of-the-art models for 
video event classification and recognition [Zhang et al. (2011), Yacoob et al. (1999)] include 
modeling events to discern context, detecting incidents with only one camera (Ma et al. 
(2009), Zhao et al. (2002), Zelnik-Manor et al. (2006)], low-level feature extraction and 
description, high-level semantic event classification and recognition. Even so, it is still very 
burdensome to recuperate or label a specific video part relying solely on its content.  

Principal component analysis (PCA) has been widely known and used, but when combined 
with other techniques such as the expectation-maximization (EM) algorithm its computation 
becomes more efficient. 

This chapter introduces advances associated to the concept of Probabilistic PCA (PPCA) 

analysis [Tipping et al., 1999)] by of video event understanding technologies. The PPCA 

model-based method results from the combination of a linear model and the EM algorithm 

in an iterative fashion in order to determine a principal subspace (PS). Thus, additional 

work may be needed to find precise principal eigenvectors of the data covariance matrix, 

with no rotational uncertainty.  

Kernel principal component analysis (KPCA) is a nonlinear PCA extension that relies on the 
kernel trick. It has received immense consideration for its value in nonlinear feature mining 
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and other applications. On the other hand, the main drawback of the standard KPCA is that 
the huge amount of computation required, and the space needed to store the kernel matrix. 
KPCA can be viewed as a primal space problem with samples created via incomplete 
Cholesky decomposition. Therefore, all the efficient PCA algorithms can be easily adapted 
into KPCA. Furthermore, KPCA can be extended to a mixture of local KPCA models by 
applying the mixture model to probabilistic PCA in the primal space. The theoretical 
analysis and experiments can shed light on the performance of the proposed methods in 
terms of computational efficiency and storage space, as well as recognition rate, especially 
when the number of data points n is large.     

By considering KPCA from a probabilistic point of view with the help of the EM algorithm, 

the computational load can be alleviated, but there still exists a rotational ambiguity with 

the resulting algorithm implementation. To unravel this intricacy, a constrained EM 

algorithm for KPCA (and PCA) was formulated founded on a coupled probability model. 

This brings in advantages related to many factors such as the necessary precision of 

extracted components, the number of the separated smaller data sets (which is usually 

empirically set), and the data to be processed. As a generic methodology, another thread of 

speeding up kernel machine learning is to seek a low-rank approximation to the kernel 

matrix. Since, as noted by several researchers, the spectrum of the kernel matrix tends to 

decay rapidly, the low-rank approximation often achieves satisfactory precision.  

This chapter also aims at looking closely to ways and metrics in order to evaluate these less 
intensive EM implementations of PCA and KPCA. 

2. Different ways of computing PCA  

PCA is based on statistical properties of vector representations. It is an important tool for 
image processing because it decorrelates the data and compacts information [Xu (1998), 
Rosipal & Girolami (2001)].  

PCA has been used profusely in all forms of analysis, since it is a straightforward, 

nonparametric way of extracting important information from ambiguous data sets. It helps 

reducing an intricate data set to a lower dimensional one that too often expose an unknown 

and simplified structure. 

This section introduces three ways of calculating principal components (PCs): (i) via explicit 
computation of the covariance matrix CX or, equivalently, XXT; (ii) by means of the singular 
value decomposition (SVD) of the original problem so that it can be replaced by the 
calculation of CX=YTY with Y=(n-1)1/2 XT, which requires the determination of eigenvectors of 
a system with smaller dimension; and (iii) using the EM algorithm.   

Because (i) and (ii) are related to the concept of covariance, they require square matrices 
(XXT and YTY, respectively). In the third case, there is an underlying probabilistic 
interpretation of the problem. 

2.1 First approach: Solving PCA using eigenvectors of the covariance matrix 

By seeking another basis, which is a linear combination of the original basis, the data set can 
be better represented. Linearity simplifies the problem because it restricts the set of 
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prospective bases, and handles the implicit postulation of continuity in a data set. Let X be a 
matrix representing the original data set	ࢅ, be another matrix related by a linear 
transformation P that represents a change of basis. X is the original recorded data set and ࢅ 
is its new representation  

 PX=Y .    (1) 

Geometrically, ࡼ is a rotation and a stretch which again transforms X into Y. The covariance 
matrix of X is  

 
1

( 1)
T

n


XC XX  (2) 

PCA also takes for granted that mean and variance are sufficient statistics are enough to 
depict a probability distribution. This happens to be the case with exponential distributions 
(Gaussian, Exponential, etc). Deviations from an exponential distribution could nullify this 
assumption. Diagonalizing a covariance matrix might not give acceptable results. This 
hypothesis guarantees that the ܴܵܰ and the covariance matrix totally portray noise and 
redundancies. The following factors can corrupt data: noise, rotation and redundancy.  A 
common noise metric is the signal-to-noise ratio ሺܴܵܰሻ, or a ratio of variances ߪଶ as follows: ܴܵܰ ൌ ௡௢௜௦௘ଶߪ௦௜௚௡௔௟ଶߪ  (3)

A high ܴܵܰሺ≫ ͳሻ indicates clean data, while a low ܴܵܰ points to noisy data. Large 
variances have important dynamics which means that the data is supposed to have a high ܴܵܰ. Thus, principal components (PCs) with larger associated variances correspond to 
interesting dynamics, while those with lower variances may characterize noise.  

Returning to (1), X is an m×n matrix, where m is the number of measurement types and n is 
the number of samples. The goal is to find an orthonormal ࡼ such that  

 
1

( 1)
T

n


YC YY  (4) 

is diagonal and rows of P are the PCs of X. Because lots of real world data are normally 
distributed, PCA usually provides a robust solution to small deviations from this 
assumption. Rewriting ࢅ࡯ in terms of P yields 

 

1 1
( )( )

( 1) ( 1)

1 1
( )

( 1) ( 1)

1

( 1)

T T

T T T T

T

n n

n n

n

 
 

 
 




 

Y

Y

C YY PX PX

PXX P P XX P

C PAP

 (5) 

where 		࡭ ≡XXT is symmetric with  

࡭  ൌ  (6)   . ࢀࡱࡰࡱ
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The eigenvectors of A are arranged as columns of E and  ࡰ is a diagonal matrix. A has ݎ ൑ ݉ 
orthonormal eigenvectors where ݎ is the rank of the matrix. The rank of A is less than ݉ 
when A is degenerate or all data reside in a subspace of dimension ݎ ൑ ݉. Maintaining the 
constraint of orthogonality, this situation can be remediated by selecting ሺ݉ െ  ሻ furtherݎ
orthonormal vectors to complete E. These additional vectors do not influence the final 
solution because the variances associated with these directions are zero. 

Each row pi is an eigenvector of XXT and form ࡼ ≡  Combining the previous equations .்ࡱ
results in  

 A ൌ  DP. (7)ࢀࡼ

Since P-1=PT, then CY becomes 

 1 1

1 1
( )

( 1) ( 1)

1 1
( ) ( ) ( ) ( )

( 1) ( 1)

1

( 1)

T T T

T T

n n

n n

n

 

 
 

 
 






YC PAP P P DP P

PP D PP PP D PP

D

 (8) 

In practice, computing ܲܣܥ of a data set X requires subtracting off the mean of each 

measurement type and the calculation of the eigenvectors of ࢀࢄࢄ.  

2.2 A more general solution: SVD 

PCA relates closely to singular value decomposition	ሺܸܵܦሻ, but ܸܵܦ is a more general 
method to deal with change of basis. Let X be an arbitrary ݊ ൈ ݉ matrix and ࢄࢀࢄ be a 
symmetric square ݊ ൈ ݊ matrix with rank r. V={v1, v2,  …,vr, 0,…,0} is the set of orthonormal 
eigenvectors associated with eigenvalues ࢳ ൌ ,ଵߪሼ݃ܽ݅ܦ ,ଶߪ … , ,௥ߪ Ͳ, … ,Ͳሽ for the symmetric 
matrix XTX such that 

 ሺࢄ்ࢄሻ࢏࢜ ൌ  (9)   , ࢏࢜௜ߣ

where  ߪ௜ ≡ ඥߣ௜ are positive real singular  values and  U={u1, u2,…, ur, 0,…,0}  is the set of 

orthonormal vectors defined by ui=(1/σi)Xvi. V and U contain, respectively, (m-r) and (n-r) 
appended zeros and ߪଵ ൒ ଶߪ ൒ ⋯ ൒  ୰ are the rank‐ordered set of singular values. Theߪ
matrix version of ܸܵܦ is given by 

	ࢂࢄ  ൌ  (10)    .ࢳࢁ

Because V is orthogonal, multiplying both sides of the expression above by ିࢂଵ ൌ  leads ்ࢂ
to the final form of the SVD: 

ࢄ  ൌ  (11) ,   ܂܄઱܃

which states that any arbitrary matrix X can be converted to an orthogonal matrix, a 
diagonal matrix and another orthogonal matrix as follows: 

 
T T T T  X UΣV U X ΣV U X Z , (12) 
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where ࢆ ≡  is a change of basis from X to Z. The fact that the orthonormal ࢀࢁ Note that .ࢀࢂࢳ

basis ࢀࢁ  transforms column vectors means that ࢀࢁ is a basis that spans the columns of X. 

Bases that span the columns are termed the column space of X. If ࢆ ≡  into Z. Because of the ࢀࢄ are an orthonormal basis for transforming (or the columns of V) ்ࢂ then the rows of ,ࢳࢀࢁ

transpose of X, it follows that V is an orthonormal basis spanning the row space of X.  

Matrices V and U are ݉ ൈ ݉ and ݊ ൈ ݊ respectively. Σ is a matrix with a small amount of 
non‐zero values along its diagonal. The SVD allows for creating a new m ×n matrix ࢅ as 
follows: 

ࢅ  ≡ ଵ√௡ିଵ  (13) ,்ࢄ

where each column of ࢅ has zero mean. The definition of ࢅ becomes obvious by looking at :ࢅ்ࢅ 												ࢅ்ࢅ ൌ ሺ ଵ√௡ିଵ ሻ்ሺ்ࢄ ଵ√௡ିଵ ሻ்ࢄ ൌ ଵ௡ିଵ ்ࢄ்்ࢄ ൌ ଵ௡ିଵ ࢀࢄࢄ ൌ  (14) ,ࢄ࡯

hence,  ࢅ is an ݊ ൈ ݉ and by construction ࢅ்ࢅ equals the covariance matrix of X. The PCs of 
X are the eigenvectors of ࢄ࡯. Applying ܸܵܦ to ࢅ, the columns of matrix V contain the 
eigenvectors of ࢅ்ࢅ ൌ   .Therefore, the columns of V are the PCs of X .ࢄ࡯

V spans the row space of ≡ 	 ଵ√௡ିଵ  Therefore, V must also span the column space of .்ࢄ
ଵ√௡ିଵ  .ࢄ

We can conclude that finding the PCs amounts to finding an orthonormal basis that spans 
the column space of X. If the final goal is to find an orthonormal basis for the column space 
of X then we can calculate it directly without constructing Y. By symmetry the columns of ܷ 

produced by the S ܸܦ of 
ଵ√௡ିଵ  .must also be the PCs ࢄ

One benefit of ܲܣܥ is that we can examine the variances ࢅ࡯ associated with the principal 

components. Often one finds that large variances associated with the first ݇ ൏ ݉ PCs, and 

then a precipitous drop‐off. One can conclude that most interesting dynamics occur only in 

the first ݇ dimensions. 

Both the strength and weakness of ܲܣܥ is that it is a non‐parametric analysis. When data are 

not normally distributed ܲܣܥ  fails. In exponentially distributed data, the axes with the 

largest variance do not correspond to the underlying basis. There are no parameters to 

tweak and no coefficients to adjust based on user experience:	  the answer is unique and 

independent of the user. 

This also poses a problem, if some system characteristics are not known a‐priori, then it 

makes sense to incorporate these assumptions into a parametric algorithm	or an algorithm 

with selected parameters. 

This prior non‐linear transformation is sometimes termed a kernel transformation and the 

entire parametric algorithm is called ܣܥܲܭ. This procedure is parametric because the user 

must incorporate prior knowledge of the structure in the selection of the kernel but it is also 

more optimal in the sense that the structure is more concisely described. 

One might envision situations where the PCs need not be orthogonal. Only the subspace is 
unique because the PCs are not uniquely defined. In addition, eigenvectors beyond the rank 
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of a matrix (i.e.	ߪ௜ ൌ Ͳ for ݅ ൐ rank) can be selected almost capriciously. Nevertheless, these 
degrees of freedom do not influence the qualitative features of the solution nor a 
dimensional reduction. 

For instance, if an image contains a 2‐D exponentially distributed data set, then the largest 
variances will not correspond to the meaningful axes and ܲܣܥ fails. 

2.3 EM algorithm for PCA 

There is a close relationship between the expectation-maximization (EM) algorithm and 
PCA, which leads to a faster implementation of the PPCA. The algorithm extracts a small 
number of eigenvectors and eigenvalues from large sets of high dimensional data. It is 
computationally efficient in space and time and does not require computing the sample 
covariance of the data.  

PCA is largely used in data analysis due to its optimality in terms of mean squared error, 

and its linear scheme to reduce the dimensions of vectors, so that compression and 

decompression become simple operations to carry out given the model parameters. 

Notwithstanding these interesting features, PCA has some deficiencies. The other two 

methods for finding the PCs are impractical for high dimensional data. Difficulties can arise 

in both computational complexity and data scarcity when diagonalizing a covariance matrix 

of ݊ vectors in a p-dimensional space when ݊ and ݌ amount to hundreds or several 

thousands of elements. It is often the case that there is not enough data in high dimensions 

for the sample covariance to be of full rank (data scarcity). Moreover, care needs to be taken 

in order to use techniques such as the SVD, which do not need full rank matrices. 

Complexity makes the direct diagonalization of a symmetric matrix with thousands of rows 

tremendously expensive (it is O(p3) for ݌ ൈ  inputs). There are procedures such as the one ݌

proposed by Wilkinson (1965) which is O(p2) that decrease this cost when only the first most 

important eigenvectors and eigenvalues are necessary. The sample covariance calculation 

calls for  O(np2) operations. 

In most cases, the explicit computation of the sample covariance matrix should be avoided. 
Methods such as the snap‐shot algorithm from Sirovich (1987), which has complexity of 
O(n3), take for granted that the eigenvectors sought out are linear combinations of the data 
points. In this section, a version of the EM algorithm from Dempster (1977) is presented for 
learning the PCs of a dataset. The algorithm does not require computing the sample 
covariance and has a complexity limited by O(knp) operations, where ݇ is the number of 
leading eigenvectors to be learned.  

Usual PCA approaches cannot handle missing values: incomplete data must either be 
discarded or completed via ad‐hoc interpolation techniques. A possible and uncomplicated 
solution is to replace missing coordinates with the mean of the known values in the 
corresponding coordinate or with estimation values relying on the known values. The EM 
algorithm for PCA benefits from the estimation of the maximum likelihood (ML) values for 
missing information directly at each iteration as stated by Ghahramani & Jordan (1994). 

As a final point, independently of the technique used to perform PCA, there is no accurate 
probability model in the input space, because the probability density is not normalized in 
the PS . This means that once applying PCA to some data, the only criterion on hand to 
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verify if the new data fit well the model is the squared distance of the new data from their 
projections into the PS. A data point distant from the training data but close to the PS  will 
have a high pseudo-likelihood or low error.  This chapter also brings in a model called 
sensible PCA ሺSPCA) which delineates a proper covariance structure in the data space as 
proposed by Roweis (1998) whose main contribution was to alleviate the computational 
load of the other two techniques with the help of the EM algorithm. 

PCA can be interpreted as a limiting case of a particular class of linear‐Gaussian models 
(LGMs), because these models capture the covariance structure of an observed p‐
dimensional variable y using less than p(p+1)/2 free parameters when compared to the full 
covariance matrix calculation. LGMs do this by assuming that y is the result from a linear 
transformation of some k‐dimensional x plus additive Gaussian noise. Denoting the 
transformation by the ݌ ൈ ݇ matrix ࡯  and the (p‐dimensional) noise by v (with covariance 
matrix R) the generative model can be written as ࢟ ൌ ࢞࡯ ൅ ࢜ (15) , ࢞

where ࢞ ∼ ࣨሺ૙, 	࢜ ሻ andࡵ ∼ ࣨሺ૙,  is considered independent and identically ࢞  . ሻࡾ
distributed (iid) according to a unit variance spherical Gaussian. Since ࢜ is also iid and 
independent of x, the model reduces to a single Gaussian model for ࢟ as follows: 

࢟  ∼ ࣨሺ૙, ࢀ࡯࡯ ൅  ሻ  . (16)ࡾ

With the purpose of saving parameters over the direct covariance representation in p‐space, 
it is indispensable to select ݇ ൏  by constraining ࢜ and to curb the covariance structure of ݌
R. The second constraint allows the model to capture any interesting or informative 
projections in ࢞. If ࡾ was not limited, then the algorithm could choose ࡯ ൌ ૙ and ࡾ would be 
the sample covariance of the data considering any deviation in the data as noise.  

There are two central problems of interest when working with LGMs. Firstly, the 
compression problem asks if given fixed model parameters C and R, it is possible to gather 
information about the unknown x given a few observations y must be gathered. Since the 
data points are independent, one needs the posterior probability P(x|y) given the 
corresponding single observation, resulting in 

 
( | ) ( )

( | ) ( ) ,
( )

,
P P

P
P

   
y x x

x y βy I βC x
y

  (17) 

where 1( )T T  β C CC R gives  the expected value βy of the unknown and an estimate of the 

uncertainty in this value in the form of the covariance (I-βC) . y from x  can be obtained from 
P(x|y). Finally, the likelihood of any data point y comes from (16). 

The second problem is called learning or parameter fitting.  It seeks the matrices ࡯ and ܴ 
that assign the highest likelihood to the observed data. There is a family of EM algorithms 
employing the inference formula above in the E‐step to estimate the unknown and then 
choose ࡯ as well as ࡾ in the M‐step, in order to maximize the expected joint likelihood of the 
estimated ࢞ and the observed ࢟. 

PCA is a limiting case of the LGM as the covariance of the noise ࢜ becomes infinitesimally 

small and equal in all directions, that is 
0

lim





R I . This makes the likelihood of ࢟ subject 
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exclusively to the squared distance between it and its reconstruction CX. The directions of 
the columns of ࡯ which minimize this error are the PCs. Inference now becomes a simple 
least squares projection: 

 ܲሺ࢟|࢞ሻ ൌ ࣨሺ࢟ࢼ, 	ࡵ െ ,࢞|ሻ࡯ࢼ with		ࢼ ൌ limఌ→଴ ்࡯ ሺࢀ࡯࡯ ൅  ሻିଵ    (18)ࡵߝ

or alternatively, 

 ܲሺݕ|ݔሻ ൌ ࣨሺሺ࡯்ܥሻିଵ்࢟࡯, ૙ሻ|࢞ ൌ ࢞ሺߜ െ ሺ࡯ࢀ࡯ሻିଵ்࢟࡯ሻ   (19) 

Given that the noise became insignificant, the posterior over x collapses to a single point and 
the covariance turns out to be zero. Albeit the PCs can be computed explicitly, there is still 
an EM algorithm for the limiting case of zero noise. It can be easily derived from the 
standard algorithms (Sangers (1989),  Oja  (1989), Everitt (1984), Ghahramani et al. (1997)) by 
replacing the common E‐step by the above projection as follows: 

 E-step: X ൌ ሺ࡯்࡯ሻିଵ(20)  ࢅ்࡯ 

 M-step: ࡯ ൌ  ሻିଵ, (21)܂܆܆ሺ܂܆܇

where ࢅ is a ݌ ൈ ݊ matrix containing  all the observed data and X is a ݇ ൈ ݊ matrix with the 
unknowns. The columns of ࡯ span the space of the first ݇ PCs. To explicitly compute the 
corresponding eigenvectors and eigenvalues, the data can be projected onto this k‐ 
dimensional subspace to construct an ordered orthogonal covariance basis. This means that 
once an orientation for the PS was guessed, the presumed subspace is corrected and the data ࢟ is projected onto it to give the values of ࢞. Next, the values of x are corrected and a 
subspace orientation is chosen to minimize the squared reconstruction errors of the  
data points.  

Bear in mind that if ࡯ is ݌ ൈ ݇ with ݌ ൐ ݇ and is rank ݇ then left multiplication by  ்࡯ሺ்࡯࡯ሻିଵ , which appears not to be well defined because (CCT) is not invertible, is exactly 
equivalent to left multiplication by ሺ࡯்࡯ሻିଵ்࡯. This is the same as the SVD idea of defining 
the inverse of the diagonal singular value matrix as the inverse of an element except if it is 
zero when it stays zero. The perception is that even if CCT in fact is not invertible, the 

directions along which it is not invertible are just those that ࢀ࡯ is about to project out. 

The EM algorithm for PCA amounts to an iterative procedure for finding the ݇ leading 

eigenvectors without explicit computation of the sample covariance. Its complexity is 

limited by ܱሺ݇݊݌ሻ per iteration and so depends only linearly on both the dimensionality of 

the data and the number of points. Explicitly computing the sample covariance matrix result 

in complexities of ܱሺ݊݌ଶሻ	, while other methods that form linear  combinations of the data 

must calculate and diagonalize a matrix with all possible inner products between points and 

as a result have ܱሺ݊ଶ݌ሻ complexity.  

According to Roweis (1998), the standard convergence proofs for EM given by Dempster 
(1977) are appropriate to this algorithm as well, so a solution will always attain a local 
maximum of likelihood. Additionally, it is assumed that PCA learning do not have a stable 
maxima other than the global optimum which results in convergence to the true PS. The rate 
of convergence depends on the ratio of the largest eigenvalue to the second largest 
eigenvalue; the closer the two are in magnitude the slower the convergence will be.  
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In the complete data setting, the values of the projections  ࢞ are viewed as missing 

information for EM. During the E‐step these values are computed by means of projecting the 

observed data into the current subspace. This minimizes the model error given the observed 

data and the model parameters. However, if some of the input points lack certain coordinate 

values, then those values can be easily estimated in the same fashion. The E‐step can be 

generalized as follows: 

E-step: For each (possibly incomplete) point ࢟ find the unique pair of points ࢞∗ and ࢟∗ሺ such 

that ࢞∗ lies in the current PS  and ࢟∗ lies in the subspace defined by the known  coordinates 

of y) which minimize the norm ‖ Cx ∗ 	 െ࢟∗‖. Set the corresponding column of X  to ࢞∗ and 

the corresponding column of ࢅ to ࢟∗. 

If ࢟ is complete then ࢟∗ ൌ  are the ∗࢟ and ∗࢞ is found exactly as before. If not, then ∗࢞ and ࢟

solution to a least squares problem and can be found by, for instance, ܴܳ factorization. 

Observe that this method is not restricted to missing coordinates in the data; the unknown 

degrees of freedom may lie in any directions in the space. This outperforms replacing each 

missing coordinate with the mean of known coordinates.  

3. EM algorithm for Sensible PCA (SPCA) 

If ࡾ must have the form ࡵߝ, but do not take the limit as ߝ → Ͳ , then this model is called 

SPCA according to Roweis (1998). The columns of ࡯ are still known as the PCs. From now 

on, the scalar value ߝ on the diagonal of ࡾ  is called global noise level. It is worth noting that 

SPCA uses ͳ ൅ ݇݌ െ ݇ሺ݇ െ ͳሻ/ʹ free parameters to model the covariance. Once again, 

inference is done with (17) and learning by an EM algorithm. Because it has a finite noise 

level, SPCA defines the following model and probability distribution in the data space: 

࢟  ∼ ࣨሺ૙, ࢀ࡯࡯ ൅  ሻ    (22)ࡵߝ

which makes possible to evaluate the actual likelihood of new test data under an SPCA 

model. Furthermore, this likelihood will be much lower for data far from the training set 

even if they are near the PS, unlike the reconstruction error from PCA. The EM algorithm for 

SPCA is: 

 E-step: ࢼ ൌ ࢀ࡯࡯ሺࢀ࡯ ൅ ௫ߤ	ሻିଵࡵߝ ൌ ࢞ࢳ	ࢅࢼ ൌ 	ࡵ݊ െ ࡯ࢼ݊ ൅  (23)      ࢀ࢞ࣆ࢞ࣆ

 M-step: ۱ ൌ ߝ	૚ିࢳࢀ࢞ࣆࢅ ൌ trace ሾࢀࢄࢄ െ  ሿ/݊ଶ    (24)ࢀࢅ࢞ࣆ࡯

Since ࡵߝ is diagonal, the inversion in the E‐step can be performed efficiently using the matrix 

inversion lemma: 

 ሺ۱۱܂ ൅ ሻିଵࡵߝ ൌ ሺߝ/ࡵ െ ࡵሺ࡯ ൅  ଶሻ .   (25)ߝ/ࢀ࡯ሻିଵߝ/࡯்࡯

Because only the trace of the matrix in the M-step is taken, there is no need to compute the 

full sample covariance XXT. Instead only the variance along each coordinate need to be 

computed. These two observations suggest that for small ݇	, learning for SPCA also have 

complexities limited by ܱሺ݇݊݌ሻ and not worse. 
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4. EM algorithm for KPCA 

Tipping & Bishop (1999) analyzed PCA from a probabilistic point of view and realized that 
probabilistic PCA (PPCA) is a special case of factor analysis. In addition, Rubin & Thayer 
(1984) developed the expectation-maximization (EM) learning algorithm for factor analysis. 
So, considering PPCA within the factor analysis framework, the principal components can 
be straightforwardly extracted by using the EM algorithm rather than performing 
eigenvalue decomposition. So, the computational burden on high dimensional data can be 
alleviated. Rosipal and Girolami (2001), transformed the EM procedure from data space to a 
nonlinearly related feature space. Thus, an EM approach to kernel PCA (KPCA) has arisen, 
which is very useful to find the nonlinear PCs. Scholkopf et al. (1998) introduced KPCA and 
demonstrated its value in machine learning as well as pattern recognition.  

 KPCA needs to diagonalize the kernel matrix K, whose dimensionality N  is equal to the 
number of data points and  as  the data set increases, KPCA becomes less viable due to 
the augmenting computational complexity O(N3), which prohibits it from being used in 
many applications. Moreover, there is still the problem of numerical precision when 
diagonalizing large matrices directly according to Rosipal and Girolami, (2001). So, the 
EM approach to KPCA (with computational complexity O(qN2) per iteration, where q is 
the number of extracted components) is a good remedy. Still, there exists a rotational 
ambiguity with the EM algorithm for PCA (and KPCA), which is unwanted from a 
theoretical point of view.  

 Ahn & Oh (2003) have introduced a constrained EM algorithm by using a coupled 
latent variables model. Their proposed EM approach can directly compute the eigen-
system of sample covariance matrix in data space as well as that of the kernel matrix. 
For the most part, when it is applied to the kernel matrix K, it is a dual form of the 
constrained EM algorithm for performing KPCA.  

4.1 EM algorithm for any positive semi-definite matrix 

Let ࢅ	 ൌ ሾ࢟૚, … ,  ሿ be the matrix consisting of N p‐dimensional vectors known asࡺ࢟
observations, and ࢄ ൌ ሾ࢞૚, … ,  ሿ be the q‐dimensional latent variables associated with theࡺ࢞
data points of	ࢅ. The linear model relating an observed data vector ࢔࢟ to a corresponding 
latent variable ࢔࢞ is given by 

 yn = WTxn + εn , (26) 

with n = 1, …, N; the parametrical matrix  ࢃ ∈ Թ௣௫௤ determines the connection between the 
data space, and the latent space.  The p‐ dimensional noise vector ࢔ࢿ is normally distributed 
with zero mean and covariance matrix ߪଶࡵ. Vector xn is also zero mean and normally 
distributed with identity covariance. By marginalizing with respect to ࢔࢞	and optimizing W 
using the ML principle, Tipping & Bishop (1999) proved that the ML solution correspond to 
the situation when  ࢃ spans the PS  of the observed data (PPCA model).  

The EM approach to PCA is a least‐squares projection, which - as said by Rosipal & 
Girolami (2001), Xu (1998) and Tipping & Bishop (1999) -  is given by: 

 E‐step: ࢄ ൌ ሺࢃࢀࢃሻିଵࢅࢀࢃ, and  (27) 

 M‐step: ൌ  ሻିଵ .   (28)ࢀࢄࢄሺࢀࢄࢅ
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Later, by means of a coupled latent variables model along with PPCA, Ahn & Oh (2003) 

introduced a constrained EM algorithm for PCA: 

 E‐step: ࢄ ൌ ሼሺࢃࢀࢃሻሽିଵࢅ்ࢃ, and    (29) 

 M‐step: ൌ  ሻሽିଵ , (30)ࢀࢄࢄሼሺࢀࢄࢅ

where the element‐wise lower operator  was defined such that  (aij) = aij, for ݅ ൒ ݆ and 

zero otherwise, and the upper operator  corresponds to  (aij) = aij, for  ݅ ൑ ݆ and zero if not. 

Ahn & Oh (2003) verified that as the noise level became infinitesimal, ࢃ would converge to 

be the ML estimator ࢃ ൌ ૚/૛ࢫࢁ
,  where the ݍ columns of ࢁ were the eigenvectors of the 

sample covariance matrix ሺͳ/ܰሻࢀࢅࢅ and ࢫ contained the related eigenvalues arranged 

diagonally in descending order of magnitudes. This removes the rotational ambiguity of 

algorithm as stated in (27) and (28). 

The EM algorithm for PCA considers the latent variables ሼ࢔࢞ሽ as missing data. The ܧ‐step of 

the LM algorithm evaluates the expectation of the corresponding complete‐data log‐
likelihood with respect to the posterior distribution of ࢔࢞ given the observed࢔࢟. The 

expectations ܧሺ࢔࢟|࢔࢞ሻ and ܧሺ࢔࢟|ࢀ࢔࢞࢔࢞ሻ form the basis of the E‐step. In the M‐step, the 

parameter W is updated to maximize the expected complete‐data log‐likelihood function, 

which is guaranteed to increase the likelihood of the observed samples ሼ࢔࢟ሽ as follows: ࢃ ൌ ሺ∑ ே௡ୀଵࢀሻ࢔࢟|࢔࢞ሺܧ࢔࢟ ሻሺ∑ ሻே௡ୀଵ࢔࢟|ࢀ࢔࢞࢔࢞ሺܧ࢔࢟ ሻ. (31)

Combining the E‐step and M‐stes yields 

ࢃ  ൌ  ሻିଵሻିଵ (32)ࢃࢀࢃሺࢃࢀࢅࢅࢀࢃሻିଵࢃࢀࢃሻିଵሺሺࢃࢀࢃሺࢃࢀࢅࢅ

as the noise level becomes infinitesimal. 

Now from (32), if]et ܵ ൌ ்ܻܻ and use the ܿ݋ upled latent variables model Ahn & Oh (2003), 

then the EM algorithm for PCA could be rewritten as 

 E‐step: ࢆ ൌ ሼሺࢃࢀࢃሻሽିଵ்ࢃ, and (33) 

 M‐step: ࢃ ൌ  ሻሽିଵ . (34)ࢀࢆࡿࢆሼሺࢀࢆࡿ

The modified constrained EM algorithm comes from (33) and (34), can be further 

generalized to any positive semi‐definite matrix S. In fact, by the incomplete Cholesky 

decomposition any positive semi‐definite matrix can be factorized as 

ࡿ  ൌ ࢀࡸࡸ  , (35) 

where ࡸ ∈ Թ௣ൈ௥ and S have rank ݎ. The columns of L are samples of yn and apply the model 

(26). The modified constrained EM algorithm comes from (33) and (34). After convergence, 

the normalized columns of ࢃ are the leading ݍ eigenvectors of ࡿ (please, refer to Roweis 

(1998) and Dempster (1977)). The related eigenvalues are the diagonal elements of ࢃࡿࢀࢃ. 

The computational complexity of the proposed EM algorithm is ܱሺ݌ݍଶሻ per iteration. 
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The modified constrained EM algorithm (MCEM) even though simple in the derivation, is 

very useful in computing not only the eigen‐system of sample covariance matrix in data 

space, but also that of kernel‐based nonlinear algorithms. For instancee, the MCEM can be 

applied to KPCA directly. Given the set of ܰ observations Y, the basic idea is to first map 

these input data into some new feature space via a nonlinear function ߶,  followed by 

standard linear PCA using the mapped samples ߶ሺ࢏࢟ሻ. Thus, KPCA turns out to compute 

the most important eigenvectors of the ܰ ൈ ܰ kernel matrix ࡷ which is defined such that  

the elements 

࢐࢏ࡷ  ൌ ݇൫࢏࢟, ൯࢐࢟ ൌ ൫߶ሺ࢏࢟ሻ. ߶ሺ࢐࢟ሻ൯, (36) 

where ݇ is the kernel function which calculates the dot product between two mapped 

samples ߶ሺ࢟ଙሶሻ and ߶ሺ࢟ଚሶሻ. Hence, the mapping of ߶ does not need to be computed explicitly. 

If ݇ is a positive definite kernel, then there exists a mapping ߶ into the dot product space ࣡ 

such that (36) holds. 

To compute the leading eigenvectors of ࡷ, it is enough to replace ࡿ with ࡷ using the MCEM 

algorithm which can be viewed as a dual form of the constrained EM algorithm for 

performing KPCA. The computational complexity is ܱሺܰݍଶሻ per iteration. The projection of 

a test point ࢟, whose image is ߶ሺ࢟ሻ onto the ݍ nonlinear principal axes is given by ࢟ࡷࢀࢃ, 

where the columns of ࢃ are normalized, i.e., the i-th column ࢏࢝ is divided by T
i iw Kw , 

such that the eigenvectors of the sample covariance matrix have unitary norms, and ࢟ࡷ is 

the vector ሺ݇ሺ࢟૚. ,ሻ࢟ … , ݇ሺ࢔࢟.  .ሻሻ் (please, see Xu (1998)ሻ࢟

5. PCA in video event detection 

Visual surveillance demands video sequence understanding, the detection of predefined 

events prone to activate an alarm, the tasks to performed, environment/scenario 

acquaintance and, consequently, a superior computational performance [Siebel and 

Maybank (2002), Fuentes and Velastin (2001)]. Nevertheless, smart SSs face the intricate task 

of analyzing people and their activities. A number of clues may be acquired from the 

investigation of people trajectories and their relations (tracking). The investigation of a 

single blob location or path can decide whether a person is located in an illegal area, 

running, jumping or hiding as in Figures (1) and (2). These data from two or more people 

may reveal facts regarding their interaction. 

The amount of people present in a scene is called density. Events may also be classified into 

as position‐based and dynamic‐based events. SSs need to handle more than one image 

channel or cameras simultaneously in real time to be effectively applied to security, and this 

calls for a simplification of the image processing stages. A background recognition 

technique relying on motion detection along with a simple tracking algorithm to extract 

real-time blob and scene features such as blob position, blob speed and people density can 

help building semantic descriptions of predefined occurrences. Contrasting sequence 

parameters with the semantic description of the associated events related to the current 

scenario, the system is able to spot them and to alert the ultimate decision-maker. The case 

study presented here is concerned with people-oriented SSs applied to public environments. 
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Fig. 1. Surveillance system using blob detection. 

 

Fig. 2. Blob representation by means of a bounding box. 
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Background regions can be segmented out by detecting the presence or absence of motion 

between at least two consecutive frames as can be seen in Figure (3). An SS may hint that an 

event has indeed occurred because of frame-by-frame blob investigation and tracking, 

which offer sufficient data to analyze some prior events and the occurrence odds of others in 

a video sequence.  

 

Fig. 3. Background and ROIs for the Susie sequence [Zhang et al. (2011)]. 

A matching procedure involving blobs from the current and preceding frames, and the 

overlapping of bounding boxes [Rivera et al. (2004)] can be used as evaluation criteria for 

ruling the interaction among people and things. This condition has proved helpful in other 

techniques [MacKenna et al. (2000)] and it does not necessitate the calculation of the blob 

position since blob motions are always considered smaller than their dimensions. Each new 

blob can be updated by means of the data accumulated from previous frames. If a new blob 

emerges, then the centroid position can be used to construct a new path. If two blobs join to 

form a new one, then this blob is labelled as a group and the information about combined 

blobs is stored for future use. This new blob group can be tracked independently. If the group 

splits once more, the system uses motion direction and blob characteristics to properly classify 

splitting blobs. Trajectories of single persons or cars can be effortlessly obtained following 

centroids in adjacent frames throughout a video sequence. Whenever needed, the tracked blob 

position can be interpolated before and after it became part of a group. 

Camera networks, control rooms along with human resources and operators for surveillance 

have prompted lots of interest in automation of inspection tasks. These systems are also 

concerned with citizens’ safety, people flow patterns (for counting purposes or as an aid to 

facilities planning), overcrowding of restricted or semi‐open areas, atypical crowd 

movements, obstruction of exits, brawls, vandalism, falls/accidents, unattended objects, 

invasion of forbidden regions, and so on [Fuentes (2002)]. 

Blob recognition offers ʹܦ information about people coordinates in a 3ܦ setting. A more 

accurate position calls for either geometric camera calibration or stereo processing. Some 

examples of event detection that can be done by means of centroid position analysis [Zhang 

et al. (2011), Fuentes et al. (2002)] are  
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1. Unattended objects laying on the floor (blobs are normally smaller than people) 
presenting little or no motion, people falling on the ground and objects that  move away 
from a person or reference point can be detected by means of a time analysis.  

2. Suspicious activities related to hidden people may correspond to blobs disappearance 
along several consecutive frames. 

3. Vandalism may involve isolation of one person/group present in the scene with 
irregular centroids motion and, possibly, changes in the background. 

4. Temporal thresholding may be used to detect invasions and activate the alarms in case 
necessary actions must be taken. 

5. Prevention of Attacks and Fights: Using people sensation of distance, and knowledge 
on social patterns of conduct, it is possible to establish a range of distances and profiles 
corresponding to different types of social interaction [MacKenna et al. (2000)].  By 
means of the analysis of fast centroids changes, important clues about the people 
present in a scene can be gathered, such as blob coincidence, merging of blobs and blob 
splitting  to name a few. 

Another way of posing the blob detection algorithm is to cluster displacement vectors and, 

then learn the blob centroids motions. 

5.1 Case study: Motion estimation 

Motion provides important information. Significant events, such as collision paths, object 

docking, sensor obstruction, object properties and occlusion can be characterized and 

understood with the help of the optic flow (OF). Segmenting an OF field (OFF) into coherent 

motion groups and estimating each underlying motion are  very challenging tasks when a 

scene has several independently moving objects. The problem is further complicated by 

noise and/or data scarcity.  

The main problem with motion analysis is the difficulty to get accurate motion estimates 

without prior motion segmentation and vice-versa. Pel-recursive (PR) schemes [Franz &   

Krapp (2000), Franz & Chahl (2003), Kim et al. (2005), Tekalp (1995)] can theoretically 

overcome some of the limitations associated with blocks by assigning a unique motion 

vector to each pixel.  

Segmenting OF via EM algorithm for mixtures of PCs can be done successfully [Estrela & 

Galatsanos (2000), Tipping & Bishop (1999)] because both techniques share a close 

relationship. Most methods assume that there is little or no interference between the 

individual sample constituents or that all the constituents in the samples are known ahead 

of time. In real world samples, it is very unusual, if not entirely impossible, to know the 

entire composition of a mixture sample. Sometimes, only the quantities of a few constituents 

in very complex mixtures of multiple constituents are of interest [Blekas et al. (2005), Kim et 

al. (2005), Tipping & Bishop (1999)]. This section intends to solve OF problems by means of 

two different takes on PCA regression (PCR): 1) a combination of regularized least squares 

(RLS) and PCA (PCR1); and 2) RLS followed by regularized PCA regression (PCR2). Both 

involve simpler computational procedures than previous attempts at addressing  

mixtures [Blekas et al. (2005), Kim et al. (2005), Tipping & Bishop (1999), Jolliffe (2002), Wold 

et. al.  (1983)].   
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5.1.1 Problem formulation 

The displacement of every pixel in each frame forms the displacement vector field (DVF) 

and its estimation can be done using at least two successive frames. The goal is to find the 

corresponding intensity value Ik(r) of the k-th frame at location r = [x, y]T, and d(r) = [dx, dy]T 

the corresponding displacement vector (DV) at the working point r in the current frame by 

means of algorithms that minimize the DFD function in a small area containing the working 

point assuming constant image intensity along the motion trajectory. The perfect 

registration of frames will result in Ik(r)=Ik-1(r-d(r)) as seen in Figure (4). Figure (5) shows 

some examples of pixel neighborhoods. The DFD represents the error due to the nonlinear 

temporal prediction of the intensity field through the DV and is given by 

∆(r;d(r))=Ik(r)-Ik-1(r-d(r)) . 

 

Fig. 4. Backward motion estimation problem. 

 

                                                                 Current pixel            Past pixel 

Fig. 5. Examples of causal masks. 
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An estimate of d(r), is obtained by directly minimizing (r,d(r)) or by determining a linear  

relationship between these two variables through some model. This is accomplished by 

using a Taylor series expansion of Ik-1(r-d(r)) about the location (r-di(r)), where di(r) 

represents a prediction of d(r) in the i-th step. This results in
i T i

K-1( , - ( ))   I ( - ( )) e( , ( ))    r r d r u r d r r d r , where the displacement update vector is u=[ux, 

uy]T = d(r) – di(r), e(r, d(r)) stands for the truncation error resulting from higher order terms 

(linearization error) and =[/x, /y]T represents the spatial gradient  operator. 

Considering all points in a neighborhood of  pixels  around r gives 

 z Gu n , 

where the temporal gradients  (r, r-di(r)) have been stacked to form the N×1 observation 

vector z containing DFD information on all the pixels in a neighborhood, the N×2 matrix G 

is obtained by stacking the spatial gradient operators at each observation, and the error 

terms have formed the N×1 noise vector n. The PR estimator for each pixel located at 

position r of a frame k can be written as 

di+1(r) = di(r) + ui(r), 

where ui(r) is the current motion update vector obtained through a motion estimation 

procedure that attempts to find u, di(r) is the DV at iteration i and di+1(r) is the corrected DV. 

The ordinary least squares (OLS) estimate of the update vector is  

( ) T -1 T
LSu G G G z , 

which is given by the minimizer of the functional  J(u)=║z-Gu║2  . The assumptions made 

about n for least squares estimation are  E(n) = 0, and Var(n) = E(nnT) = σ2IN, where E(n) is 

the expected value (mean) of n, and  IN, is the identity matrix of order N.  From now on,  G 

will be analyzed  as being an N×p matrix in order to make the whole theoretical discussion 

easier. Since G may be very often ill conditioned, the solution given by the previous 

expression will be usually unacceptable due to the noise amplification resulting from the 

calculation of the inverse matrix GTG. In other words, the data are erroneous or noisy.  

The regularized minimum norm solution also known as regularized least square (RLS) 

solution  is given by 

 1( ) ( ) u Λ G G Λ G zT T
RLS . 

The RLS estimate of the motion update vector can be improved by a strategy that uses local 

properties of the image. Each row of G has entries [gxi, gyi]T, with i = 1, …, N. The spatial 

gradients of Ik-1 are calculated through a bilinear interpolation scheme similar to what is 

done in [Estrela & Galatsanos (2000), Estrela & Galatsanos (1998)].  The entries 1( )kf  r

corresponding to a given pixel location inside a causal mask is needed to compute the 

spatial gradients by means of bilinear  interpolation [Estrela & Galatsanos (2000), Estrela & 

Galatsanos (1998)] at location  [ , ]Tx yr   as follows: 
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with. The equation evaluates the 2-nd order spatial derivatives  of 1( )kf  r  at  r by  means  of 

backward differences: 
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5.2 On the use of PCA in regression 

The main idea behind the two proposed PCR procedures is the PCA of the G matrix 

[Jackson  (1991), Jolliffe (2002)].  

Each successive component explains portions of the variance in the total sample. PCA 
relates to the second statistical moment of G, which is proportional to GTG and it 
partitions G into matrices T and P (sometimes called scores and loadings, respectively), 
such that: 

 TG TP . 

T contains the eigenvectors of GTG ordered by their eigenvalues with the largest first and in 

descending order. When dimensionality reduction is needed, the number of components 

can be chosen via examination of the eigenvalues or, for instance, considering the residual 

error from cross-validation [Estrela & Galatsanos (2000), Jolliffe (2002]. The PCR motion 

estimation algorithms will keep the PCs and use them to group DVs inside a neighborhood. 

The resulting clusters will give an idea about the mixture of MVs inside a mask. The formal 

solution PCR1 may be written as  

1
ˆ ( ) T -1 T

PCRu P T T T z ,  and  1( ) ( ) u Λ G G Λ G zT T
RLS , 

where a regularization  matrix Λ tries to compensate for deviations from the smoothness 
constraint. In PCR1, the scores vectors (columns in T) of different components are 
orthogonal. PCR1 uses a truncated inverse where only the scores corresponding to large 
eigenvalues are included. The criteria for deciding when the PCR1 estimator is superior to 
OLS estimators depend on the values of the true regression coefficients in the model. The 
previous solution can also be regularized: 

2
ˆ ( ) T -1 T

PCRu P T T Ξ T z . 
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with Ξ standing for a regularization matrix in the PC domain.  Grouping objects can be 
posed as a mathematical problem consisting of finding region boundaries.  Sometimes the 
problem is such that a sample may belong to more than one class at the same time, or not 
belong to any class. In this method, each class is modeled by a multivariate normal in the 
score space from PCA. Two measures are used to determine whether a sample belongs to a 
specific class or not: the leverage—the Mahalanobis distance to the center of the class, the 
class boundary being computable as an ellipse  and the norm of the residual, which must be 
lower than a critical value. Figure (6) shows a set of observations plotted with respect to the 
first two principal components (PCs). It is likely that the four clusters correspond to four 
different types of DVs (see ellipses). For a big neighborhood, it could happen that these 
vectors would not be readily distinguished using only one variable at a time, but the plot 
with respect to the two PCs clearly distinguishes the populations. PCR estimates are biased, 
but may be more accurate than OLS estimates in terms of mean square error. Nevertheless, 
when severe multicollinearity is suspected, it is recommended that at least one set of 
estimates in addition to the OLS estimates be computed since these estimates may help 
interpreting the data in a different way.  

 

Fig. 6. An example of cluster analysis obtained by means of principal components. 

When PCA reveals the instability of a particular data set, one should first consider using 
least squares regression on a reduced set of variables. If least squares regression is still 
unsatisfactory, only then should principal components be used.  Besides exploring the most 
obvious approach, it reduces the computer load. Outliers and other observations should not 
be automatically removed, because they are not necessarily bad observations. As a matter of 
fact, they can signal some change in the scene context and if they make sense according to 
the above-mentioned criteria, they may be the most informative points in the data. For 
example, they may indicate that the data did not come from a normal population or that the 
model is not linear.  

When cluster analysis is used for video scene dissection, the aim of a two-dimensional plot 
with respect to the first two PCs will almost always be to verify that a given dissection 
‘looks’ reasonable.  Hence, the diagnosis of areas containing motion discontinuities can be 
significantly improved. If additional knowledge on the existence of borders is used, then 
one’s ability to predict the correct motion will increase.  

 

PC2 

PC1 
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PCs can be used for clustering, given the links between regression and discrimination. 
The fact that separation among populations may be in the directions of the last few PCs 
does not mean that PCs should not be used at all. In regression, their uncorrelatedness 
implies that each PC can be assessed independently. To classify a new observation, the 
least distance cluster is picked up. If a datum is not close to any of the existing groups, it 
may be an outlier or come from a new group about which there is currently no 
information. Conversely, if the classes are not well separated, some future observations 
may have small distances from more than one class. In such cases, it may again be 
undesirable to decide on a single possible class; instead, two or more groups may be listed 
as possible loci for the observation. 

The average improvement in motion compensation for a sequence of K frames it turns out to 

be [Estrela & Galatsanos (2000)]: 
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When it comes to motion estimation, one seeks algorithms that have high values of 

( )IMC dB . A perfect registration of motion leads to ( )IMC dB =. Figure (7) illustrates the 

evolution of ( )kIMC dB  as a function of the frame number for two noiseless sequences: 

“Foreman” and “Mother and Daughter”. PCR2 works outperforms the other estimators due 

to the use of regularization in the PC domain. Figure (8) shows the DVFs for the “Rubik 

Cube” sequence with SNR=20 dB.  

 
 

 
 
 

Fig. 7. Improvement in motion compensation curves for the “Foreman” and “Mother and 
Daughter” sequences. 
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                                        (a)                                     (b) 

 
(c) 

Fig. 8. Displacement field for the Rubik Cube sequence: (a) Frame of Rubik Cube Sequence; 
Corresponding displacement vector field for a 31×31 mask obtained by means of PCR1 with 
SNR=20 dB; and (c) PCR2, 31×31 mask  with SNR=20 dB. 

6. Final comments 

The methods developed in this chapter allow simple and efficient computation of a few 
eigenvectors and eigenvalues when working with many data points in high dimensions. 
They rely on PPCA and the MCEM algorithm, which permit this calculation even in the 
presence of missing data.  

The EM algorithms for PCA and KPCA derived above using probabilistic arguments are 

closely related to two well know sets of algorithms. The first are power iteration methods 

for solving matrix eigenvalue problems. Roughly speaking these methods iteratively update 

their eigenvector estimates through repeated multiplication by the matrix to be 

diagonalized. In the case of PCA explicitly forming the sample covariance and multiplying 

by it to perform such power iterations would be disastrous. However, since the sample 

covariance is in fact a sum of outer products of individual vectors we can multiply by it 

efficiently without ever computing it. In fact, the EM algorithm is exactly equivalent to 

performing power iterations for finding ܥ using this trick. Iterative methods for partial least 

squares (e.g. the NIPALS algorithm) are doing the same trick for regression. Taking the 
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singular value decomposition (SVD) of the data matrix directly is a related way to find the 

PS. If the Lanczos’ and Arnoldi’s methods are used to compute this SVD, then the resulting 

iterations are similar to those of the EM algorithm. The second class of methods comprises 

competitive learning methods for finding the PS, such as Sanger(1989) ݏ and Oja (1989) 

suggest. These methods enjoy the same storage and time complexities as the EM algorithm 

however, their update steps reduce but do not minimize the cost and so they typically need 

more iterations and require a learning rate parameter to be set by hand. 

In this chapter, two PCR frameworks for the detection of motion fields are discussed. Both 
algorithms combine regression and PCA. The resulting transformed variables are 
uncorrelated.  Unlike other works ([8, 11, 12]), the interest here is not in reducing the 
dimensionality of the feature space describing different types of motion inside a 
neighborhood surrounding a pixel. Instead, we use them in order to validate motion 
estimates.  They can be seen as simple alternative ways of dealing with mixtures of motion 
displacement vectors. PCR1 and PCR2 performed better than RLS estimators for noiseless 
and noisy images. More experiments are still needed in order to test the proposed 
algorithms with different types and levels of noise, so that the classification can be 
improved. It is also necessary to incorporate more statistical information in our models and 
to analyze if this knowledge will improve the outcome. 
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