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1. Introduction 

Inorganic polyphosphates are long chains of a few to several hundred phosphate residues 
linked by phosphoanhydride bonds (Figure 1). Polyphosphates have been found in all cell 
types examined to date and have been demonstrated to play diverse roles depending on the 
cell type and circumstances (Kornberg et al., 1999; Kulaev & Kulakovskaya, 2000). The 
biological roles played by polyphosphates have been most extensively studied in 
prokaryotes and unicellular eukaryotes, where they have been shown to regulate many 
biochemical processes including the metabolism and transport of inorganic phosphate, 
cation sequestration and storage (Kornberg et al., 1999), and membrane channel formation 
(Reusch, 1989; Jones et al., 2003), and they have also been found to be involved in cell 
envelope formation and bacterial pathogenesis (Rashid et al., 2000; Kim et al., 2002), the 
regulation of gene and enzyme activities (McInerney et al., 2006), the activation of Lon 
proteases (Kuroda et al., 2001), and KcsA channel regulation (Negoda et al., 2009). 
 

 

Fig. 1. Inorganic Polyphosphate 

Conversely, polyphosphate functions have not been extensively investigated in higher 
eukaryotes; however, there is a good deal of interest in polyphosphates in mitochondria 
regarding two circumstances: polyphosphate as a macroenergetic compound with the same 
energy hydrolysis of the phosphoanhydride bond as an ATP and, according to the 
endosymbiotic theory, mitochondria originated from ancient prokaryotic cells (Clements et 
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al., 2009; Kulakovskaya et al., 2010), thus, it would be intriguing to discover whether or not 
mitochondria have preserved polyphosphate functions such as the regulation of energy 
metabolism and the participation in transport channel formation. 

2. Polyphosphate mobilization during Rhipicephalus (Boophilus) microplus 
embryogenesis 

The tick Rhipicephalus microplus is a one-host tick that causes major losses to bovine herds, 

especially in tropical regions. In this scenario, major efforts have been made to develop 

immunoprophylatic tick control tools (Guerrero et al., 2006). Ticks are also vectors of 

parasites that cause hemoparasitic diseases, which are endemic in many cattle production 

areas (Sonenshine et al., 2006). Rhipicephalus microplus only has one host throughout all three 

life stages, usually a bovine animal, and a long feeding period (approximately 21 days). The 

adult female, after becoming completely engorged, drops off of the host and initiates 

oviposition approximately three days later. Being an oviparous creature, embryogenesis 

occurs in the absence of exogenous nutrients, and maternal nutrients are packaged in 

oocytes and mostly stored as yolk granules. Hatching occurs around 21 days after 

oviposition, and the emerging larvae can survive for several weeks before finding a host, 

using the remaining yolk as the only source of energy (Fagotto, 1990). 

Early R. microplus embryonic stages are similar to those of D. melanogaster and mosquitoes 
(Bate & Arias, 1991; Monnerat et al., 2002). Tick embryogenesis is characterized by the 
formation of a non-cellular syncytium up to day 4 (Campos et al., 2006). After this, the 
embryo becomes a multicellular organism and starts organogenesis (Campos et al., 2006). 
The function of polyphosphate as a phosphate reserve is well known in prokaryotes and 

also in eukaryote microorganisms (Kulaev & Vagabov, 1983; Kornberg, 1995; Kulaev, 2004). 

The cells of higher eukaryotes also carry polyphosphate, but in smaller amounts than found 

in microorganisms. Therefore, as well as being a source of phosphate, these biopolymers 

probably participate in regulatory processes (Kornberg et al., 1999). Total polyphosphate 

levels were quantified throughout R. microplus embryogenesis and the levels were found to 

be higher during embryo cellularization and segmentation, from the fifth to the seventh day 

of development, and declined after that until a plateau was reached. The free phosphate 

content rapidly decreased during syncytial blastoderm formation on the third day of 

development, and remained low until the twelfth day of embryogenesis, when it rapidly 

increased thereafter (Figure 2A). Exopolyphosphatase splits phosphate off from the end of a 

polyphosphate chain and represents one of the main enzyme types responsible for 

polyphosphate hydrolysis (Kulaev et al., 2004). The activity of exopolyphosphatase was 

analyzed during embryogenesis and its activity was in agreement with total polyphosphate 

mobilization (Figure 2B). 

It is interesting to note that in R. microplus the decline in total polyphosphate content after 

the seventh day of embryogenesis did not reflect the increase in the free phosphate content, 

since this only occurs after the twelfth day, suggesting that polyphosphate also plays roles 

other than being a phosphate reserve for embryo development. In this case, an alternative 

source of phosphate could be derived from the dephosphorylation of vitellin, a major yolk 

protein that is gradually dephosphorylated throughout embryogenesis (Silveira et al., 2006). 

This source could mainly be used until segmentation of the embryo, on the seventh day of 

development, because there is no total polyphosphate mobilization during this period.  
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Fig. 2. Characterization of the total polyphosphate content during R. microplus 
embryogenesis. A) Total polyphosphate (▲) was extracted and quantified and free 
phosphate (■) was quantified in an egg homogenate on different days after oviposition. B) 
Total polyphosphate (▲) was extracted and quantified and exopolyphosphatase activity (●) 
was analyzed in an egg homogenate on different days after oviposition. Activity is 
expressed as units per milligram of total protein. The results represent the mean ± SD of 
three independent experiments, in triplicate. 

Quantification of the major energy sources in the egg over the course of R. microplus 

embryogenesis suggests that lipids and carbohydrates are the main energy source used 

during early development of the embryo. The total lipid contents remained stable until the 

fifth day, dropped on the seventh day, and remained roughly unchanged until hatching 

(Figure 3A).  The total sugar contents exhibited a similar pattern, although slightly delayed: 

the values remained stable until the seventh day, dropped on the ninth day and remained 
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constant until hatching (Figure 3B). This pattern suggests the utilization of lipids during the 

course of cellularization, a maternally driven process (Bate & Arias, 1993). On the other 

hand, carbohydrates would be the major energy source for the quick segmentation of the 

embryo, of zygotic nature (Nusslein-Volhard & Roth, 1989; Bate & Arias, 1993). 

 

 

 

Fig. 3. Consumption of energetic sources. The major egg storage components of R. microplus 
were quantified on different days after oviposition. A) Lipid quantification, determined via 
the gravimetric method (Bligh & Dyer, 1959); B) total sugar concentration, measured using 
the method of Dubois (Dubois et al., 1956). The results represent the mean ± SD of three 
independent experiments, in triplicate. 

Interestingly, mitochondrial polyphosphate utilization occurred during blastoderm 

formation and segmentation of the embryo, between the fifth and seventh days of 

development, and higher total polyphosphate utilization occurred after blastoderm 

formation and segmentation of the embryo, after the seventh day of development (Figure 4). 

Thus, mitochondrial polyphosphate levels seemed to correlate with the energy demand of 

the embryo during these developmental stages, during which the embryo utilized a large 

part of its reserve lipids and sugars.   
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Fig. 4. Polyphosphate metabolism during R. microplus embryogenesis. Polyphosphate levels 
during embryogenesis in the mitochondrial fraction (●) and total polyphosphate (■) during 
embryogenesis. The results represent the mean ± SD of three independent experiments, in 
triplicate. 

2.1 Inorganic polyphosphate metabolism in tick mitochondria 

Mitochondria from tick embryos in the segmentation stage (ninth day after oviposition) 

were isolated and respiration was measured using pyruvate as the substrate. The rate of 

oxygen consumption was 30 nmol/min/mg protein, and the respiratory control ratio (RCR) 

was 6.5. The process was KCN- and oligomycin-sensitive, his fraction exhibited an ATP 

hydrolyses azide sensitivity, a mitochondrial marker higher than 80%, and no activity of 

glucose-6-phosphate dehydrogenase, a cytosol marker, was detected (Table 1). 
 

 State 3 State 4 RCR 
% F – ATPase 
azide sensitive 

G6PDH  
(U/mg protein) 

Homogenate --- --- --- 49.50 % 2.9 ± 0.4 
Mitochondrial 
fraction 

30.2 ± 3.2 4.6 ± 0.7 6.5 ± 0.4 83.45 % --- 

Table 1. Mitochondrial characterization 

Once the mitochondria were characterized, mitochondria in eggs in the segmentation stage 

(ninth day after ovoposition) were isolated and exopolyphosphatase activity was measured 

in order to evaluate the regulation of its activity. The influence of NADH, phosphate, and 

ADP was investigated in concentrations ranging from 0.1 to 2.0 mM. The activity of 

exopolyphosphatase was stimulated by a factor of two by NADH, whereas its activity was 

completely inhibited by 2 mM phosphate and slightly stimulated by ADP (Figure 5A). The 

activity of exopolyphosphatase was also measured during mitochondrial respiration using 

pyruvate as the substrate and polyphosphate as the only phosphate source. During this 

assay, the addition of a small amounts of ADP (0.2 mM) induced state 3 (phosphorylating 

respiratory rate) followed by state 4 (non-phosphorylating respiratory rate), when all of the 

ADP was converted to ATP. 
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(B)  *   * 

 

Fig. 5. In (A), Mitochondrial exopolyphosphatase activity in R. microplus embryos. 
Mitochondria from eggs on the ninth day of embryogenesis were isolated and 
exoolyphosphatase activity was determined using polyphosphate3 in the presence of 0.1–2 
mM NADH, ADP and Pi. The results represent the mean ±SD of three independent 
experiments, in triplicate. B) Exopolyphosphatase activity was measured in the 
mitochondria of eggs on the ninth day of development during mitochondrial respiration 
with pyruvate as the oxidative substrate, polyphosphate3 as the exopolyphosphatase 
substrate and olygomicin as ATP synthase. The activity is expressed as units per milligram 
of total protein and the results represent the mean ± SD of three independent experiments, 
in triplicate. The asterisk (*) denotes the difference between the populations and the 
significance was determined by a two-way ANOVA test (Kruskal-Wallis). 
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Thus, during state 3, a balance existed between the release of phosphate by 

exopolyphosphatase and ATP synthesis, since exopolyphosphatase activity was measured 

by the amount of phosphate present. The exopolyphosphatase activity increased during 

mitochondrial respiration when pyruvate and ADP were added. This increase did not occur 

without the addition of ADP, indicating that exopolyphosphatase is stimulated during state 

3 and that the rate of phosphate release is higher than the rate of ATP synthesis. Indeed, the 

stimulatory effect was antagonized by olygomicin, an ATP synthase inhibitor (Figure 5B). 

These data suggest that mitochondrial exopolyphosphatase activity is regulated by 

phosphate and the energy demand. 

Furthermore, it was possible to measure ADP-dependent mitochondrial oxygen 

consumption in the presence of polyphosphate and in the absence of any other phosphate 

source. This oxygen consumption was observed using polyphosphate3 and 

polyphosphate15; however, the consumption was higher with polyphosphaste3. On the 

other hand, heparin, an exopolyphosphatase inhibitor, blocked oxygen consumption, 

which was recovered when 5 mM phosphate was added and was again interrupted by the 

addition of oligomycin, an ATP-synthase inhibitor (Figure 6). These results suggest that 

polyphosphate was used as a phosphate donor for ATP synthesis due to the 

mitochondrial coupling observed when mitochondrial respiration was interrupted by 

oligomycin and the existence of membrane exopolyphosphatase in this process, due to the 

inhibition by heparin, which cannot cross the mitochondrial membrane and has its active 

site oriented toward the external face of the membrane. In fact, after mitochondrial 

subfractionation, the main exopolyphosphatase activity was recovered in the membrane 

fraction, supporting this hypothesis (Table 2). 

 

 

Fig. 6. Polyphosphate as a source for ATP synthesis. Oxygen consumption was monitored 
using a reaction buffer in the absence of a phosphate source in the eggs on the ninth day of 
development. The addition of 1 mM ADP, 5 mM pyruvate, 0.5 µM polyphosphate3 and 15, 20 
µg/mL heparin, 5 mM phosphate and 0.5 µM oligomycin is represented in the figure. This 
experiment was repeated at least three times with different preparations, and this figure 
shows a representative experiment. 
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 Exopolyphosphatase activity 
(U / mg protein)

Heparin 
(% inhibition) 

Mitochondria 0.60 ± 0.19 98 
Soluble fraction 
(intermembrane space and matrix)

0.35 ± 0.06 98 

Membrane fraction 
(mixture of inner and outer membranes)

1.11 ± 0.16 98 

Table 2. Exopolyphosphatase activity in mitochondrial preparations. Exopolyphosphatase 
activity was measured using eggs on the ninth day of development using polyphosphate3 as 
the substrate. The activity is expressed as units per milligram of total protein and the results 
represent the mean ± SD of three independent experiments, in triplicate. 

2.1.1 A mitochondrial membrane exopolyphosphatase 

Exopolyphosphatases have been found in prokaryotes and eukaryotes and, although in 

bacteria these enzymes mostly hydrolyze high molecular weight polyphosphates (Kumble & 

Kornberg, 1996), at least some of the enzymes from Saccharomyces cerevisiae and Leishmania 

major are more active in hydrolyzing short chain polyphosphates, such as polyphosphate3 

(Kumble & Kornberg, 1996; Rodrigues et al., 2002). Exopolyphosphatase from Escherichia coli 

requires divalent cations and K+ for maximum activity, while exopolyphosphatase from 

yeast only requires divalent cations (Lichko et al., 2003). Membrane mitochondrial 

exopolyphosphatase activity from the hard tick R. microplus was found to be stimulated by 

Mg2+ and was insensitive to K+. Only a few compounds that inhibit exopolyphosphatase 

have been identified (Kornberg et al., 1999): treatment with molybdate (a common 

phosphohydrolase inhibitor) and fluoride (a pyrophosphatase inhibitor) showed that 

exopolyphosphatase present in the mitochondrial membrane fractions was insensitive to 

these compounds. However, heparin, a good inhibitor of other well-characterized 

exopolyphosphatases (Lichko et al., 2003), was effective in almost 100% (Figure 7). In order 

to obtain an insight into membrane exopolyphosphatase kinetics, the apparent Km was 

measured using polyphosphate3 and polyphosphate15 as substrates and the results were 

expressed as the average of three independent experiments. The membrane 

exopolyphosphatase affinity for polyphosphate3 was 10 times stronger than for 

polyphosphate15 (Table 3). These results are in contrast with those found in a mitochondrial 

membrane-bound exopolyphosphatase of Saccharomyces cerevisiae, in which case the affinity 

was stronger for long-chain polyphosphates (Lichko et al., 1998). However, the data 

demonstrated that membrane exopolyphosphatase kinetics were in agreement with the 

oxygen consumption rate, which was much higher for polyphosphate3 than 

polyphosphate15. These results reinforce the theory of coupling between the activity of this 

enzyme and mitochondrial ADP phosphorylation (Figure 8). 

 

Substrates Km 
(µM) 

Vmax 
(µmol·min−1·mg protein−1) 

PolyP3 0.2 2.4 

PolyP15 2.2 1.1 

Table 3. Kinetics characterization of exopolyphosphatase activity in membrane preparations 
of mitochondria from R. microplus embryos on the ninth day of embryogenesis. 
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Fig. 7. The effect of some reagents on membrane exopolyphosphatase activity. 
Mitochondrial membrane fractions of R. microplus embryos in eggs on the ninth day of 
embryogenesis were isolated and the membrane exopolyphosphatase activity was 
determined using polyphosphate3 as the substrate in the presence of 2.5 mM Mg2+ , 50–200 
mM K+, 10–100 µM molybdate, 1–10 mM NaF and 20µg/mL heparin. 

 

Fig. 8. Involvement of membrane exopolyphosphatase in mitochondrial respiration. Oxygen 
consumption was monitored using a reaction buffer in the absence of a phosphate source in 
the eggs on the ninth day of development in the presence of 1 mM ADP, 5 mM pyruvate, 
and 0.5 μM polyphosphate3 and 15. The results represent the mean ± SD of three 
independent experiments, in triplicate. 
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To further investigate the regulation of membrane exopolyphosphatase during 
mitochondrial respiration, the activity was measured using pyruvate as the substrate and 
polyphosphte as the only source of phosphate. Membrane exopolyphosphatase activity 
increased during mitochondrial respiration when pyruvate and ADP were added and the 
stimulatory effect was antagonized by potassium cyanide addition (decreased electron flux) 
and increased by protonophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 
(increased electron flux), suggesting that membrane exopolyphosphatase could be 
modulated by the electron flux (Figure 9). These findings are consistent with those of Pavlov 
et al., 2010, who demonstrated that the production and consumption of mitochondrial 
polyphosphate depends on the activity of the oxidative phosphorylation machinery in 
mammalian cells. Furthermore, heparin completely inhibited exopolyphosphatase activity, 
reinforcing the role of membrane exopolyphosphatase during mitochondrial respiration, 
and the respiration activation by membrane exopolyphosphatase activity indicated that 
exopolyphosphatase could be close to the site of ATP production. 
 

* 

 

Fig. 9. Regulation of mitochondrial exopolyphosphatase activity during mitochondrial 
respiration. The activity of exopolyphosphatase was measured in the mitochondria of the 
eggs on the ninth day of development during mitochondrial respiration, using pyruvate as 
the oxidative substrate, polyphosphate3 as the exopolyphosphatase substrate, KCN as the 
respiratory chain inhibitor, FCCP as the un-coupler and heparin as the exopolyphosphatase 
inhibitor. The activity was expressed as units per milligram of total protein and the results 
represent the mean ± SD of three independent experiments, in triplicate. The asterisk (*) 
denotes the difference between the populations and the significance was determined by a 
two-way ANOVA test (Kruskal-Wallis). 
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Despite the regulation of membrane exopolyphosphatase by an increased or decreased 
electron flux, the sensitivity of this enzyme according to the redox state using 
polyphosphate3 as the substrate was evaluated. The influence of 1.0 mM dithiothreitol (DTT) 
and 1.0 mM hydrogen peroxide (H2O2) was investigated at different times and the 
exopolyphosphatase activity was stimulated and inhibited by 50% of both, suggesting that 
exopolyphosphatase is tightly regulated by the redox state (Figure 10). 
 

 

Fig. 10. The redox regulation of mitochondrial membrane exopolyphosphatase. 
Exopolyphosphatase activity was measured in the mitochondria of the eggs on the ninth 
day of development using polyphosphate3 as the substrate. The mitochondria were treated 
with 1 mM DTT and 1 mM H2O2 for 0–20 min. The results represent the mean ± SD of three 
independent experiments, in triplicate. 

 

 

Fig. 11. Polyphosphate quantification in the nuclear and mitochondrial fractions. 
Polyphosphate levels during embryogenesis in the nuclear fraction (■) and mitochondrial 
fraction (●) during embryogenesis. The results represent the mean ± SD of three 
independent experiments, in triplicate. 
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Additionally, mitochondrial polyphosphate can form polyphosphate/Ca2+/PHB complexes 
(Reusch, 1989) with ion-conducting properties similar to those of the native mitochondrial 
permeability transition pore (Pavlov et al., 2005). Polyphosphatases localized in the 
membrane can not only degrade, but they can also synthesize polyphosphate inside these 
complexes (Lichko et al., 1998). During the embryogenesis of R. microplus, the synthesis of 
polyphosphate occurs in mitochondria but not in the nuclei (Figure 11). As polyphosphate 
kinases have only been found in prokaryotes, the observation that polyphosphate synthesis 
in ticks only occurs in the mitochondrial fraction supports the possibility that such synthesis 
probably occurs via the action of these complexes, as already suggested for other organisms 
(Reusch and Sadoff, 1988; Lichko et al., 1998; Reusch et al., 1998; Abramov et al., 2007). 

3. Conclusion 

The ubiquity of polyphosphate and the variation in its chain length, location and 
metabolism indicate the relevant functions of this polymer, including those in animal 
systems. The present study showed that electron flux and the redox state may exert some 
influence on and be influenced by the activity of membrane exopolyphosphatase, and its 
describes a role for polyphosphate in the energy supply and ATP synthesis during 
embryogenesis of the hard tick R. microplus. In this sense, a more comprehensive 
understanding of polyphosphate biochemistry during tick embryo development may 
unravel additional targets that could be effective in the control of this ectoparasite and shed 
new light on polyphosphate metabolism. 
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