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1. Introduction 

Mammalian pancreas is a gland that plays an important role in the regulation of energy 
balance and nutrition. Through the synthesis and release of protein digestive enzymes 
and hormones, which are involved in the absorption, it uses and stores the digested 
nutrients.  This gland divided into two compartments with exocrine and endocrine 
functions, together with the stroma surrounding the pancreatic parenchyma, plays 
important roles in the homeostasis of the body. Moreover, they are involved in the 
maintenance of the function of the organ, including the regenerative process observed 
after injury of the pancreatic tissue. However, to understand this relationship, it is 
necessary to understand the embryological mechanisms that control the development of 
the pancreatic tissue. This embryological pathway begins from the precursor cells located 
in the endoderm, which is able to promote the pancreatic morphogenesis after responding 
to specific external and internal signals. Therefore, knowledge of the different networks 
created by neighbouring embryonic tissues will be essential for understanding the 
complexity of this morphogenetic process. 

The organogenesis process of the pancreas gland is originated from stem cells located in the 
endoderm, which have the capacity to promote the development of the exocrine and 
endocrine compartments, identified in the adult gland from mammals. This phenomenon 
follows a specific gene network activity which is regulated by specific transcription factors 
(Jensen J, 2004). This complex process can be summarized into three steps identified by 
different investigators. The first step is accomplished through the action of specific signals 
that are originated from the mesoderm (Sander M and German MS, 1997). In the second 
step, the primitive endocrine cells, which are scattered throughout the undifferentiated 
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epithelium, proliferate and promote the primitive islets cells located in the surrounding 
mesenchyma. Moreover, the mesenchymals signals are important to promote the 
development of islet cells and increase the number of beta cells at the end of the process. All 
these signals also promote vascularization (Kim SK and Hebrok M, 2001; Scharfmann R 
2000; Reusens B and Remacle C; 2006). In the last step, the gland is remodeled into two 
functional compartments (Habener JF et al. 2005).  In the adult pancreas, these two 
compartments exhibit different physiological roles. In addition, they have an important 
relationship and cellular interaction.  

The pancreas like other tissues is considered like a dynamic organ, able to adapt to 
different physiological situations, such as diabetes, obesity or in gestation.  This dynamic 
adaptation is based on the regulation of the beta cell mass in order to maintain glucose 
homeostasis. There are different mechanisms that control this process, which include: 
apoptosis, necrosis, hypertrophy, hyperplasia and neogenesis.  However, little is known 
about some of these processes, and in particular, the cells which are involved. In the case 
of the neogenesis process, many studies supported the idea that it occurs via cells which 
are located in, or which are associated with, the ductal epithelium of the exocrine 
compartment of the pancreas. One of the approaches used for investigating this 
hypothesis is the application of the immunocytochemical and immunohistochemical 
techniques. These techniques are important because they help to identify the cell 
population involved in the process without losing the architecture of the tissue. Moreover, 
they are important tools for the phenotyping of the cell population when isolated from the 
tissue and checked while maintained in vitro. 

2. Historical perspective of stellate cells 

In 1876 Karl von Kupffer described for the first time a new population of cells in the liver 

called “sternzellen “ or stellate cells, due to their stellate appearance. These cells located in 

the space of Disse had cytoplasmatic inclusion bodies indicating to have a phagocytic 

function. Initially, Kupffer classified them into the “Waldeyer’s perivasculare 

Bindgewbszellen” or reticulo-endothelial system. However, this author changed opinion 

and the cells were considered phagocytes and were referred to as “special endothelial 

cells of the sinusoids” (Kupffer C 1876). However, it was not until the beginning of the 

20th century when Zimmerman described them as dendritic perisinusoidal cells 

surrounded by reticular fibers and named them hepatic pericytes. Later, the Japanese 

Anatomist Dr. Ito described a new cell population in the liver, which were located in the 

perisinusoidal space and contained abundant amounts of fat droplets in their cytoplasm. 

These cells, known as “Ito-cells” are able to store and deliver vitamin A and other 

liposoluble vitamins. Moreover, they are involved in the regulation of sinusoidal tone, 

local blood supply, and tissue repair and fibrosis. The cell presents several thick 

cytoplasmatic processes which are protuded directly from the perikaryon (primary 

process) and extended onto the outer surface of the sinusoidal entohelial cells (Ito T et al. 

1951).  In summary, these cells have received other names, such as: fat storing cells, 

pericytes, parasinusoidal, and lipocytes. Several studies demonstrated that all these cell 

populations shared most of their cellular and physiological characteristics and seemed to 

correspond to the same population. For that reason, and in order to avoid confusion, in 

1996 the international community of investigators unified the nomenclature and defined 
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these cells as a “Stellate cells” (no authors listed, 1996). Soon after, Kent and Popper 

demonstrated that the stellate cells were linked to the pathogenesis of hepatic fibrosis 

(Hirosawa K and Yamada E, 1973).  This important finding promoted the identification of 

this cell type in extrahepatic organs (pancreas, spleen, adrenal, ductus efferent and uterus) 

in rodent and humans (Geerts et al., 2001). 

In addition, the presence of these cells in a wide variety of species, ranging from lampreys 
(primitive fish) to humans and in all major tissues, indicated their importance in the 
development of the different organs (Wake K 1987).  

2.1 Stellate cells in pancreatic tissue: historical perspective 

Vitamin A storing cells were first described in the pancreas by Watari, et al., in 1982, using 
fluorescence and electron microscopy. In 1990, Ikejiri, et al., confirmed the previous results 
and also showed the presence of vitamin A as a autofluorescence stained in normal 
pancreatic sections from rats and humans. In 1997, Saotome, et al., described the presence of 
the myofibroblast-like cells in human pancreas, and their involvement in the extracellular 
matrix remodeling during the fibrosis process.  However, these independent observations 
had not been realized to be related until 1998, when Bachem, et al., and Apte, et al., defined 
these two populations of cells as pancreatic stellate cells, in two different stages of activation 
(Quiescent and Active). 

2.1.1 The embryological origin 

The embryological origin of the stellate cells is unclear.  Importantly, there are few studies 
conducted to resolve this dilemma. Most of them have been described in the liver. For that 
reason, different observations of these cells in liver have been extrapolated to other organs 
including the pancreas. However, numerous theories on the linage of these cells have 
been presented.  The hepatic stellate cells (HSC) are proposed to be derived from 
mesenchymal cells that separate the pericardial and peritoneal cavities of the embryo 
(Morita M et al. 1998; Naito N and Wisse E 1977). However, the specific microfilaments 
identified in their cytoplasm and morphology, resembling the astrocyte cells from 
astroglia in the Central Nervous System, could also be indicating a neural-ectodermal 
origin (Niki T et al. 1999; Friedman SL 2000). This last observation was difficult to 
reconcile with the mesenchymal origin described before. Recently, the identification in 
bone marrow of fibroblast /myofibroblast cells,  which share some HSC characteristics, 
suggests that stellate cells could be derived from hematopoietic stem cells  (Susking DL 
and Muench MO, 2004; Baba S et al. 2004; Ogawa M et al 2006). In conclusion, new 
experimental designs are required in order to understand the embryological origin of 
these cells. Moreover, the possibility to use the lineage–specific promoters to drive the 
transgene expression could contribute to the clarification of this problem and enable the 
understanding of the biology of these cells. 

2.1.2 Biology of pancreatic stellate cells 

Pancreatic stellate cells (PSC) are located in different spaces: periacinar, perivascular and 
periductal of the exocrine compartment of the pancreas. They represent approximately 4% 
of the total cells of the gland. The cells are closely in contact with acinar, endothelial and 
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ductal cells and establish a strict cellular communication between them through long 
processes containing numerous filaments and microtubules. These cells play an important 
role in the pancreatic pathology of the exocrine compartment of the pancreas, such as 
chronic pancreatitis and pancreatic cancer. In all these injury processes, PSC and HSC have 
shown an important phenotype transformation to a so-called activated form.  In this state, 
the cells are able to produce large amounts of extracellular matrix proteins (EMC), 
fibronectin and laminin resulting in the extensive fibrosis.  In this stage, the cells showed:  a 
typical characteristic spindle –shaped, absence of the retinol in the cytoplas, the increment of 
the myofilaments,  as in the GFAP and vimentin, as well as the presence of the new 
myofilament (ǂ-SMA). Moreover, the production of multiple factors with a paracrine, 
autocrine and chemoattractant actions can be detected (Jasper, R 2004, Morini S et al. 2005; 
Omary MB et al. 2007; Kordes C et al 2009) (Fig.1 A,B).  In contrast,  when the cell are in the 
quiescent form, they present:  abundant droplets of vitamin A in the cytoplasm, are less 
positive for desmin, vimentin, nestin and GFAP intermediate filaments, and the 
cytoplasmatic processes are not observed.  In addition, a non-proliferative state is observed 
in the cells (Pinzani, M. 1995; Apte MV et al. 2003).  The transitional stage of the cells was 
observed and the cells share some of the ultrastructural and functional characteristic for 
these two differentiated stages described previously.  

The mechanism implicated in this transformation process is not determined yet.  In vivo, 

different signal transduction pathways have been described and all, including infiltrating 

leucocytes and damaged acinar cells, are able to initiate and maintain the activated 

phenotype. However, most of the information about the activation mechanism has derived 

from in vitro studies of rodent PSC maintained in culture. These cultures, initially express 

the molecular markers of the quiescent cells and it is easy to observe the presence of the 

cytoplasmic lipid droplets by oil red stain (Apte MVet al., 1988, Mato E et al 2009). However, 

in a short amount of time, most of the cells in the culture showed a proliferative phenotype 

with ǂ-SMA and ECM protein expression. These molecules are associated with the activated 

phenotype (Haber PS et al. 1999). Several authors have associated this phenomenon to in 

vitro changes of Rho-ROCK pathways regulated by the actin cytoskeleton (Masamune A et 

al. 2003). PI 3-kinase activity is required for PDGF-stimulated PSC migration, but not cell 

proliferation (McCarroll JA et al. 2004).  Moreover, the role of the enzymes involved in the 

mitogen-activated protein kinase (MAPK) family have been described :  Jun N-terminal 

kinase JNK and p38, which are involved in the transcriptional control and PSC activation, 

and are mediators of signals induced by pro-inflammatory cytokines and cellular stressors 

(Masamune A et al. 2003). On the other hand, ligands of the nuclear receptor PPARǄ 

(peroxisome proliferator-activated receptor Ǆ) such as 15-deoxy-Δ12,14-prostaglandin J2 and 

troglitazone (an antidiabetic drug of the thiazolidinedione group) stimulate maintenance of 

a quiescent PSC phenotype in vitro have been described (Masamune A et al. 2002). In 

summary, despite that several intracellular mediators involved in the control of the PSC 

activation and desactivation have been identified, most of them are unknown. 

Furthermore, some authors have documented a significant increment of the PSC in the 
regenerative areas of the pancreas after suffering an acute pancreatitis, induced in rodent. 
These observations, plus the identification of the PSC positive for nestin marker, support the 
idea that this population could be involved in the pancreatic regeneration process 
(Zimmermann A et al. 2002, Ishiwata T et al 2006). 
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Fig. 1. A. Transmission electron micrographs of activated pancreatic stellate cells in culture. 
The arrow show abundant collagenous fibers compatible with collagenous type I. B. RT-PCR 
expression involved in the EMC remodeling (Mato E. et al., unpublished data) 

3. Pancreatic progenitor cell: historical perspective  

One of the important reasons to find progenitor cells in the pancreas is to cure Diabetes 

Mellitus. This metabolic disorder is a common and serious disease in our society and is the 

most rapidly growing chronic disease of our time. It has become an epidemic that affects 

millions of people around the world.  For that reason, there has been an increasing in 

interest scientific community to identify the cell populations with stem or progenitor 

properties in the pancreatic tissue. This finding could represent a significant therapeutic 

advance in this disease.  

The first description of stem and progenitors cells in adult tissue was in bone marrow and 
the nervous system (Weissman IL 2000; Fuchs E and Segre JA 2000). Although it is accepted 
that similar cells can exist in the other adult tissues and organs, they are not always easy to 
find. One of the reasons for limited number of studies on these cells relates to the fact that 
they do not have specific biological markers. Thus, finding of progenitor cells in the 
pancreas is a challenge. There is some evidence in the pancreas that progenitor cells exist in 
the neogenesis process, which can be induced by cellophane wrapping of the pancreas 
(Rosenberg L et al. 1998), partial pancreatectomy (Bonner-Weir S et al. 1993), streptozotocin-
induced diabetes (Fernandes A et al. 1997), and also during pregnancy (Bonner-Weir S 
2000). Some authors, Rosenberg in 1998 and Rafaeloff in 1997, have only associated this 
phenomenon with gene (Reg) and proteins (islet neogenesis, INGAP) which are expressed 
during the process, but not with progenitors cells. However, cell participation is possible. 
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Research has been launched to investigate the process of neogenesis and the cells that may 
be involved in this mechanism. Understanding this process will be the key since it will allow 
us to restore the function of the gland lost during the illness. 

3.1 Progenitor cells in the pancreas tissue 

3.1.1 Ductal cells 

Most of the studies favor the pancreatic duct as a potential source of progenitor cells in adult 
pancreas (Rosenberg L 1998; Bonner-Weir S 2000). These studies are based on the 
information about the important role the primitive ductal epithelium has during the 
pancreas embryogenesis of the pancreas as a source for the islet development (Madsen OD 
et al. 1996, Sander M and German MS, 1997). Moreover, Gu and coworkers described the 
presence of endocrine cells within the adult ductal system (Gu D and Sarvetnick N 1993) 
and also identified beta cells associated with the human ductals (Bouwens and Pipeleers, 
1998). Finally, the ability of ductal cells to expand in vitro and to form insulin-producing 
islet-like structures has also been demonstrated (Bonner-Weir S et al. 2000; Ramiya VK et al. 
2000).  

3.1.2 Pancreatic islet as a cellular source 

Another interesting hypothesis was to propose the pancreatic islet as a progenitor cell 
source, based on the analysis of islet regeneration in mouse pancreas models after the 
administration of streptozotocin. The results showed the presence of the insulin-producing 
cells following the injury into the adult islets. This study suggested the existence of the two 
types of progenitor cells, one of them expressed Glut-2 and the other coexpressed insulin 
and somatostatin (Guz Y et al. 2001).  

Nestin-positive cells, neurogenin-3 positive cells and hormone-negative immature cells, 

with proliferative capacity in vitro has been found in rats and human islets. This supports 

the idea of the existence of the multipotential cells in the islet (Kodama S et al 2005). 

However, their participation in islet regeneration and neogenesis in vivo has not yet been 

demonstrated (Zulewski H et al. 2001).  Despite the explosion in the number of in vitro 

studies that describe different types of cells with progenitor capacity within the island, there 

is also some critical work demonstrating that the reactivation of genes required for 

endocrine cell development, such as neurogenin 3, are not implicated directly in the 

regeneration of pancreatic tissue after pancreatectomy (Lee CS et al. 2006).   

Cells with the capacity to be differentiated not only in the lineage of endocrine cells, but also 

in other cellular lineages, such as exocrine and glials cells, have been identified (Seaberg RM 

et al 2004). These progenitors could be of different origins (ductal cells or cell located inside 

the islets). These cells showed different molecular markers, such as “the hepatocyte growth 

factor receptor”, c-Met. This receptor tyrosine kinase plays an important role in tumour 

growth by activating mitogenic signaling pathways (Seaberg RM et al 2004; Suzuki A et al., 

2004). 

Other authors identified cells presenting a differentiated morphology and named them 
“small cells”. Although these cells are positive for several pancreatic markers (PDX-1, 
sinaptoficin, insulin, glucagon, somatostatin, pancreatic polypeptide), they also expressed 
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markers of undifferentiated cells, such as: alfa-fetoprotein and Bcl-2.  Surprisingly, these 
cells were negative for nestin and cytokeratin 19, indicators of pluripotency and ductal 
origin. Functional analysis showed that they have the capacity to present a glucose 
response, but they did not respond to secretatgogues, such as IBMX (Petropavlovkaia M and 
RosenbergL , 2002). 

3.1.3 Hematoipoietic stem cells as a progenitor cells in pancreas 

Hematoipoietic stem cells have been proposed, as a new progenitor source in pancreas. In 

2002, this hypothesis was formulated by Lerner, et al., who identified a population defined 

as Side Population, or SP, from a bone marrow origin. This SP cell population, described for 

the first time by Goodel MA, et al., corresponded to a small subpopulation of cells with an 

enriched stem cell activity and showed a “low” Hoechst 33342 dye staining pattern. 

Subsequent studies attributed this SP phenotype to the expression of stem cell markers 

sucha as MDR1 and Nestin, and also co-expressed ABCG2, an ATP-binding cassette (ABC) 

transporter (Zhou S, 2001). ABCG2 gene is expressed in several rodent tissues, such as in the 

intestine, kidney and testes (Tanaka, Y 2005).  The precise physiological function of these 

transporters in progenitor and differentiated cells is unknown and it has been postulated 

that they confer protection against a number of xenobiotics, thus maintaining the 

regenerative capacity of the tissue (Leslie, E.M, 2005). The identification and isolation of 

ABCG2 positive cells in pancreatic tissue may be a new potential source of adult 

multipotential stem/progenitor cells, useful for the production of islet tissue for 

transplantation into diabetic subjects (Fetsch, PA, 2006). The presence of these cells in 

pancreas tissue is controversial. 

3.1.4 Epithelia Mesenchyma Transition (EMT) 

Finally the concept of Epithelia-Mesenchymal transition or EMT has been described during 
the regeneration endocrine pancreas and in the cancer development. The EMT could permit 
that adult cells can be differentiated into the fibroblastic-like cells as a step of transition to 
other cellular lineage. Recently this process has been linked with the maintenance of stem 
cell phenotype. However, the molecular mechanism to control the EMT process remained to 
be demonstrated (Gershengorn MC et al. 2004; Bonner-Weir S et al. 2004). 

An explosion of publications in the last decade tried to discover what type and where the 
progenitors cells are localised in the pancreatic tissue. We can conclude that the number of 
progenitor cell types in the pancreas may not be too limited to the cells already described. It 
is possible that the pancreas may contain an unidentified cell population at rest, as described 
in oval cells in the liver, capable of initiating their proliferation during the process of 
neogenesis. This opens the opportunity to explore new cell populations that form the 
pancreatic parenchyma. 

4. Immunocytochemical investigation of the role of pancreatic stellate cell as 
progenitor cell  

The plasticity of the stellate cells phenotype during tissue injury is a proven fact and may 
indicate that these cells can be presented in progenitor cell features. These findings 
suggested a novel aspect of the stellate cell biology must be necessary investigated.  
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The first marker identified in HSC was nestin.  Nestin, a marker for neural stem cells, was 
identified in HSC during the transition from the quiescent to the activated phenotype in 
cells maintained in culture, but no association with a progenitor role was suggested by the 
authors (Niki T et al. 1999). Later, other markers were identified in the HSC: CD133 
(prominin-1), a glycoprotein also known in humans and rodents as a Prominin 1 (PROM1), 
and expressed in the adult and embryonic stem cell and  Oct4 (octamer-binding 
transcription factor 4),  also known as POU5F1 (POU domain, class 5, transcription factor 1), 
protein involved in the self-renewal of undifferentiated embryonic stem cells (Mizrak D et 
al. 2008; Niwa H et al. 2000). These two markers were able to maintain an undifferentiated 
phenotype without losing the ability participates in liver regeneration (Kordes C et al 2009). 
Finally, the HSC were able to be differentiated into endothelial or hepatocyte-like cells 
(Kordes eC t al. 2007; Kubota H et al 2007). Following these findings an increasing number 
of papers about this topic were published. 

The existence and lineage of progenitor cells in the pancreas, as well as their origin and 
location, is a topic of debate and, although several hypotheses had been proposed, it is not 
yet proven. Moreover, the possibility that the PSC can act as a progenitor cell is not clear.  

Nevertheless, it is also important to remark that PSCand hepatic stellate cells are identical, 
have a common origin and both share transcriptional level, exhibiting organ-specific variations 
of the common transcriptional phenotype and (Bucholz M et al 2005; Omary MB et al 2007). 
This scenario suggests that the progenitor role for PSC could be a reality. In 2002, nestin-
positive cells were identified in normal adult rat pancreas and during its regeneration.  
Interestingly, most of these cells presented the morphology characteristic of stellate cells. 
Nestin, in pancreas as in liver, was confirmed as a main marker of stellate cell activation. Other 
roles, including the marker of progenitor cells, were not confirmed (Lardon J 2002).   

The question that needs to be addressed is whether PSC, after overexpressing some specific 
pancreatic transcription factors, such as Pdx1 or NeuroD1,   have the ability to present the 
transdifferentiation process, which permits conversion into insulin-producing beta cells. 

One approach to conduct these studies and broaden the possibility of unraveling the 
mechanisms that control self-renewal, is to explore the cell roles after their isolation and 
establishment of the cell culture.  The first description of the stellate isolation from tissue 
was in 1977 by Galamos JT. The study was characterized by growth mesenchymal cells 
derived from liver tissue, which have probably been derived from stellate cell (Galamos JT 
et al. 1977). Later, density gradient centrifugation was used after in situ digestion of the 
tissue, based on their buoyancy attributable to intracellular vitamin A. The density gradient 
separation method remains the most widely used approach for stellate cell isolation, but 
criticism of this method favours the isolation of quiescent cells, which are rich in vitamin A 
(Friedman SK, 2008).  Later, transgenic and knockout mouse models have been developed 
for the isolation following the standard method of murine stellate cells or for performing in 
situ analysis with specific stellate markers. However, one limitation of the technique is the 
large number of animals needed to obtain an adequate cell yield (Henderson NC et al. 2006; 
Kalinichenko Vet al. 2003). To solve this problem, stable cell lines obtained from human and 
mouse model would be an important advantage for many investigators in order to study 
stellate cell biology. Several methods have been described to establish from HSC cultures 
and pancreas cell lines, such as:  long-term culture, transfection with simian virus 40 (SV40) 
T antigen, or ectopic expression of telomerase (Vogel S et al. 200; Murakami K et al 1995; 
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Apte MV et al. 1998;  Kruse ML 2001; Sparmann G 2004; Masamune A et al. 2003; Satoh M et 
al 2002; Jesnowski R et al 1999; Löhr M et al 2001). The disadvantage of the cell lines is that 
they differ somewhat in their state of activation or in transcription expression and the 
results obtained must be validated in the in vivo model. Finally, the description of the 
cryoperservation technique for freezing primary stellate cell lines is an important advance 
for sharing the cells between different laboratories (Neyzen S et al. 2006).  

In this context our group initiated a new research field, focusing in the identification of 
progenitor cell in pancreas tissue through ABCG2 transporter as a progenitor cell marker. 
This marker was identified as a molecular determinant of the Side-Population (SP) 
phenotype. However, there is no information about its expression on the pancreatic cells. 
Recently, overexpression of the breast cancer-resistance half-transporter protein (BCRP1) 
was found to be responsible for the occurrence of mitoxantrone resistance in a number of 
cell lines (Doyle LA et al, 1998; Miyake K et al, 1999; Litman T et al, 2000).  Based on in these 
findings, we isolated a mitoxantrone-resistant cells population from pancreata of lactating 
rats by mitoxantrone selection through the ABCG2 transpoter (Fig. 2 A, B, C).  

 

Fig. 2. ABCG2 expression, and drug uptake and retention assays in primary cell cultures 
(mitoxantrone-resistant cells and unselected cells). (A) One-hour drug accumulation assay 
with and without verapamil. The cells were preincubated with 5µM verapamil for 15 min. 
Subsequently, cells were treated with 8 µM mitoxantrone and assayed for drug 
accumulation. Each condition is the mean of three experiments ± SD. Verapamil increased 
the intracellular concentration of mitoxantrone in the mitoxantrone-selected drug-resistant 
cells. The experiment was performed in triplicate, and a representative histogram was 
shown.  (B) The ABCG2 expression in the cells from cultures: unselected cells ( line 1 ) and 
mitoxantrone-resistant cells at Stage 2  (line 2) was determined by RT-PCR. The ARIP cell 
line was used as a positive control of the reaction (Control), – RT corresponds to 
amplification in which reverse transcriptase was excluded from the reaction (negative 
control). (C) cells treated with mitoxantrone for 2 ' (a) and 10' (b)  or treated with 
mitoxantrone plus verapamil (ABCG2 inhibitor) for 2’ (c) and 10’ (d) (Reproduced with 
permission, from Mato E. et al. Identification of a pancreatic stellate cell population with 
properties of progenitor cells: new role for stellate cells in the pancreas . Biochem. J. 421; 
181–191© the Biochemical Society) 
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Next, cells were expanded, checking that the cells present in culture a fibroblast features (Fig 
3 A) 

 
 
 

 

     

 

Fig. 3. Phenotype of Cell Line from mitoxantrone-resistant cell population. A The 
mitoxantrone-resistant cells became overgrown by cells with a fibroblastoid morphology 
(a,b). Spontaneously, some cells began to form three-dimensional cell clusters (c,d,e). B.  
Representative Histogram of the tritiated thymidine  incorporation in cellular cluster  and 
monolayer cells  * p<0.05. (Reproduced with permission, from Mato E. et al. Identification of 
a pancreatic stellate cell population with properties of progenitor cells: new role for stellate 
cells in the pancreas . Biochem. J. 421 ;181–191© the Biochemical Society) 
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Fig. 4. Mitoxantrone-resistant cells were phenotyped by immunofluorescence and RT-PCR 
using pancreatic stellate markers. (A) Mitoxantrone-resistant cells at Stage 2 express the 
markers: alfa-Actin, GFAP, vimentin, desmin, and chromogranin A. To confirm the presence 
of the vitamin A stored in the fat droplets, oil red staining was performed. (B) 
Disaggregated from mitoxantrone-resistant cells at stage 3 were immunophenotyped for the 
same markers, including the oil red staining. Negative controls (Neg) were used. (X20 
original magnification).  (C) These results were confirmed by RT-PCR using one µg of total 
RNA of the mitoxantrone-resistant cells in both stages (stage 2 (monolayer cultere ) and 
stage 3 (cellular cluster)). Control cell lines were used as a control reaction. (Reproduced 
with permission, from Mato E. et al. Identification of a pancreatic stellate cell population 
with properties of progenitor cells: new role for stellate cells in the pancreas . Biochem. J. 421 
;181–191© the Biochemical Society) 

The existence of a fine balance between proliferation and differentiation process is accepted 

by the research community. This balance promotes the differentiation from adult stem cell 

to postmitotic cells through decreasing or increasing the ratio of proliferation, permitting the 

maintenance of the stem cell population in adult tissues (Soria B, 2001).  The observation of 

the behavior of mitoxantrone resistant cells in culture was interesting. The results indicated 

C 
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that, while the cells with fibrobastoide appearance have showed a rapid and constant 

growth after clustering formation, they modified their behavior showing a significant 

reduction in their growth, without stopping completely (Fig.3, B).  The results suggested the 

ability of the cell to be reprogrammed.  

Finally the immunocharacterization of these cell cultures in monolayer and cellular cluster 
showed a stellate phenotype, characterised by vitamin A uptake (oil red staining) and 
steallate markers presence (Fig. 4 A, B). 

 
 

 

Fig. 5. Characterization of progenitor markers in mitoxantrone-resistant cell population. 
Nestin, Thy1.1 and N-CAM protein expression was detected by immunostaining in culture 
from mitoxantrone-selected drug-resistant cells (Modified with permission, from Mato E. et 
al. Identification of a pancreatic stellate cell population with properties of progenitor cells: 
new role for stellate cells in the pancreas . Biochem. J. 421 ;181–191© the Biochemical 
Society) 

Moreover, they share markers of the adult stem cells, such as: ABCG2, Nestin, Thy1.1, and 
N-CAM. The latter marker participates in signal transduction and in cell type segregation as 
a mediator of cellular junctions during organogenesis (Esni F et al. 1999) (Fig. 5).  
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Little it is known about the role of Fibroblast growth factor and their receptor in stellate 
cells. FGF belongs to a large family of molecules that retain a high homology at the genetic 
level. These growth factors induce pleiotropic responses, causing effects in both embryonic 
development and in adult tissue (Steiling H and Werner S, 2003). Their actions are mediated 
by four receptors of the tyrosine kinase membrane and present different isoforms (b and c) 
by splicing (Itoh N and Ornitz DM, 2004). Fibroblast growth factors receptors (FGFR) have 
been detected over time during the development of the pancreas.  In addition, their ligands, 
such as Fibroblast growth factor: 1, 7, 9, 10, 11, 18 (Dichmann DS et al., 2003), and the 
subtype of the FGFR 2, called FGFR2b, seem to have a key role in the exocrine development 
(Miralles F, et al. 1999). Recently, FGF7 and FGF10 have been involved in maintaining the 
cells in an undifferentiated stage and controlling the self-renewal of the pancreatic 
precursors (Elghari L et al. 2002; Norgaard GA et al, 2003). The positive gene expression for 
FGFR2IIIb, FGFRIII2c, FGFR1, and their specific ligands (FGF 1,7,and 10), were showed for 
the first time in our cell cultures (Fig. 6, Mato et al. unpublished data).   

     

Fig. 6. Expression of the Fibroblast growth receptor and Fibroblast growth factors in the cells 
from cultures. Expression of FGFRIII2b, FGFR1, FGFR4, FGFR2IIIC, FGF1, FGF7, FGF10 in 
the cells from cultures: monolayer cells (line 1) and at clusters cells (line 2) was determined 
by RT-PCR. B Proposed autocrine (A) and paracrine (B) model through FGFR and their 
ligands of the PSC in: ductal cell, exocrine cells or themselves. (Mato E. , unpublished data) 

This finding may suggest that FGFR and their ligand are involved in epithelial-
mesenchymal communication of PSC  and,  in addition,  the autocrine effect allows the 
maintenance of its cell population in the pancreatic tissue.  On the other hand, pancreatic 
stellate cell do not express endocrine genes. However, during cell expansion, a spontaneous 
cell differentiation occurs and these cells showed a weak expression of PDX-1 in to the 
nucleus and the cytoplasm of the cells (Fig. 7 A, B). This gene, also known as (insulin 
promoter factor-1, islet/duodenum homeobox-1, somatostatin transactivating factor-1, or 
insulin upstream factor-1 and glucose-sensitive factor), plays a key transcription factor in 
the endocrine differentiation pathway and is also essential for differentiation of endocrine 
cells in the gastric antrum. The results suggest a transdifferentiation process. However, the 
molecular mechanisms of this process are unknown. In additon, few studies are 
investigating the effect of culture medium and additional protein components on the 
viability and maturation of the cells (Royer PJ et al 2006). Our results underscore the 
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importance of defining culture medium composition in experimental procedures, in order to 
identify new soluble factors involved in the processes of cellular transdifferentiation. 

 

Fig. 7. Expression of Pdx-1 transcription factor in the cells from cultures (Monolayer stages).  
Pdx-1 protein expression was detected by immunostaining fluorescent in culture from 
mitoxantrone-selected drug-resistant cells. A.- Nuclear staining (X40 original magnification) 
B.- Cytoplasmatioc staining (X60 original magnification) (Mato E.  unpublished data). 

Identifying instructive signals that induce differentiation during organogenesis will be 

important to determine how such signalling networks are established and how they elicit 

multiple signalling responses in endodermal cells to activate appropriate genetic programs 

(Ratineau C et al 2003). Several signalling molecules have been implicated in induction of 

specific endodermal cell types. However, few of these factors have been examined in adult 

pancreatic tissue (Sttaford D et al 2006). One of these factors is GLP-1, secreted from the L-

cells of the distal ileum and colon. This substance has been suggested to play an important 

role in increasing beta cell mass by inducing the neogenesis or transdifferentiation through 

the expression of Pdx-1 in ductal or islets cells (Yue F et al. 2006; Abraham EJ et al 2002; Hui 

H et al 2001).  

Also, matrigel secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, is a 

gelatinous protein mixture that provides a semisolid medium that resembles the complex 

extracellular environment found in many tissues and is used as a substrate for three-

dimensional cell culture. The addition of exendin-4 (analog to GLP-1) and matrigel to our 

cellular model was needed to proceed to the differentiated stages and permit detection of 

insulin, IAPP, glucagon, GLUT2 and the convertases PC1/3 and PC2 expression (Fig. 8 A, 

B).  In contrast, expression of the transcription factor p48 and other exocrine genes, such as 

amylase, were not detected. Interestingly enough was the observation of the cytokeratin 19 

(CK19) expression. These intermediary filaments present in cells of the epithelial origin, 

such as ductal cells, indicate that the cell could be involved in the mechanism to control the 

mesenchymal-epithelial transition (MET). This phenomenon consists of a promising source 

of cells for replacement therapies, but can also be involved in the carcinogenesis process 

(Mato E et al. 2009).  
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  A           B 

Fig. 8. Pancreatic gene expression profiles and  co-immunolocalization of different markers 
by cytospin-prepared cells obtained from disagregated cellular clusters after exedin-4 
treatment.  A.-  Gene expressions profile after matrigel plus exendin-4 treatment in 
mitoxantrone-resistant cell cultures. B.-  Representative cellular cluster after treatment with 
matrigel plus exendin-4. The markers were visualized in red: c-peptide, green: insulin, 
vimentin, CK19, GFAP, alfa-actin, and yellow as the merges. The MIN-6 cells were used for 
the immunohistochemistry control. (Reproduced with permission, from Mato E. et al. 
Identification of a pancreatic stellate cell population with properties of progenitor cells: new 
role for stellate cells in the pancreas . Biochem. J. 421 ;181–191© the Biochemical Society). 

The molecular mechanisms and the receptors involved in EMT process are not indentified 
yet. Most of the evidence suggests that integrin could play an important role. On the other 
hand, the basement Membrane Matrix is an effective culture medium for the attachment and 
differentiation of both normal and transformed anchorage dependent on epithelioid and 
other cell types. The use of these three-dimensional culture systems may be particularly 
relevant to such efforts by recapitulating a more physiological microenvironment (Han YP 
et al. 2004; Phillips PA et al. 2003; George PC 2005). During the matrigel growth, substantial 
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ultrastructural changes in the cells were observed. The cells presented a smaller and more 
homogenous cell size with round nuclei and electron-dense homogenous chromatin, a 
significant increase in the number of mitochondria, lipid droplets in the cytoplasm and 
abundant electron-dense granules were also observed. In contrast to the cellular cluster 
growth in a normal condition medium, the quiescent stellate cells had a high presence of 
fibers compatible with collagen fibers (Fig. 9 A).  

 

Fig. 9. Ultrastructural changes and insulin release in the Mitoxantrone-resistant cells at stage 
3 after differentiation treatment with medium 3.  (A) Transmission electron micrographs of 
undifferentiated cells (a-d) show high hypertrophy in the rough endoplasmic reticulum 
(rER), lipid droplets (LD), lysosomes (L) and collagenous fibers (CF). Two types of electron-
dense chromatin structure were observed (Ch). However, the differentiated cells (e-h) 
presented a homogenous size with a round nucleus (N), at times indented, abundant 
mitochondria (M), and electron-dense granules in the cytoplasm were observed (g). (B) 
Insulin secretion after 1 hour of glucose stimulation at 20 mM vs. 2.8 mM. The results were 
normalized to 100 cell clusters (n=3) * p< 0.05 (employing Student’s t-test) (Reproduced with 
permission, from Mato E. et al. Identification of a pancreatic stellate cell population with 
properties of progenitor cells: new role for stellate cells in the pancreas . Biochem. J. 421 
;181–191© the Biochemical Society). 
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Gene expression and ultrastrucutral changes detected in the cell culture growth support the 
idea of the ability of cells to release insulin into the medium. In this scenario, insulin 
secretions of several sets of cell clusters were measured by static incubation at low (2.8mM) 
and high (20mM) levels of glucose. Eventhough, insulin levels detected in the cell clusters 
were lower compared to mouse islets, an increase of 44% was detected after stimulating 
cellular clusters with high level of glucose. (Fig. 9 B).  However, future experiments will 
have to demonstrate that the secretion of insulin is not only constitutive (Kuliawat R et al. 
1994). Furthermore, the expression of specific markers of stellate cells remained after 
maintaining the cell in matrigel condition. These results may indicate the differentiation 
process has not been fully completed and the cells still maintained characteristics of stellate 
cells (Fig. 8).  

An interesting strategy in order to investigate the biology of these cells is the use of 
proteomic approaches, since it is a useful tool for displaying protein expression patterns in 
the cell. For that reason, this approach has been used in active as well as quiescent stellate 
cells. (Kawada N  et al. 2001; Pauki JA et al. 2011 (a); Paulo JA et al. 2001 (b); Wehr AYet al. 
2011). In this context,  the proteomic study of our cellular culture secretome was preformed.  
The results showed that some of these proteins have potentially great influence on the 
physiology of the stellate cells themselves and/or on neighbouring cells, indicating a 
paracrina and /or autocrine action. Moreover, we have identified some novel factors that 
were clustered in the differentiation/development-related proteins, such as AHNAK, 
Gap43, and DIXDC1 (unpublished data from Mato E et al ). However, further experiments 
are required to investigate the interaction within these different genes.  

In summary: The pancreatic stellate cells is a fascinating nonendocrine cellular model that 
could represent a new source of cells involved in regenerative medicine of the pancreas in 
the future. However, more studies are needed to understand the molecular mechanisms that 
control their cellular plasticity. Certainly, the use of imunocytochemical and 
immunohistochemical techniques, complemented with cell -tracking methods, will be 
important tools to unravel the role of these cells during the tissular regeneration process 
both in the pancreas and in the liver. 
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