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1. Introduction 

Mitochondria are double membrane-bound organelles that not only constitute the “cellular 

power plants” but also are crucially involved in cell survival, apoptosis, redox control, Ca2+ 

homeostasis and many metabolic and biosynthetic pathways. 

The mitochondria generate energy by oxidizing hydrogen derived from dietary 

carbohydrate (TCA: tricarboxylic acid cycle) and lipids (beta-oxidation) with oxygen to 

generate heat and energy in the form of ATP (Adenosine triphosphate). Energy generation 

in mitochondria occurs primarily through oxidative phosphorylation (OXPHOS), a process 

in which electrons are passed along a series of carrier molecules called the electron transport 

chain (ETC). This chain is composed of four multisubunit assemblies that are embedded in 

the mitochondrial inner membrane: complex I (NADH:ubiquinone oxidoreductase; EC 

1.6.5.3), complex II (succinate:ubiquinone oxidoreductase; EC 1.3.5.1), complex III 

(ubiquinol:cytochrome-c oxidoreductase; EC 1.10.2.2) and complex IV (cytochrome-c 

oxidase; EC1.9.3.1). Complexes I, III and IV actively translocate protons from the matrix into 

the intermembrane space using energy extracted from electrons passing through the chain. 

These electrons are liberated from NADH and FADH2, at complexes I and II, respectively, 

where they are donated to the lipophilic electron carrier coenzyme Q for further transport to 

complex III. From there, electrons are shuttled to complex IV by cytochrome-c. At this 

complex, electrons are finally used for the reduction of oxygen to water (Hatefi, 1985; 

Saraste, 1999) (Figure 1 A). 

The energy released by the flow of electrons through the ETC and the flux of protons out of 
the mitochondrial inner membrane creates a capacitance across the mitochondrial inner 
membrane, the electrochemical gradient (∆P) composed of an electrical potential (Δψ) and a 
concentration ratio (ΔpH). The potential energy stored in ∆P is coupled to ATP synthesis by 
complex V (F0/F1-ATP-synthase; EC 3.6.1.34). As protons flow back into mitochondrial 
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matrix through complex V, ADP and Pi are bound, condensed and released as ATP. With 
Complex V, the ETC complexes constitute the OXPHOS system. The OXPHOS system 
generates the vast majority of cellular ATP during oxidative metabolism. Some of the ATP is 
used for the mitochondrion's own needs, but most of it is transported outside the organelle 
by the adenine nucleotide translocator (ANT) and used for diverse cell functions (Hatefi, 
1985; Saraste, 1999) (Figure 1 A). 
 

 

Fig. 1. Schematic view of of mitochondrial OXPHOS system (A), and. mitochondrial Ca2+ 
influx and efflux mechanisms (B). Large size arrows indicate the interplay between 
mitochondrial Ca2+ signaling and OXPHOS. 

2. Genetics and pathology of OXPHOS 

2.1 Genetics of OXPHOS system 

The OXPHOS system is composed of more than 80 different proteins, 13 of which are 
encoded by the mitochondrial DNA (mtDNA) and the others by the nuclear genome 
(nDNA) (Chinnery & Turnbull, 2001; Wallace, 1992). There are seven mtDNA-encoded 
subunits in complex I, one in complex III, three in complex IV and two in complex V. 
Complex II consists solely of nDNA-encoded subunits.  
The structure of human mitochondrial DNA (mtDNA) was reported ≈ 30 years ago (Clayton 

& Vinograd, 1967). The transcription products of mtDNA include 2 ribosomal RNA species 

(12S and 16S rRNA), 13 messenger RNAs and 22 transfer RNAs. Replication of mtDNA 

occurs independently from cell cycle phase and from replication of nuclear DNA. 

Mitochondrial DNA is present in 103–104 identical copies in each cell, with the exception of 
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sperm and mature oocytes, in which mtDNA copy numbers are ≈ 102 and ≈ 105, respectively. 

In general, there are believed to be two to ten copies of DNA per mitochondrion. The 

sequences of mtDNAs from unrelated individuals in human populations typically differ by 

about 0.3 %. Most individuals, however, have a single mtDNA sequence variant in all their 

cells (homoplasmy). mtDNA transmission occurred exclusively through the maternal lineage.  

Almost all of the nDNA-encoded OXPHOS subunits have been characterized at the cDNA 

level and several at the genomic level in humans. In general, the chromosomal distribution 

of the genes seems to be random, and expression of most gene products is ubiquitous but 

predominates in tissues or organs with a high energy demand. 

Richard Scarpulla and co-workers have provided important insight into the regulatory 
mechanisms that are involved in the transcriptional control of OXPHOS genes (Gugneja et 
al., 1996; Huo & Scarpulla, 1999; Wu et al., 1999). They identified the nuclear respiratory 
factors NRF1 and NRF2, which act on overlapping subsets of nuclear genes that are 
involved in the biogenesis of the respiratory chain. Recent mammalian studies have 
identified PGC1 as a crucial regulator of cardiac mitochondrial number and function in 
response to energy demand (Lehman et al., 2000). Analysis of the expression pattern of 
OXPHOS genes revealed that their regulation might also be exerted post-transcriptionally 
(Di Liegro et al., 2000).  

2.2 OXPHOS diseases 

Among the inborn errors of metabolism, mitochondrial disorders are the most frequent with 
an estimated incidence of at least 1 in 10,000 births (reviewed in (Smeitink et al., 2001)). 
Although the term mitochondrial disorder is very broad, it usually refers to diseases that are 
caused by disturbances in the OXPHOS system. After the first description, ≈ 40 years ago, of a 
patient with “loose coupling” — a defect in the coupling between mitochondrial respiration 
and phosphorylation — by Luft and collaborators (Luft et al., 1962), thousands of patients 
have been diagnosed by measurement of OXPHOS-system enzyme activities. The great 
complexity of the OXPHOS system, which consists of proteins, some encoded by the 
mitochondrial genome and others by the nuclear genome, may explain the wide variety of 
clinical phenotypes that are associated with genetic defects in oxidative phosphorylation. 
Disease-causing defects can occur in a single OXPHOS complex (isolated deficiency) or 
multiple complexes at the same time (combined deficiency). OXPHOS diseases give rise to a 
variety of clinical manifestations, particularly in organs and tissues with high-energy demand 
such as brain (encephalopathies), heart (cardiomyopathies), skeletal muscle (myopathies) and 
liver (hepatopathies) (reviewed in (Finsterer, 2006a, 2006b; Schaefer et al., 2004)).  
We have also to consider the presence of fundamental differences between mitochondrial 
genetics and Mendelian genetics when studying human OXPHOS diseases. These 
differences are linked to maternal inheritance of mtDNA, polyplasmy, heteroplasmy and the 
threshold effect, whereby a critical number of mutated mtDNAs must be present for the 
OXPHOS system to malfunction (Wallace, 2005). 
One of the frequent OXPHOS disorders is Leigh Syndrome (OMIM 256000), an early-onset 
progressive neurodegenerative disorder, leading to death mostly within a few years after 
the onset of the symptoms. This disorder is characterized by lesions of necrosis and capillary 
proliferation in variable regions of the central nervous system. Clinical signs and symptoms 
comprise muscular hypotonia, developmental delay, abnormal eye movements, seizures, 
respiratory irregularities and failure to thrive. Other mitochondrial disorders caused by 
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OXPHOS defects include Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like 
episodes (MELAS; OMIM 540000), Myoclonic Epilepsy with Ragged Red Fibers (MERRF; 
OMIM 545000), Neurogenic weakness, Ataxia, Retinitis Pigmentosa/Maternally Inherited 
Leigh Syndrome (NARP/MILS; OMIM 516060), Leber's Hereditary Optic Neuropathy 
(LHON; OMIM 535000), and Mohr–Tranebjaerg syndrome (a.k.a. Deafness Dystonia 
Syndrome; OMIM 304700).  
Because of the genetic complexity of the energy-generating system, many other diseases 

have been shown to be associated with defect in mitochondrial function (DiMauro & 

Moraes, 1993; DiMauro & Schon, 2003). For example, there is increasing evidence that 

inherited OXPHOS dysfunction is also implicated in diabetes, age-related 

neurodegenerative diseases, such as Parkinson's, Alzheimer and Huntington's diseases, and 

various forms of cancers (Shoubridge, 2001; Zeviani & Carelli, 2007). 

2.2.1 Mitochondrial DNA mutations linked to OXPHOS diseases 

The complexity of mitochondrial DNA mutations linked to OXPHOS diseases is that one 

mutation can cause a broad spectrum of clinical manifestations. Conversely, different 

mutations can be associated with the same clinical phenotype. Specific phenotypes include 

forms of blindness, deafness, movement disorders, dementia, cardiovascular diseases, 

muscle weakness, renal dysfunction, and endocrine disorders including diabetes. In the past 

20 years, more than 100 point mutations and innumerable rearrangements have been 

associated with human mitochondrial diseases. In this context, it is worth mentioning, 

however, that we still lack comprehensive and unbiased epidemiological data about the 

frequency of known mtDNA mutations. Although tRNA genes as a whole represent ≈ 10% 

of the mtDNA, mutations in these genes account for ≈ 75% of mtDNA-related diseases.  

We can identify three categories of pathogenic mtDNA mutations: rearrangement 

mutations, polypeptide gene missense mutations, and protein synthesis (rRNA and tRNA) 

gene mutations (reviewed in (Wallace, 2005)).  

 Rearrangement mutations of mtDNA can be either inherited or spontaneous. Inherited 
mtDNA rearrangements are primarily insertions. The first inherited insertion mutation 
to be identified caused maternally inherited diabetes and deafness (Ballinger et al., 1992, 
1994). Spontaneous mtDNA deletions result in a related spectrum of symptoms, 
irrespective of the position of the deletion end points. This is because virtually all 
deletions remove at least one tRNA and thus inhibit protein synthesis (Moraes et al., 
1989). Thus the nature and severity of the mtDNA deletion rearrangement is not a 
consequence of the nature of the rearrangement, but rather of the tissue distribution of 
the rearranged mtDNAs. 

 Missense mutations in mtDNA polypeptide genes can also result in an array of clinical 
manifestations. Three relatively frequently observed point mutations are A3243G in the 
tRNA(Leu)(UUR) gene, A8344G in the tRNA(Lys) gene and T8993G in the ATPase 6 
gene and are associated with NARP when present at lower percentage of mutants or 
with lethal Leigh syndrome when present at higher percentage of mutants (Holt et al., 
1990; Tatuch et al., 1992). Mutations have also been identified in mtDNA genes that 
encode proteins of the OXPHOS system, such as the cytochrome b gene and the 
mitochondrial complex I genes. A prominent example of the latter group of mtDNA 
protein-coding gene mutations is LHON, which is a common cause of subacute bilateral 
optic neuropathy that usually presents in early adult life and that predominantly affects 
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males. Most LHON patients harbor one of three point mutations that affect mtDNA 
complex I, or the NADH:ubiquinone oxidoreductase (ND) genes: G3460A in ND1, 
G11778A in ND4 and T14484C in ND6. Patrick Chinnery and colleagues showed that 
the mitochondrial ND6 gene is a hot spot for LHON mutations and suggested that the 
ND6 gene should be sequenced in all LHON patients who do not harbour one of the 
three common LHON mutations (Chinnery et al., 2001). Rare nonsense or frameshift 
mutants in Cytochrome oxydase subunit I (COI) have been associated with 
encephalomyopathies (Bruno et al., 1999; Comi et al., 1998). 

 Pathogenic mtDNA proteins synthesis mutations can also result in multisystem 
disorders with wide range of symptoms. The most common mtDNA protein synthesis 
mutation is A3243G in the tRNA(Leu). This mutation is linked to a variety of clinical 
symptoms. When present at relatively low level (10%-30%) in the blood, the patient 
may manifest only type II diabetes. By contrast, when the mutation is present in > 70% 
of the mtDNA, it causes more severe symptoms including short stature, 
cardiomyopathy, Chronic Progressive External Ophthalmoplegia (CPEO; OMIM157640) 
and MELAS (Goto et al., 1990; van den Ouweland et al., 1994). 

2.2.2 Nuclear DNA mutations linked to OXPHOS diseases 

Nuclear DNA mutations linked to OXPHOS diseases includes defects in structural OXPHOS 

genes, faulty inter-genomic communication, and defects in OXPHOS assembly, homeostasis 

and import. Most nuclear gene mutations affect various protein subunits of complex I and 

complex II.  

The first structural OXPHOS-gene mutation was reported in two sisters with Leigh 

syndrome and isolated complex II deficiency (Bourgeron et al., 1995). The pathogenic 

mutation was in the gene that encodes the flavoprotein: SDHA (succinate dehydrogenase 

subunit A). Subsequently, another family was found to have mutations in this subunit 

(Parfait et al., 2000). Very interestingly, two groups independently reported mutations of the 

complex II subunit D and C genes in hereditary paraganglioma — usually benign, 

vascularized tumours in the head and in the neck (Baysal et al., 2000; Niemann & Muller, 

2000). This work has uncovered a new and surprising association between mitochondrial 

defects and carcinogenesis. Genetic characterization of Complex I deficiency in a patient 

with a Leigh-like presentation revealed a 5-base-pair (bp) duplication in NDUFS4 (NADH 

dehydrogenase (ubiquinone) Fe–S protein 4) that destroys the consensus phosphorylation 

site in the gene product and extends the length of the protein by 14 amino acids (van den 

Heuvel et al., 1998). Further studies have revealed that this duplication abolishes cyclic-

AMP-dependent phosphorylation of NDUFS4, thereby impairing activation of the complex. 

Further complex I mutations have been identified and ≈ 40% of complex I deficiencies in 

children, in which the defect is detected in cultured skin fibroblasts, can now be explained 

by mutations in structural nuclear genes (Loeffen et al., 1998, 2000). 

OXPHOS defects caused by defective interplay between the mitochondrial and nuclear 
genomes have also been described. The clinical features of the Mitochondrial Neuro-
GastroIntestinal Encephalomyopathy syndrome (MNGIE) include ophthalmoparesis, 
peripheral neuropathy, leucoencephalopathy and gastrointestinal symptoms (chronic 
diarrhea and intestinal dysmotility). Muscle biopsy shows ragged red fibers (RRFs) and 
COX-negative fibers and either partial isolated complex IV deficiency or combined 
OXPHOS-complex deficiencies (Hirano et al., 1994). Mitochondrial DNA analysis in this 
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autosomal recessive syndrome showed mtDNA deletions, depletion, or both. The MNGIE 
locus was mapped to chromosome 22q13.32-qter, a region that contains the thymidine 
phosphorylase (TP) gene (gene symbol ECGF1). Studies on patients showed that TP activity 
was markedly decreased. Ichizo Nishino and collaborators found various homozygous as 
well as compound heterozygous ECGF1 mutations in the genomic DNA of MNGIE patients 
(Nishino et al., 1999). The precise mechanism by which TP deficiency leads to mtDNA 
rearrangements have still to be explained, but imbalance of the mitochondrial nucleotide 
pool is likely to have a role. Autosomal dominant Progressive External Ophtalmogia 
(adPEO) is an adult-onset mitochondrial disorder that is characterized by progressive 
external ophthalmoplegia and variable additional features, including exercise intolerance, 
ataxia, depression, hypogonadism, hearing deficit, peripheral neuropathy and cataract 
(Zeviani et al., 1990). Some patients carry mtDNA deletions, although the disease is 
inherited in an autosomal fashion. Of the two autosomal loci for this disorder, the 4q-adPEO 
locus includes the gene for the heart and skeletal muscle isoform of the ANT1. Kaukonen 
and collaborators (Kaukonen et al., 2000) identified two heterozygous missense mutations in 
this gene in several families and in one sporadic patient with adPEO.  
Enzyme complex I and IV deficiencies are by far the most frequently observed abnormalities 

of the OXPHOS system. In sharp contrast to isolated complex I deficiencies, no mutations 

have been found as yet in the ten nuclear genes that encode the structural proteins of 

complex IV (Adams et al., 1997). The discovery of mutations in a nuclear assembly gene that 

is associated with COX deficiency resulted from chromosomal transfer experiments. This 

approach identified mutations in the SURF1 gene in patients with COX-deficient Leigh 

syndrome (Tiranti et al., 1998; Zhu et al., 1998). SURF1 is part of a cluster of unrelated 

housekeeping genes and is the only gene of this cluster that is known or believed to be 

involved in COX assembly (Tiranti et al., 1999). Nuclear gene defects that are associated 

with isolated complex III or complex V deficiencies have not yet been discovered. In recent 

years, four inherited neurodegenerative diseases, Friedreich ataxia, hereditary spastic 

paraplegia, human DDP syndrom (deafness/dystonia peptide) and dominant optic atrophy 

(OPA1) have also been shown to be mitochondrial disorders that are caused by nuclear 

DNA mutations in the genes for frataxin, paraplegin, DDP and OPA1, respectively. 

Mitochondria obtained from heart biopsies of Friedreich ataxia patients disclosed specific 

defects in the citric-acid cycle enzyme aconitase, and complex I–III activities (Rotig et al., 

1997). The causative Friedreich ataxia protein, frataxin, has an essential role in 

mitochondrial iron homeostasis, and Friedreich ataxia can therefore be considered as an 

OXPHOS homeostasis defect. Muscle biopsies from the autosomal recessive form of patients 

with hereditary spastic paraplegia revealed histochemical signs of a mitochondrial disorder, 

namely RRFs, COX-negative fibers and succinate dehydrogenase-positive hyperintense 

fibers (Casari et al., 1998). Linkage and subsequent mutation analysis revealed large 

deletions in a gene dubbed paraplegin (Casari et al., 1998). Owing to the homology with a 

yeast mitochondrial ATPase with both proteolytic and chaperone-like activities, it has been 

suggested that this form of hereditary spastic paraplegia could be a neurodegenerative 

disorder due to OXPHOS deficiency, attributing a putative function in the assembly or 

import of respiratory chain subunits or cofactors to paraplegin (Di Donato, 2000). The DDP 

syndrome, an X-linked recessive disorder also known as the Mohr–Tranebjaerg syndrome, 

is associated with a novel defect in mitochondrial protein import (Koehler et al., 1999). The 

defective gene is homologous to the yeast protein Tim8, which belongs to a family of 
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proteins that are involved in intermembrane protein transport in mitochondria. Therefore, 

the DDP syndrome should be considered as the first example of a new group of 

mitochondrial import diseases (Koehler et al., 1999). Finally, OPA1 is caused by defects in a 

dynamin-related protein that is targeted to mitochondria and might exert its function in 

mitochondrial biogenesis and in stabilization of mitochondrial membrane complexes 

(Delettre et al., 2000).  

3. Models to study OXPHOS diseases 

3.1 Cybrids and Rho
0
 cells 

Cybrids, or “cytoplasmic hybrids,” are cultured cells manipulated to contain introduced 

mitochondrial DNA (mtDNA). Cybrids have been a central tool to unravel effects of 

mtDNA mutations in OXPHOS diseases. In this way, the nuclear genetic complement is 

held constant so that observed effects on OXPHOS can be linked to the introduced mtDNA. 

The cybrids are produced by first treating mitochondrial donor cells with cytochalasin B to 

weaken the cytoskeleton, before subjecting the cells to a centrifugal force, either as attached 

cells or in suspension. The dense nuclei are extruded, leaving plasma membrane-bound 

“cytoplasts” containing cell cytoplasm and organelles, including mitochondria. These 

cytoplasts are then fused with a nuclear donor cell line. The first mammalian cultured cell 

phenotype identified to segregate with mtDNA was in human (HeLa) cells, where mtDNA 

imparted resistance to the antibiotic chloramphenicol (Spolsky & Eisenstadt, 1972). Several 

other mtDNA‐linked drug‐resistant phenotypes were identified in mammalian cells in the 

1970s and 1980s, including resistance to the complex III inhibitors antimycin and myxothiazol 

(Howell & Gilbert, 1988) and to the complex I inhibitor rotenone (Bai & Attardi, 1998). The 

development of robust DNA‐sequencing methods leads to the identification of single‐base 

substitutions in the 16S rRNA gene of the mtDNA of independently derived yeast, mouse, and 

human chloramphenicol cell lines (Blanc & Dujon, 1980; Kearsey & Craig, 1981). These 

pioneering studies were in turn followed by identification of the first cytochrome b mutants 

(Howell & Gilbert, 1988) and more recently ND5, ND6, and COI mutants. 

The second cellular OXPHOS model corresponds to the isolation of a human cell line 

without mtDNA (called Rho0 cells). Employing an approach first used in yeast (Slonimski et 

al., 1968), cells were incubated with low levels of the drug ethidium bromide, which 

intercalates DNA. Low levels of the drug selectively inhibits the gamma‐DNA polymerase 

responsible for mtDNA replication, and with ongoing cell division, the mtDNAs are 

‘‘diluted’’ to the point where clones can be isolated without detectable organelle genomes. 

King and Attardi (King & Attardi, 1989) also discovered the absolute requirement for 

pyruvate gained by these cells and confirmed the previous observation from Paul 

Desjardins and collaborators (Desjardins et al., 1985) that mtDNA‐less cells also required 

added uridine for growth. This allowed a selection regime to be used after cytoplast– Rho0 

cell fusion so that unfused Rho0 cells could be eliminated and cybrids selected with the use 

of an appropriate nuclear drug‐resistant marker (King & Attardi, 1989). Apart from their 

value in cybrid experiments, such Rho0 cells represent a unique research tool by themselves. 

They are a surprising reminder that OXPHOS is dispensable, at least for some differentiated 

mammalian cell types. In this instance, ATP production is 100% from glycolysis, so the cells 

acidify culture media very rapidly by producing large quantities of lactate. They retain 

functional mitochondria (except lacking OXPHOS), which show a transmembrane potential 
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(probably from the electrogenic exchange of ATP for ADP) and can import the hundreds of 

other proteins needed for non‐OXPHOS functions. The pioneering cybrid work using the 

selectable markers was limited in the sense that endogenous mtDNAs were also present; 

that is, the cybrids were heteroplasmic. The Rho0 cell approach allowed creation of 

homoplasmic or heteroplasmic cells, depending on the mtDNA donor cell(s) used.  

3.2 Human fibroblasts 

The use of individual patient's cells in tissue cultures enables the study of specific defects. 

With respect to cell type, myoblasts are most likely to express the phenotype observed in 

muscle, but it is generally not feasible to derive myoblasts for each diagnostic muscle biopsy, 

because most of the muscle tissue is used up for enzymatic, pathological and molecular 

workup. Moreover, myoblasts are not representative of some liver-specific phenotypes. An 

alternative to myoblasts, are fibroblasts, which are much easily obtained during a muscle 

biopsy or after (Robinson, 1996). Fibroblasts cultures are in general, the most obtainable and 

renewable source of cells for both diagnosis and research. The major drawback with fibroblasts 

in culture is that they sometimes fail to maintain the diseased phenotype. This is especially 

true for fibroblast cultures derived from tissue specific forms of mitochondrial diseases. 

Nevertheless, many patients do express mitochondrial dysfunction in primary fibroblasts 

albeit the defect is sometimes unmasked only under stressful growth conditions in culture 

media, devoid of glucose or serum (Iuso et al., 2006; Robinson, 1996; Taanman et al., 2003). 

Therefore, patient's fibroblast harboring nuclear encoded mutations can be a suitable tool to 

study OXPHOS diseases and a platform for the search for treatments by small molecules, 

using individual approaches tailored to a specific defect. 

3.3 Mouse models  

Despite some obvious limitations, our ability to mimic human disease in animal models is 
undoubtedly one of the most important technological breakthroughs in modern genetics.  
Since the first knockout mice with impaired OXPHOS were generated in 1995 (reviewed in 
(Smeitink et al., 2001) and (Larsson & Rustin, 2001)), eight others have been described.  
Classical knockout (KO) technology has been achieved for the manganese superoxide 
dismutase gene (SOD2) and the ANT1. These mice can be considered as secondary 
OXPHOS-deficient mice because the genes are only indirectly related to the OXPHOS 
system. SOD2 is an oxygen radical scavenger in the mitochondrial matrix, which acts as a 
first line of defense against the superoxide that is produced as a by-product of OXPHOS (Li 
et al., 1995). To gain further insight into the effects of the ANT1 mutation in particular, study 
the regulation of nuclear and mitochondrial genes in the skeletal muscle of mice KO of 
ANT1 (Murdock et al., 1999) revealed upregulation of 17 genes that fall into four categories: 
nuclear and mitochondrial genes that encode OXPHOS components; mitochondrial tRNA 
and ribosomal RNA genes; genes involved in intermediary metabolism; and an eclectic 
group of other genes, among which are genes previously unknown to be related to 
mitochondrial function. 
Knockout mice for the mitochondrial transcription factor A (TFAM) can be considered 
primary OXPHOS mice, because TFAM has a direct role in the regulation of OXPHOS gene 
expression. Using a conditional knockout approach, three distinct TFAM knockout mice 
have been created (Larsson et al., 1998; Wang et al., 1999): one for skeletal and cardiac 
muscle; one for cardiac muscle alone; and one for pancreatic ┚-cells. TFAM is essential for 
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mitochondrial biogenesis and embryonic development, and the conditional knockouts have 
indicated that the OXPHOS system is crucial for normal heart function and insulin secretion. 
Five mouse models that were specifically designed to mimic isolated complex I deficiency in 
humans involve the NDUFS4 gene. This gene constitutes a mutational hotspot in humans. 
Four models are KO or conditioned KO for NDUFS4, the fifth one corresponds to a point 
mutation in NDUFS4. The whole-body and neuron-targeted NDUFS4 KO mice displayed 
small size and displayed weight loss. This was accompanied by ataxia, blindness, hearing 
loss, loss of motor skills and death from a fatal encephalomyopathy. The Purkinje cell 
specific KO mice only manifested mild behavioral and neuropathological abnormalities. 
Homozygote point mutation NDUFS4 mice were not viable, demonstrating that the 
presence of mutated NDUFS4 protein leads to a much more severe phenotype than 
complete absence of NDUFS4 (reviewed in (Roestenberg et al., 2011)). 
Two mouse models for Friedreich ataxia have also been created (Puccio et al., 2001). Like the 
ANT1- and SOD2-deficient mice, these mice can also be considered as secondary OXPHOS-
deficient mice. The frataxin-deficient mammals showed time-dependent iron accumulation 
and will allow the detailed study of the mechanism of frataxin involvement in iron 
metabolism and iron–sulphur biogenesis.  
Finally, Jun-Ichi Hayashi's group, using a completely different approach, generated mice 
that carry large-scale mtDNA deletions (Inoue et al., 2000). Synaptosomes from mouse 
brains with naturally occurring somatic mtDNA mutations were fused with Rho0 cells. Each 
fusion event introduced a variable number of mutant and wild-type mtDNAs, which then 
repopulate the Rho0 cell, creating a cybrid cell line. Enucleated cybrid cells were fused to 
donor embryos and implanted in pseudo pregnant females. In this way, they generate 
heteroplasmic founder female animals in which mtDNA deletion transmission was obtained 
for three generations (Inoue et al., 2000). 

4. Calcium signalling and mitochondrial OXPHOS physiology 

Calcium (Ca2+) is one of the most common second messengers in intracellular signalling 
networks. Periodic fluctuations in cytosolic calcium concentration ([Ca2+]cyt) is driven by 
electrical activation of voltage-gated Ca2+ channels (VGCC) or by agonist stimulation of 
plasma membrane receptors and the subsequent formation of Ca2+-mobilizing second 
messengers, such as inositol 1,4,5-trisphosphate (IP3). IP3 binds to its receptor the IP3R 
(inositol 1,4,5-trisphosphate) on the endoplasmic reticulum (ER) membrane leading to Ca2+ 
release from the ER to the cytosol. In excitable cells, Ca2+ release from the ER occurs also 
through ryanodine receptors (RyR) that function as Ca2+-activated Ca2+ channels which 
further amplify Ca2+ signals originating from other sources.  
The frequency, amplitude and/or duration of cytosolic [Ca2+]cyt spikes can be detected and 
decoded by downstream Ca2+-sensitive proteins providing a versatile pathway for 
extracellular stimuli to exert control over a wide range of metabolic pathways (Berridge et 
al., 2000). 
Complex buffering systems that include multiple Ca2+-buffering proteins, ATP-dependent 
Ca2+ pumps (SERCA (sarco-endoplasmic Reticulum Ca2+ ATPase) accumulating Ca2+ from 
the cytosol to the ER, and PMCA (Plasma membrane Ca2+ ATPase) extruding Ca2+ from 
cytosol to the extracellular space), and the sodium-Ca2+ exchanger (Na+/Ca2+), work 
together to restore [Ca2+] back to resting levels. Mitochondria also play an important role in 
shaping Ca2+ signals by utilizing potent mitochondrial Ca2+ uptake mechanisms. Ca2+ 
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uptake into mitochondria plays an important role in cellular physiology by stimulating 
mitochondrial metabolism and increasing mitochondrial energy production (Duchen, 1992). 
However, excessive Ca2+ uptake into mitochondria can lead to opening of a permeability 
transition pore (PTP) and apoptosis.  

4.1 Interplay between Ca
2+

 and OXPHOS 

Mitochondrial bioenergetics and Ca2+ shaping are mutually regulated. Indeed, on the one 

hand, mitochondria Ca2+ accumulation enables the activity of OXPHOS and ATP 

production; on the other hand, mitochondrial ATP favours the effective functioning of the 

two major Ca2+ pumps PCMA and SERCA and actively participates in shaping cytosolic 

Ca2+ signals (Figure 1 A and B).  

One important target for Ca2+ signals is the activation of mitochondrial oxidative 

metabolism and the consequent increase in the formation of ATP. Studies performed in 

1960-1970 led to the demonstration that four mitochondrial dehydrogenases are activated by 

Ca2+ ions. These are FAD-glycerol phosphate dehydrogenase, pyruvate dehydrogenase, 

NAD+-isocitrate dehydrogenase and ┙-ketoglutarate dehydrogenase. FAD-glycerol 

phosphate dehydrogenase is located on the outer surface of the inner mitochondrial 

membrane and is influenced by changes in cytoplasmic Ca2+ ions concentrations. The other 

three enzymes are located within mitochondria and are regulated by matrix Ca2+ ions 

concentration. The effects of Ca2+ ions on FAD-isocitrate dehydrogenase involve binding to 

an EF-hand binding motif within this enzyme, leading to lowering of the Km for glycerol 

phosphate very substantially (reviewed in (Denton, 2009)). Mitochondrial Ca2+ ions bind 

also directly to NAD+-isocitrate dehydrogenase and ┙-ketoglutarate dehydrogenase to 

decrease the Km for their respective substrates, whereas an increase in the dephosphorylated 

and active form of pyruvate dehydrogenase is regulated by a Ca2+-sensitive phosphatase 

(Bulos et al., 1984; Denton & Hughes, 1978; Denton et al., 1972, 1978, 1996; McCormack et al., 

1990; McCormack & Denton, 1979; Robb-Gaspers et al., 1998). Extramitochondrial Ca2+ 

regulates the glutamate-dependent state 3 respiration by the supply of glutamate to 

mitochondria via aralar, a mitochondrial glutamate/aspartate carrier (Gellerich et al., 2010).  

A very recent finding suggests a novel paradigm in which the transcription of genes for 
mitochondrial enzymes that produce ATP and the genes that consume ATP is coordinately 
regulated by the same transcription factors (Watanabe et al., 2011). Thus, TFAM and TFB2M, 
recognized as mtDNA-specific transcription factors, were shown to regulate transcription of 
the SERCA2 gene (Watanabe et al., 2011).  
It was also demonstrated that metabolites generated during energy production may 
influence IP3R-mediated Ca2+ dynamics. Indeed, it was shown that reduced Nicotinamide 
adenine dinucleotide selectively stimulates the release of Ca2+ mediated by IP3R (Kaplin et 
al., 1996). Another evidence of communication between cellular metabolism and Ca2+ 
signalling was reported recently by Bakowski and Parekh who showed that pyruvate, the 
precursor substrate for the Krebs cycle, directly increases the native ICRAC (store operated 
Ca2+ influx channels at the plasma membrane) by reducing inactivation of the channel, 
thereby coupling oxidation of glucose and its own metabolism in the mitochondria to Ca2+ 
influx by the CRAC channel (Bakowski & Parekh, 2007). 
In addition to serving as a target of Ca2+ signalling, the uptake of Ca2+ by mitochondria has 
important feedback effects to shape cytosolic Ca2+ signals. Rosario Rizzuto and collaborators 
(Rizzuto et al., 1993) were the first to make direct in situ measurements of mitochondrial 
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Ca2+. They showed that receptor-activated Ca2+ signals caused rapid and large Ca2+ signals 
in the mitochondrial matrix (mechanisms of mitochondrial Ca2+ influx and efflux are 
detailed below).  

4.2 Mechanisms of mitochondrial calcium influx and efflux 
4.2.1 Mechanisms of mitochondrial calcium influx 

Mitochondrial Ca2+ uptake is dependent on the strong driving force ensured by their 

membrane potential (-180 mV, negative inside) built by the respiratory chain (for review see 

(Bianchi et al., 2004)). It has been assumed that [Ca2+]cyt far exceeding the micromolar range 

is required for net Ca2+ uptake, however, such [Ca2+]cyt values have not been observed 

experimentally in the bulk cytoplasm. Ca2+ diffusion in the cytoplasm is also controlled by 

protein binding (Allbritton et al., 1992). Thus, local Ca2+ transients with amplitudes far 

exceeding those measured over the global cytoplasm are confined in cytosolic 

microdomains at the mouth of Ca2+ channels beneath the plasma membrane or ER internal 

store.  This concept was consolidated by the demonstration that mitochondria, forming a 

complex cytoplasmic tubulovesicular system (Tinel et al., 1999), are frequently apposed to 

the smooth as well as the rough ER. These contact points, have been observed in several cell 

types by means of electron microscopy or tomography (Mannella et al., 1998). The 

experiments by Rosario Rizzuto and Tulio Pozzan definitively demonstrated that Ca2+ 

released through IP3R in these microdomains, induce supramicromolar, or even 

submillimolar Ca2+ signals (Rizzuto et al., 1993).  

Accordingly, the group of György Hajnoczky demonstrates that maximal activation of 

mitochondrial Ca2+ uptake is evoked by IP3-induced perimitochondrial [Ca2+] elevations, 

which appear to reach values >20-fold higher than the global increases of [Ca2+]cyt. 

Incremental doses of IP3 elicited [Ca2+]mit elevations that followed the quantal pattern of 

Ca2+ mobilization, even at the level of individual mitochondria. These results and others 

by the same group allow concluding that each mitochondrial Ca2+ uptake site faces 

multiple IP3R, a concurrent activation of which is required for optimal activation of 

mitochondrial Ca2+ uptake (Csordas et al., 1999; Hajnoczky et al., 1995) and reviewed in 

(Csordas et al., 2006). Targeting aequorin to the outer surface of the IMM in HeLa cells 

made the measurement of [Ca2+] in the mitochondrial intermembrane space possible. 

After stimulation with histamine [Ca2+] rose in the intermembrane space to significantly 

higher values than in the global cytosol (Rizzuto et al., 1998). This observation has given a 

strong support to the concept that net mitochondrial Ca2+ uptake occurs from high-Ca2+ 

peri-mitochondrial microdomains. 

The existence of physical support for the ER–mitochondrial interface has been indicated by 

co-sedimentation of ER particles with mitochondria and electron microscopic observations 

of close associations between mitochondria and ER vesicles (Mannella et al., 1998; Meier et 

al., 1981; Shore & Tata, 1977). At these sites the shortest ER-OMM distance varies from 

10 nm to 100 nm. In cells exposed to ER stress (serum starvation, tunicamycin) an increase in 

the ER–mitochondrial interface has been observed (Csordas et al., 2006). Also, coupling of 

the two organelles with a fusion protein increased the ER–mitochondria interface area, 

reduced the ER–mitochondrial distance to about 6 nm and greatly facilitated the transfer of 

cytosolic Ca2+ signal into the mitochondria of RBL-2H3 cells (Csordas et al., 2006). 

Accordingly, our team showed that the truncated variant of the sarco-endoplasmic 
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reticulum Ca2+-ATPase 1 (S1T) is induced under ER stress conditions. S1T is localized in 

the ER-mitochondria microdomains, increases number of ER-mitochondria contact sites, 

and inhibits mitochondria movements thus determining a privileged Ca2+ transfer from 

the ER to mitochondria leading to the activation of the mitochondrial apoptotic pathway 

(Chami et al., 2008).  

Mitochondrial fission and fusion is another essential phenomenon for maintaining the 

metabolic function of these organelles as well as regulating their roles in cell signalling 

(Tatsuta & Langer, 2008; Yaffe, 1999; Chan, 2006). Changes in the relative rates of fusion and 

fission alter the overall morphology of the mitochondria affecting the function of the 

organelles both as regulators of survival/apoptosis and in Ca2+ handling. It has been shown 

that fusion is blocked (Karbowski & Youle, 2003) and mitochondria become fragmented 

during apoptosis (Frank et al., 2001). However, enhanced fission alone does not induce 

apoptosis and has even been shown to protect against Ca2+-dependent apoptosis by 

preventing the propagation of harmful Ca2+ waves through the mitochondrial reticulum 

(Szabadkai et al., 2004).  

The outer mitochondrial membrane is permeable to solutes and the inner mitochondrial 

membrane is impermeable to solutes that harbor the respiratory chain complexes. As 

described in chapter 1, the respiratory chain pumps protons against their concentration 

gradient from the matrix of the mitochondrion into the inter-membrane space, generating an 

electrochemical gradient in the form of a negative inner membrane potential and of a pH 

gradient, the matrix being more alkaline than the cytosol (Bernardi et al., 1999; Poburko et 

al., 2011).  

Ca2+ import across the outer mitochondrial membrane (OMM) occurs through the voltage-

dependent anion channels (VDAC) (Simamura et al., 2008). VDAC is as a large voltage-

gated channel, fully opened with high-conductance and weak anion-selectivity at low 

transmembrane potentials (< 20–30 mV), but switching to cation selectivity and lower 

conductance at higher potentials (Colombini, 2009; Shoshan-Barmatz et al., 2010). The 

precise mechanisms of VDAC conductance are however still under debate. 

Ca2+ import across the inner mitochondrial membrane (IMM) occurs through a Ca2+-

selective channel known as the mitochondrial Ca2+ uniporter (MCU) (Kirichok et al., 2004). 

Electrophysiological recordings of mitoplasts, small vesicles of inner mitochondrial 

membrane, revealed that the MCU is a highly Ca2+-selective inward-rectifying ion channel 

(Kirichok et al., 2004). The MCU has a relatively low Ca2+ affinity (Kd 10 μM in 

permeabilized cells (Bernardi, 1999)). The activity of the MCU had been known for decades 

to be inhibited by ruthenium red and its derivative Ru360 (Vasington et al., 1972), but its 

molecular identity has only been unraveled very recently. It has been reported recently that 

the process of Ca2+ accumulation undergoes complex regulation by Ca2+ itself. Thus 

mitochondrial uptake of Ca2+ was significantly reduced by inhibitors of calmodulin, 

suggesting that a Ca2+–calmodulin-mediated process is necessary for activation of the 

uniporter but Ca2+ also appeared to inhibit its own uptake. However, in contrast to the 

sensitization of mitochondrial Ca2+ uptake, the Ca2+-dependent inactivation was not 

sensitive to calmodulin blockers (Moreau & Parekh, 2008).  

In recent years, several molecules have been proposed to be either an essential or an 

accessory component of the MCU. In 2007, the uncoupling proteins (UCP) 2 and 3 (Trenker 

et al., 2007) were proposed to be essential for the MCU. Indeed, UCP2/3 overexpression 
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increased mitochondrial Ca2+ elevations and the contrary is observed upon UCP2/3 

depletion. In addition, mice lacking UCP2 exhibited a reduced sensitivity to the Ca2+ uptake 

inhibitor ruthenium red. However, these findings were disputed by another study that 

reported normal mitochondrial Ca2+ uptake in mice genetically ablated for UCP2 and UCP3 

(Brookes et al., 2008). Furthermore, it was recently showed that UCP3 modulates the activity of 

sarco/endoplasmic reticulum Ca2+ ATPases by decreasing mitochondrial ATP production (De 

Marchi et al., 2011). The mitochondrial Ca2+ alterations associated with changes in UCP3 levels 

therefore reflect the exposure of mitochondria to abnormal cytosolic Ca2+ concentrations and 

do not reflect changes in MCU activity. These data indicate that UCP3 is not the mitochondrial 

Ca2+ uniporter. In 2009, Jiang and collaborators identified the leucine zipper EF hand 

containing transmembrane protein 1(Letm1) as a molecule that regulate both mitochondrial 

Ca2+ and H+ concentrations (Jiang et al., 2009). Letm1 was reported to be a high-affinity 

mitochondrial Ca2+/H+ exchanger able to import Ca2+ at low (i.e. sub-micromolar) cytosolic 

concentrations into energized mitochondria. Earlier studies had however linked Letm1 to 

mitochondrial K+/H+ exchange and to the maintenance of ionic mitochondrial balance, the 

integrity of the mitochondrial network and cell viability (Dimmer et al., 2008; Nowikovsky et 

al., 2004). The high-affinity of Letm1 for Ca2+ and its postulated 1Ca2+/1 H+ stoichiometry are 

at odds with the known properties of the MCU. Thus, Letm1 is not the dominant mechanism 

of mitochondrial Ca2+ uptake. Instead, Letm1 might contribute to an alternate mode of 

mitochondrial Ca2+ uptake, known as rapid mode of uptake (RaM), that was first reported in 

isolated rat liver mitochondria by Gunter’s group. It was reported that mitochondrial Ca2+ 

sequestration via a the RaM occurred at the beginning of each pulse and was followed by a 

slower Ca2+ uptake characteristic of the MCU (Sparagna et al., 1995; Szabadkai et al., 2001). The 

implications of the coexistence of low and high-affinity modes of Ca2+ uptake have been 

recently reviewed (Santo-Domingo & Demaurex, 2010).  

In 2010, Palmer and Mootha reported that a new mitochondrial EF hand protein MICU1 (for 

mitochondrial Ca2+ uptake 1) was required for high capacity mitochondrial Ca2+ uptake, and 

proposed that MICU1 acts as a Ca2+ sensor that controls the entry of Ca2+ across the 

uniporter (Perocchi et al., 2010). Building up on this discovery, the same group and another 

simultaneously identified the mitochondrial Ca2+ uniporter (Baughman et al., 2011; De 

Stefani et al., 2011). Using in silico analysis combined with phylogenetic profiling and 

analysis of RNA and protein co-expressed with MICU1, the group of Vamsi Mootha isolated 

a novel protein that co-immunoprecipitated with MICU1 (Baughman et al., 2011). Using the 

same database, the group of Rosario Rizzuto independently identified the same protein. 

From the 14 proteins characterized by two or more transmembrane domains and known to 

exhibit or lack uniport activity domains, these authors identified a protein with a highly 

conserved domain encompassing two transmembrane regions separated by a loop bearing 

acidic residues. Functional analysis confirmed that this protein behaves as expected for the 

mitochondrial uniporter, and it was therefore assigned the defining name of MCU. 

Mitochondrial Ca2+ uptake was strongly reduced by MCU silencing in cultured cells and in 

purified mouse liver mitochondria, whereas MCU overexpression enhanced ruthenium red-

sensitive mitochondrial Ca2+ uptake in intact and permeabilized cells (De Stefani et al., 

2011). The MCU is a 45 kDa protein that can forms oligomers (Baughman et al., 2011). Both 

studies mapped the MCU to the inner mitochondrial membrane, but disagreed on whether 

the N and C termini face the matrix of the inter-membrane space (Baughman et al., 2011; De 
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Stefani et al., 2011). Mutations of conserved acidic residues within the short sequence 

linking the two transmembrane domains abrogated the ability of MCU to reconstitute 

mitochondrial Ca2+ uptake, whereas mutation of a nearby serine residue (S259) conferred 

resistance to Ru360, indicating that the acidic residues are required for Ca2+ uptake and 

that S259 is critical for MCU sensitivity to ruthenium red (Baughman et al., 2011). Finally, 

and most convincingly, expression of the purified protein in planar lipid bilayers was 

sufficient to reconstitute ion channel activity in solutions containing only Ca2+ (De Stefani 

et al., 2011). The currents were carried by a channel of small conductance (6–7 pS), fast 

opening/closing kinetics, and low opening probability, and were inhibited by ruthenium 

red, as expected for the MCU. Proteins mutated at two of the conserved acidic residues 

failed to generate Ca2+ currents when inserted into bilayers and acted as dominant 

negative when expressed in HeLa cells. These data clearly identified MCU as 

mitochondrial Ca2+ uniporter. In accordance to the notion that mitochondrial Ca2+ 

overload enhances the sensitivity to apoptosis, it was also demonstrated that cells 

overexpressing MCU were more sensitive to apoptosis after treatment with ceramide and 

H2O2 (De Stefani et al., 2011) (Figure 1B). 

4.2.2 Mechanisms of mitochondrial calcium efflux 

Compared to the MCU, the proteins that catalyze the efflux of Ca2+ from mitochondria have 

received much less attention. The extrusion of Ca2+ from mitochondria is coupled to the 

entry of Na+ across an electrogenic 1Ca+:3Na+ exchanger (Dash & Beard, 2008) that is 

inhibited by the benzothiazepine derivative CGP37157 ((Cox et al., 1993), and reviewed in 

(Bernardi, 1999)). The subsequent efflux of sodium ions by the mitochondrial 1Na+:1H+ 

exchanger (mNHE) eventually results in the entry of three protons into the matrix for each 

Ca2+ ion that leaves mitochondria. Ca2+ extrusion thus has a high energetic cost, as it 

dissipates the proton gradient generated by the respiratory chain (reviewed in (Bernardi, 

1999)). The molecule catalyzing mitochondrial Na+/Ca2+ exchange has been recently 

identified as NCLX/NCKX6, a protein localized in mitochondrial cristae (Palty et al., 2010), 

whereas stomatin-like protein 2 (SLP-2), an inner membrane protein, was shown to 

negatively modulate the activity of the mitochondrial Na+/Ca2+ exchanger (Da Cruz et al., 

2010). Functional evidence from knock-down and overexpression studies indicate that 

NCLX is an essential part of the mitochondrial sodium Ca2+ exchanger whereas SLP-2 is an 

accessory protein that negatively regulates mitochondrial Ca2+ extrusion (Figure 1B).  

4.2.3 Mitochondrial calcium overload: Activation of the permeability transition pore  

When mitochondrial Ca2+ loads exceed the buffering capacity of inner membrane 

exchangers, an additional pathway for Ca2+ efflux from mitochondria may exist through 

opening of the permeability transition pore (PTP). The PTP is a voltage-dependent, 

cyclosporin A (CsA)-sensitive, high-conductance channel of the inner mitochondrial 

membrane (for reviews, see (Bernardi et al., 2006; Rasola & Bernardi, 2007)). Indeed, the 

interplay between the rate of mitochondrial Ca2+ influx and efflux modulates mitochondrial 

matrix Ca2+, which in turn is widely considered to be a key factor for the regulation of the 

PTP open–closed transitions (Bernardi et al., 1999). Although opening of the PTP in response 

to Ca2+ has been documented in isolated mitochondria and permeabilized cells (Bernardi et 

al., 2006; Rasola & Bernardi, 2007), assessing opening of the PTP in intact neurons and other 
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primary cells in response to physiological activators that dictate cytosolic Ca2+ has remained 

a major challenge. Yet, opening of the PTP is often thought to be associated with 

pathophysiological processes (for reviews see (Hajnoczky et al., 2006; Rizzuto et al., 2003)). 

In these scenarios, activation of the PTP leads to respiratory inhibition, and thus ATP 

depletion, and the release of mitochondrial Ca2+ stores and apoptotic activators, ultimately 

resulting in cell death (Bernardi et al., 1999; Di Lisa & Bernardi, 2009). These have led to the 

idea that opening of the PTP by elevated mitochondrial Ca2+ is a terminal, pathologic event. 

However, it has been reported recently that CyPD-dependent PTP may participate in non-

lethal Ca2+ homeostasis in cells and neurons (Barsukova et al., 2011). 

5. Calcium deregulation in OXPHOS diseases 

The direct consequences of OXPHOS defects include alteration of mitochondrial membrane 

potential, ATP/ADP ratio, ROS production and mitochondrial Ca2+ homeostasis. The varied 

biochemical changes that occur in cases of OXPHOS deficiencies have a direct effect on 

cellular functions. Yet, they are also key underlying mediators of the (retrograde) 

communication between the mitochondrion and the nucleus, which results in specific gene 

expression of both nuclear and mitochondrial genomes (see review (Reinecke et al., 2009)). 

We will review in this chapter only Ca2+ deregulation in OXPHOS. We will discuss the 

consequences of such deregulation on mitochondrial function and the cross regulation 

between Ca2+ and bioenergetics in the development of cellular pathology. We summarized 

in Table 1 the alterations of subcellular Ca2+ signals in OXPHOS related diseases (Table 1). 

Decreased proton pumping due to respiratory chain defects can result in reduced 

mitochondrial membrane potential and proton gradient, which are used to generate ATP. 

Deregulation of the membrane potential secondary to a deficiency in the respiratory chain 

may modify the kinetics and/or accumulation capacity of Ca2+ in the mitochondria, with 

possible consequences not only at the level of respiratory chain function (loop effect) and of 

the mitochondria in general, but also at the level of the ER function, which is largely 

dependent on Ca2+ concentrations, and at the level of cytosolic Ca2+ signalling, which plays 

a major role in regulating cell functions. Deficiencies of OXPHOS also result in other 

immediate and downstream metabolic, structural, and functional effects. These effects are 

closely associated with mitochondrial dysfunction. The nicotinamide dinucleotide (NAD) 

redox balance, which is converted to the reduced state in OXPHOS deficiencies, is a 

fundamental mediator of several biological processes, such as energy metabolism, Ca2+ 

homeostasis, cellular redox balance, immunological function, and gene expression (Munnich 

& Rustin, 2001; Ying, 2008).  

It is important to mention that analyses of Ca2+ signalling targeting OXPHOS diseases are 

sporadic, partial and incomplete. This situation can be explained by : 1) the recent 

development of new techniques permitting detailed and specific subcellular Ca2+ analyses 

such as recombinant "aequorin" probes developed by the group headed by Professors 

Rizzuto and Pozzan, and the latest generation of GFP-based Ca2+ probes (camgaroos, 

cameleons and pericams) characterized by a great potential to analyse Ca2+ dynamics in 

mitochondria at the single cell level; 2) Absence of suitable “easy” study models (see 

chapter 3); and 3) the difficulty in the characterization of OXPHOS deficiencies (see 

chapter 2-2).  
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BK: bradykinin; COX: cytchrome oxidase Htt: Huntingtin; NC: non communicated; ND: not 
determined; ROS: reactive oxygen species; SOC: store operated Ca2+ entry; PDH: Pyruvate 

dehydrogenase; KO: knock out; [Ca2+]cyt, cytosolic calcium-concentration; [Ca2+]er, endoplasmic 
reticulum calcium-concentration; [Ca2+]mt, mitochondrial calcium-concentration; Ca2+, calcium. (1) 
Insertion; (2) Deletion; (3) repeat. 

 

Table 1. Calcium deregulation in OXPHOS diseases 
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5.1 Calcium deregulation in MELAS, MERRF, NARP and LHON 

Calcium deregulation was first reported in OXPHOS diseases linked to mitochondrial 
mutation. Brini and collaborators monitored subcellular Ca2+ signalling in cybrid cells with 
0% and 100% of the MERRF (nt 8356 T/C) and NARP (nt 8993 T/G) mutations using 
cytosolic aequorin and aequorin probe targeted to the mitochondria. They showed a 
reduced mitochondrial [Ca2+] ([Ca2+]mit) transient in MERRF cells but not in NARP cells 
upon stimulation with IP3-generating agonist, whereas cytosolic Ca2+ responses ([Ca2+]cyt) 
were normal in both cell types (Brini et al., 1999).  
In another study, cybrid cells with 98 % of NARP mutation (nt 8993 T/G) and Rho0 cells 
show a disturbed mitochondrial network and actin cytoskeleton. These cells show also a 
slower Ca2+ influx rates in comparison to parental cells. Authors postulate that proper actin 
cytoskeletal organization is important for CCE (capacitative Ca2+ entry) in these cells 
(Szczepanowska et al., 2004). 
Abnormal Ca2+ homeostasis and mitochondrial polarization was also reported in fibroblasts 
from patients with MELAS syndrome. These cells showed an increased Ca2+ influx 
associated to a decreased mitochondrial potential (Moudy, 1995). 
A comparative study was performed to establish sensitivity to oxidant in cybrid cells 
bearing the LHON, MELAS, or MERRF. The order of sensitivity to H2O2 exposure was 
MELAS>LHON>MERRF>controls. Consistent with the hypothesis that death induced by 
oxidative stress is Ca2+ dependent, depletion of Ca2+ from the medium protected all cells 
from cell death. This study reveals indirectly that LHON as well as MELAS and MERRF 
show an increased basal Ca2+ load (Wong & Cortopassi, 1997). 
In 2007, another study performed on cybrid cells incorporating two pathogenic 
mitochondrial mutations (nt 3243 A/G, nt 3202 A/G) reveal that the decreased ATP 
production by oxidative phosphorylation was compensated by a rise in anaerobic glycolysis. 
Regarding Ca2+ homeostasis, these cells did not show any alteration of Ca2+ signals in the 
cytosol but take longer to clear up the histamine induced Ca2+ signal in the mitochondria 
(von Kleist-Retzow et al., 2007).  
All over, these studies revealed a deranged Ca2+ homeostasis in OXPHOS diseases linked to 
mitochondrial mutations. These alteration are not solely at the level of mitochondria but 
were also observed in the cytosol. Depending on the study model and/or mutation, 
increased cytosolic Ca2+ levels are linked to increased Ca2+ influx through the plasma 
membrane or reduced Ca2+ uptake capacity by the mitochondria.  

5.2 Calcium deregulation in Complex I deficiency 

The consequences of mitochondrial complex I deficiency on Ca2+ homeostasis was first 
studied in a genetically characterized human complex I deficient fibroblast cell lines 
harbouring nuclear NDUFS7 (nt 364G/A) mutation linked to Leigh’s syndrome. These cells 
show a reduced mitochondrial Ca2+ accumulation and consequent ATP synthesis (Visch et 
al., 2004). In 2006, the same group investigated the mechanism(s) underlying this impaired 
response. The study was conducted in fibroblasts from 6 healthy subjects and 14 genetically 
characterized patients expressing mitochondria targeted luciferase. The results revealed that 
the agonist-induced increase in mitochondrial ATP ([ATP]mit) was significantly, but to a 
variable degree, decreased in 10 patients. They also reported a reduced agonist-evoked 
mitochondrial [Ca2+] signal, measured with mitochondria targeted aequorin, and cytosolic 
[Ca2+] signal, measured with Fura-2, AM. Measurement of Ca2+ content of the ER, calculated 
from the increase in [Ca2+]Cyt evoked by thapsigargin, an inhibitor of the ER Ca2+ ATPase 
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revealed also a decrease in mutated cells as compared to controls. Regression analysis 
revealed that the increase in [ATP]mit was directly proportional to the increases in [Ca2+]cyt 
and [Ca2+]mit and to the ER Ca2+ content. This was the first report showing a pathological ER 
Ca2+ homeostasis in OXPHOS disease models. The authors postulated that the reduced ER 
Ca2+ content could be the direct cause of the impaired agonist-induced increase in [ATP]mit 
in human complex I deficiency (Visch et al., 2006). However, the molecular mechanisms 
underlying ER Ca2+ deregulation were not revealed. 
Another key cellular feature that was extensively investigated in patient fibroblasts 
harboring complex I deficiency is mitochondrial morphology. The quantification of 
mitochondrial morphology in a cohort of 14 patients fibroblast cell lines revealed two 
distinct classes of patient fibroblasts, one in which the cells mainly contained short circular 
fragmented mitochondria, and one in which the cells displayed a normal filamentous 
mitochondrial morphology (Koopman et al., 2007). Authors postulated that these differences 
are linked to ROS levels (Koopman et al., 2007). In a second report, the authors analyzed the 
relationship between mitochondrial dynamics and structure and Ca2+/ATP handling in the 
same cohort. Regression analysis of the agonist-induced Ca2+/ATP handling and 
mitochondrial morphology shows that increased mitochondrial number is associated to 
reduced Ca2+-stimulated mitochondrial ATP and reduced stimulation of cytosolic Ca2+ 
removal rate (Willems et al., 2009). 

5.3 Calcium deregulation in Complex II deficiency 

The investigation of Ca2+ deregulation linked to complex II deficiency were largely 

performed upon complex II inhibition by 3-nitropropionic acid (3NP) . The inhibition of 

complex II by 3NP is related to neuronal death, anatomic and neurochemical changes 

similar to those occurring in Huntington’s disease (HD). 

In primary cultures of rodent central nervous system, 3NP elicits an early increase in 
neuronal [Ca2+]cyt, and both apoptotic and necrotic neuronal death (Greene et al., 1998). 3NP 
treatment produces a long term potentiation of the NMDA-mediated synaptic excitation in 
striatal spiny neurons. This also involves increased intracellular Ca2+ (Calabresi et al., 2001). 
To the mechanisms underlying increased [Ca2+]cyt upon 3NP treatment, it was shown that 

short treatment-induced [Ca2+]cyt increase occurs through NMDA-GLUR (Glutamate 

receptor) and VGCC  and implicates also internal stores (Lee et al., 2002). In astrocyte 

cultures, Tatiani, R. Rosenstock and collaborators showed that 3NP is also able to release 

mitochondrial Ca2+ independently from internal stores and from Ca2+ entry through the 

plasma membrane (Rosenstock et al., 2004). Another group showed that 3NP-induced 

necrosis in primary hippocampal neurons is associated with an increase in both cytosolic 

and mitochondrial [Ca2+], decreased ATP and rapid mitochondrial potential depolarization. 

In this context, the increased [Ca2+] was shown to result from Ca2+ influx through NMDA 

receptors (Nasr et al., 2003). 

The occurrence of mitochondrial permeability transition (PT) was shown to be the cause of 

the loss of neuronal viability induced by complex II inhibition (Maciel et al., 2004). This is in 

line with studies showing increased susceptibility of striatal mitochondria to Ca2+- induced 

PT (Brustovetsky et al., 2003) and that cyclosporine A (inhibitor of PT) protects against 3NP 

toxicity in striatal neurons (Leventhal et al., 2000) and astrocytes (Rosenstock et al., 2004). 

Accordingly, inhibition of mitochondrial Ca2+ influx by ruthenium red significantly reduces 

3NP-induced cell death (Ruan et al., 2004).  
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The data obtained upon complex II inhibition by 3NP are in accordance with those obtained 
from Huntington’s patients and transgenic mice. Mitochondria isolated from lymphoblasts 
of individuals with HD showed reduced mitochondrial potential and increased sensitivity 
to depolarization upon Ca2+ addition. Similar results were obtained in transgenic HD mice 
expressing mutated huntingtin (Panov et al., 2002). In addition, mitochondria from HD mice 
showed lower Ca2+ retention capacity. These mitochondrial abnormalities preceded the 
onset of pathological or behavioural tract by months, suggesting that mitochondrial Ca2+ 
deregulation occurs early in HD (Panov et al., 2002). In a recent study, Lim and collaborators 
explore Ca2+ homeostasis and mitochondrial dysfunction in clonal striatal cell lines 
established from a transgenic HD mouse model and showed transcriptional changes in the 
components of the phosphatidylinositol cycle and in receptors for myo-inositol 
triphosphate-linked agonist. The overall result of such changes is to decrease basal Ca2+ in 
mutant cells. Mitochondria from mutant cells failed to handle large Ca2+ loads and this 
seems to be due to increased Ca2+ sensitivity of the permeability transition. This study 
reveals a compensatory attempt to prevent the Ca2+ stress that would exacerbate 
mitochondrial damage in HD (Lim et al., 2008).  
Our group was the first to investigate Ca2+ homeostasis in human fibroblasts isolated from a 

patient with Leigh’s syndrome harbouring a homozygous R554W substitution in the 

flavoprotein subunit of the complex II (SDHA). Our study was conducted in parallel in 

control fibroblasts and in neuroblastoma SH-SY5Y cells upon inhibition of complex II with 

3NP or Atpenin A5 at doses which did not induce cell death, thus affording to study 

complex II deficiency independently from cell death. We showed that mutation or chronic 

inhibition of complex II determined a large increase in basal and agonist-evoked Ca2+ 

signals in the cytosol and mitochondria, in parallel with mitochondrial dysfunction 

(membrane potential loss, ATP reduction and increased ROS). Cytosolic and mitochondrial 

Ca2+ overload are linked to increased ER Ca2+ leakage, and to PMCA and SERCA2b 

proteasome-dependent degradation. Increased mitochondrial Ca2+ load is also contributed 

by decreased mitochondrial motility and increased ER-mitochondrial contacts. These 

findings are interesting since they link for the first time OXPHOS-related mitochondrial 

pathology to the regulation of the stability of two major actors in Ca2+ signalling regulation, 

namely PMCA and SERCA. We postulate that SERCA2b and PMCA degradation is 

predictably related to a decrease of mitochondrial ATP production, since SERCA2b and 

PMCA degradation was also observed upon ATP synthase inhibition by rotenone. This 

phenomenon could be interpreted as an adaptation response to ATP demise in OXPHOS 

diseases. Our study revealed also the activation of a compensatory attempt to restore total 

ATP level through the activation of anaerobic glycolysis in a Ca2+-dependent manner 

(M'Baya et al., 2010). This study revealed a double hint of Ca2+ signalling deregulation in 

complex II deficiency. On the one hand Ca2+ overload may favour the activation of 

glycolytic ATP production and on the other hand favoured Ca2+-mediated mitochondrial 

pathology (M'Baya et al., 2010). 

5.4 Calcium deregulation in OXPHOS diseases linked to defects in OXPHOS assembly 
and iron homeostasis: COX and frataxin deficiencies  

Leigh’s syndrome associated with COX deficiency is usually caused by mutations of SURF1, 

a gene coding a putative COX assembly factor. Fibroblasts isolated from patients harboring 

SURF1 mutation displayed a low Ca2+ influx through SOC (store operated Ca2+ channels) as 
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compared to control fibroblast (Wasniewska et al., 2001). The energy state of the 

mitochondrial membrane in mutated cells is naturally decreased. Accordingly, it was 

demonstrated that mitochondria can control SOC in a numerous cell types and that the 

collapse of mitochondrial membrane potential, either by an uncoupler or an inhibitor of the 

respiratory chain, greatly reduces the SOC (Makowska et al., 2000). In an earlier study, 

Handran and collaborators failed to document either mitochondrial morphology alteration 

or intracellular Ca2+ deregulation in COX-deficient human fibroblasts (Handran et al., 1997). 

This discrepancy between these results may be accounted on the partial recovery of COX 

enzyme activity in COX deficient fibroblasts. Fibroblasts are not a robust system for the 

study of mitochondrial dysfunction and cultured cells relays less on mitochondria for ATP 

production. It was thus concluded that this deficiency is not detrimental to fibroblast or that 

anaerobic respiration rescues the phenotype. In a strange manner, SURF1-/- KO mouse 

displayed mild reduction of COX activity in all tissues and did not show encephalopathy. 

These mice show a complete protection from in vivo neurodegeneration induced by 

exposure to high doses of kainic acid (a glutamatergic epiloptogenic agonist). Thus the 

ablation of SURF1 drastically reduces the glutamate-induced increase of Ca2+ both in the 

cytosol and the mitochondria. Authors postulate that reduced buffering capacity by SURF1-

/- mitochondria in the contact sites between mitochondria and plasma membrane or the ER 

may promote the feedback closure of the Ca2+ channels thus inhibiting the cytosolic Ca2+ 

transient rise (Dell'agnello et al., 2007). 

As introduced in chapter 2-2-2, Friedreich's ataxia (FA) is an autosomal recessive disease 

caused by decreased expression of the mitochondrial protein frataxin. The biological 

function of frataxin is unclear. The homologue of frataxin in yeast, YFH1, is required for 

cellular respiration and was suggested to regulate mitochondrial iron homeostasis. Patients 

suffering from FA exhibit decreased ATP production in skeletal muscle. Accordingly, 

overexpression of frataxin in mammalian cells causes a Ca2+-induced up-regulation of 

tricarboxylic acid cycle flux and respiration, which, in turn, leads to an increased 

mitochondrial membrane potential and results in an elevated cellular ATP content. Thus, 

frataxin appears to be a key activator of mitochondrial energy conversion and oxidative 

phosphorylation (Ristow et al., 2000).  

It was reported that mean mitochondrial iron content was increased in FA fibroblasts 

harboring expansion of intronic GAA repeat in frataxin leading to its reduced expression, 

and that staurosporine-induced caspase 3 activity was higher in FA fibroblasts than 

controls. Treatment of cells with BAPTA, AM rescued FA from oxidant-induced death. 

These data indirectly demonstrate that FA fibroblasts displayed an increased cytosolic 

Ca2+ content leading to increased sensitivity to oxidative stress (Wong & Cortopassi, 

1997). 

5.5 Calcium deregulation linked to mitochondrial DNA polymorphism 

mtDNA is highly polymorphic and its variation in humans may contribute to individual 

differences in function as well as susceptibility to various diseases such as 

neurodegenerative diseases. Kazuno and collaborators searched for mtDNA polymorphisms 

that have mitochondrial functional significance using cybrid cells. Increased mitochondrial 

basal Ca2+ levels and increased agonist evoked cytosolic Ca2+ signals were observed in two 

closely linked nonsynonymous polymorphisms. Interestingly, these data highlight the role 
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of mitochondrial polymorphisms in the pathology of neurodegenerative diseases by 

affecting Ca2+ dynamics (Kazuno et al., 2006). 

5.6 Calcium deregulation in Pyruvate Dehydrogenase deficiency 

Aerobic metabolism may also affect mitochondrial Ca2+ homeostasis. Thus, deregulation of 

Ca2+ handling was also reported in human fibroblasts from a patient with an inherited 

defect in pyruvate dehydrogenase (PDH). Indeed, these cells show a decrease ability to 

sequester cytosolic Ca2+ into mitochondria without affecting basal cytosolic and 

mitochondrial Ca2+ levels. It was postulated that reduced mitochondrial uptake is linked to 

decreased mitochondrial potential (Padua et al., 1998).  

6. OXPHOS therapies: The place for Ca
2+

 modulating drugs 

OXPHOS disorders are complex and heterogeneous group of multisystem diseases. The fact 

that they can result from mutations in hundreds of genes distributed across all of the 

chromosomes as well as the mtDNA, render the understanding of causative factors and the 

identification of common disease-related factors difficult. Accordingly effective therapeutic 

interventions are still not readily available. There are two main approaches to mitochondrial 

disease therapy: genetic and metabolic pharmacological (for recent review see (Roestenberg 

et al., 2011) and (Wallace et al., 2010)). 

New approaches for genetic therapies for nDNA-encoded mitochondrial diseases as well as 

for mtDNA diseases are beginning to offer alternatives for individuals suffering from these 

devastating disorders. For mtDNA, these approaches include: (a) import of normal mtDNA 

polypeptides into the mitochondrion to complement the mtDNA defect, (b) reduction of the 

proportion of mutant mtDNAs (heteroplasmy shifting), and (c) direct medication of the 

mtDNA. Researchers are focusing also on the possible use of stem cell as a medication of 

OXPHOS disorders. However, these approaches are not as likely to relieve the devastating 

symptoms suffered by individuals with bioenergetic diseases.  

The pharmacological approach includes the use of: (a) cofactors that increase the production 

of ATP (coQ, Idebenone, and succinate), (b) vitamins and metabolic supplements (thiamine, 

riboflavine, carnitine and L-arginine), (c) reactive oxygen species scavengers and 

mitochondrial antioxidants (CoQ/Idebenone, Vitamin E and Vitamin C), (d) modulators of 

PTP (cyclosporin A), and (e) regulators of mitochondrial biogenesis (bezafibrate and sirtuin 

analogs). 

Current interventions based on metabolic correction include the use of mitochondrial-

targeted drugs (compounds and peptides targeted to the mitochondrial matrix) such as 

mitoquinone “MitoQ”, a derivative of coenzyme Q10, and SS-peptides, Szesto-Schiller 

peptides, a novel class of small cell permeable peptide antioxidants.  

Another alternative to rescue mitochondrial bioenergetics defects is the use the 

mitochondrial Na+/Ca2+ exchanger inhibitor benzothiazepine CGP37157 (Cox & Matlib, 

1993). CGP37157 normalized aberrant mitochondrial Ca2+ handling during hormone 

stimulation of cybrid cells carrying the tRNALys mutation associated with MERRF syndrom 

(Brini et al., 1999). Short-term pre-treatment with CGP37157 (1 μM, 2 min) fully normalized 

the amplitude of the hormone-induced mitochondrial Ca2+ signal in fibroblasts from 

patients with isolated complex I deficiency (Visch et al., 2004), without altering this 
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parameter in healthy fibroblasts. Similar result was obtained recently in a study including a 

large number of patient fibroblasts with complex I deficiency (Willems et al., 2009). Also the 

reduced maximal [ATP] in the mitochondrial matrix and cytosol were fully normalized by 

CGP37157 treatment. The effect of CGP37157 was independent of the presence of 

extracellular Ca2+, excluding a stimulatory effect on Ca2+ entry across the plasma membrane 

(Willems et al., 2009).  

It is worth to mention that CGP37157 may also stimulate the IP3-induced release of Ca2+ 

from intracellular stores. In addition to these effects, CGP37157 was demonstrated to inhibit 

capacitative store refilling (Malli et al., 2005; Poburko et al., 2007). As far as its specificity is 

concerned, recent studies suggest that CGP37157 can also directly act on L-type Ca2+ 

channels (Thu le et al., 2006). Thus the use of this drug will hamper Ca2+-stimulated 

processes that depend on Ca2+ entry across the plasma membrane (Luciani et al., 2007).  

All over, these findings suggest that the mitochondrial Na+/Ca2+ exchanger is a potential 

target for drugs aiming to restore or improve Ca2+-stimulated mitochondrial ATP synthesis 

in OXPHOS deficiencies and highlight the role of Ca2+ deregulation in the development of 

mitochondrial and cellular pathology in OXPHOS diseases.  

7. Conclusion 

This literature analysis highlights the broad Ca2+ deregulation in different models of 

OXPHOS diseases and demonstrates the cross regulation between Ca2+ and bioenergetics in 

the development of mitochondrial and cellular pathologies. Some studies revealed also the 

potential use of Ca2+ modulating drugs to reveres mitochondrial pathology. These studies 

may encourage researcher to investigate systematically Ca2+ deregulation in OXPHOS and 

help to reveal new targets for the development of new or combined therapies to rescue 

mitochondrial pathology in these diseases.   
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