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1. Introduction 

Cytoprotection and brain regeneration are both potential future therapies in the treatment of 

cerebral ischemia, both based on animal research data. Since Kaas and colleagues first 

described the reorganization of the sensory cortex after peripherial nerve injury it has 

become clear that “we can no longer consider the injured brain as a normally wired brain 

with a missing puzzle piece” (Kaas et al., 1983 as cited in Nudo, 2006) and thus there has 

been intense research subsequently focused on understanding the regeneration processes 

following different brain injuries. 

In rodent models, permanent and transient middle cerebral artery occlusions (MCAO) are 
the most relevant for representing human ischemic stroke. The lesioned brain areas in these 
experimental cases are well comparable to those found in humans. Global cerebral ischemia 
has been investigated using several models including (1) hypotension with bilateral carotid 
occlusion, or (2) four vessel (2 carotid arteries + 2 vertebral arteries) occlusion with 
normotension, (3) hypoxia, and (4) cardiac arrest models in rats or mice, or (5) the transient 
carotid occlusion in gerbil. These global brain ischemia models mimic severe hypotension, 
cardiac arrest, hypoxia, cardiac surgery, among other conditions in the human, however, 
while in rodent models the most vulnerable region is the hippocampus, in human both 
cortical and subcortical lesions are common. This is one reason why these models are 
difficult to translate into human studies in global cerebral ischemia, however, longer 
ischemic periods in rodents also result in patchy cortical and subcortical damage together 
with the hippocampal damage (Back et al., 2004; Erdő and Hossmann, 2007; Wappler et al., 

www.intechopen.com



 
Advances in the Treatment of Ischemic Stroke 

 

90

2009 and 2010). Though, these models are useful to investigate the pathophyshiological 
mechanisms of brain ischemia, but it is important to note that in human stroke patients there 
are usually several other factors to consider, such as obesity, hypertension, diabetes, age and 
medications a patient may be using (Li and Carmichael, 2006; Popa-Wagner et al., 2007; 
Wappler et al., 2010) which may also determine the size of the lesion together with the 
regenerative potential of the tissue. This emphasizes the importance of experiments that 
utilize disease model and not just young, healthy male subjects to investigate brain injury, 
which will hopefully bring us closer to an understanding of the complex clinical conditions 
that result in stroke (Nudo, 2007; Popa-Wagner et al., 2007; Wappler et al., 2010). In addition 
to understanding the process of ischemic brain injury, examining the potential effects of the 
drugs that afford protection against ischemia is just as crucial under different conditions.  

In this chapter we present an overview of the studies describing the regenerative potential 

of the brain due to ischemic damage. Furthermore, we discuss drugs that increase brain 

plasticity after ischemic insult in animal models, focusing on estrogen. In addition, we 

describe a brief study examining acute 17ǃ-estradiol treatment on synaptic plasticity in the 

brain with a short (4 days) and a long term (25 days) follow up in young (4 months old) and 

old (18 months old) gerbils after global cerebral ischemia. The aim of this study was to 

investigate whether changes in synaptic density can be maintained after a longer period of 

single dose estrogen treatment, as we have demonstrated an early induction of neuronal 

plasticity using this model (Wappler et al., 2011b). Maintenance of synaptic density may be 

an important factor underlying the previously described better functional outcome using 

this model that was investigated up to the 2nd week after brain ischemia (Wappler et al., 

2010). In our current study, we examined two different age groups because synaptic 

reorganization is known to decrease with advancing age (Kim and Jones, 2010). Our results 

can help elucidate how synaptic reorganization progresses in the brain after global cerebral 

ischemia due to a single treatment of a cerebroprotective drug and how brain plasticity is 

influenced by age. 

2. Brain regeneration after cerebral ischemia 

Cerebral plasticity is the ability of the brain to change its structure and function during 

maturation, learning, environmental challenges or pathology (Di Filippo et al., 2008; Lledo 

et al., 2006). The exact mechanism of spontaneous brain regeneration after brain ischemia is 

not fully understood; however, there is a remarkable number of publications that describe 

several mechanisms participating in this process. 

Here we discuss the following features in brain regeneration: 1. neural plasticity 2. vascular 
plasticity and 3. glial plasticity. 

2.1 Neuronal plasticity 

For almost one hundred years neuroscientists have believed that the adult primate brain, 
and therefore the human brain, is structurally stable and does not form new synapses or 
grow new cells (Gould et al., 1999). It is clear by now that certain brain regions generate 
new cells, and that the continuous “rewiring“ of the brain is an important physiological 
function. 

www.intechopen.com



 
Brain Plasticity Following Ischemia: Effect of Estrogen and Other Cerebroprotective Drugs 

 

91 

Cortical interneurons but not pyramidal cells have been described to have intense 
arborization as axonal sprouting, dendritic growth and branching under physiological 
conditions (Lee et al., 2006) throughout adulthood. The “baseline” cerebral plasticity; 
however, is much more limited in the mature brain, compared to the developing brain, 
where high activity takes place. This phenomenon is generated by those structural and 
functional “brakes”, such as myelin, and several neuromodulators, that actively suppress 
plasticity in the adulthood (Bavelier et al., 2010). 

Following cerebral ischemia, or other types of brain insult; however, neuronal plasticity is 
reactivated in the surviving cells in order to compensate for cell death and to preserve 
functionality of the damaged but not dead areas (Blizzard et al. 2011; Carmichael, 2006). The 
possible mechanisms of neural plasticity include dendritic reorganization, axonal sprouting, 
and activation of endogenous pluripotent cells that can differentiate into neurons. While it 
has been shown that interneurons undergo structural remodeling in post-traumatic cortical 
lesions, signs of neural plasticity have not been detected in pyramidal neurons (Blizzard et 
al., 2011). 

2.1.1 Dendritic, axonal and synaptic plasticity 

Early studies demonstrated that following entorhinal lesion, as the result of neuronal 
projections from the contralateral hippocampus, new synapses are formed in the damaged 
cortex (Lynch et al., 1973). In addition, several subsequent studies have shown dendritic and 
axonal reorganization after experimental brain ischemia with dynamic changes of synaptic 
density in the injured brain region (Benowitz and Carmichael, 2010; Brown et al., 2010; Lu et 
al., 2004; Mostany et al., 2010; Scheff et al., 2005; Sulkowski et al., 2006; Takatsuru et al., 2009; 
etc.). The most active neuronal regeneration occurs up to 2-3 weeks after brain injury 
(Blizzard et al. 2011; Jones and Schallert, 1992), which provides a wide therapeutic window 
in cerebral ischemia. 

Cerebral ischemia induces axonal sprouting within the peri -infarct zone and contralateral 
side. This post-ischemic axonal sprouting establishes new neuronal connection pattern for 
the damaged brain areas (Carmichael, 2003). Axonal sprouting after different central 
nervous system injuries can be detected by using growth-associated protein-43 (GAP-43) as 
it is a marker of regeneration in the adulthood (Benowitz and Routtenberg, 1987; Benowitz 
and Perrone-Bizzozero, 1991; Simon et al., 2001; Wappler et al., 2011b). During brain 
development GAP-43 is highly associated with the elongating axons (Benowitz and 
Routtenberg, 1987; Benowitz and Perrone-Bizzozero, 1991), which becomes less 
concentrated proximal to the cell soma while the axon is growing, but stays in the growth 
cone (Benowitz and Perrone-Bizzozero, 1991). GAP-43 is also thought to be involved in 
neurotransmitter release. The highest GAP-43 immunoreactivity was detected on the 4th 
postnatal day, when the most active synaptogenesis takes place. This is followed by a rapid 
decrease in the immunoreactivity with only a few brain regions expressing GAP-43 later in 
the adulthood. These regions are the cerebral cortex, the hippocampus, the hypothalamus, 
the amygdala, the striatum, the medial substantia nigra, raphe nuclei, locus coeruleus, 
olfactory bulb, olfactory tubercule, preoptic area, and stria terminalis (Benowitz and 
Perrone-Bizzozero, 1991; Yao et al., 1993). Each of these regions has a different level of 
constant reorganization. In the hippocampus, this reorganization is related to synaptic 
remodeling during memory formation (Benowitz and Perrone-Bizzozero, 1991; Holahan et 
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al., 2007). Astrocytes and perivascular extracellular matrix are involved in guiding axonal 
growth and provide a scaffolding surface for this growth (Nedergaard and Dirnagl, 2005). 

Shortly after focal cerebral ischemia many neurons in the penumbra lose their dendritic 
spines in an attempt to survive (Brown et al., 2008; Benowitz and Carmichael, 2010). 
Nevertheless up to two weeks after stroke dendritic density and turnover increases in the 
peri-infarct cortex and also in the contralateral hemisphere, which plays a major role in 
brain regeneration (Brown et al., 2010; Mostany et al., 2010; Takatsuru et al., 2009). In 
addition, following cardiac arrest decreased microtubule-associated protein 2 (MAP-2) 
expression was detected in the rat reflecting lower dendritic density (Sulkowski et al., 2006). 
Recent studies have shown dendritic arbor shortening in the ischemic penumbra in the first 
weeks following stroke with further loss of dendritic branches after the first month in 
cortical pyramidal cells (Mostany and Portera-Cailliau, 2011). However, dendritic changes in 
the basilar tree of these cells or in other neuronal cell types in the cortex could not be ruled 
out. In contrast, enhanced dendritic arborization has been described in cortical pyramidal 
neurons following photothrombotic brain ischemia (Brown et al., 2010). Thus, the changes in 
dendrite vary among different cerebral ischemia models. 

In different central nervous system injuries synaptogenesis (formation of new synapses) is 
critical because new connections restore the cell communication and signaling. Following 
injury, surviving neurons have been described to form new synapses to compensate for the 
lost contact surfaces even if pre-traumatic synapse number is not achieved in the 
traumatized area (Lu et al., 2004; Scheff et al., 2005). Therefore examining synaptic density is 
a widely used technique to track neuronal plasticity following brain lesions. Both 
synaptophysin (SYP) and synapsin-I are widely used synaptic markers to assess synaptic 
density. The vesicular transmembrane protein, SYP, is expressed in the presynaptic terminal 
and its expression seems to be dispensable in neurotransmission (Becher et al., 1996; 
Eshkind and Leube, 1995; McMahon et al., 1996) but may be involved in fine-tuning of 
synaptic activity and in vesicle biogenesis (Becher et al., 1996; Janz and Sudhof, 1998). 
Synapsin-I is a phosphoprotein located on the small synaptic vesicles in the presynaptic 
terminal (De Camilli et al., 1983; Schiebler et al., 1986), and participates in regulating 
plasticity (Roshal et al., 1993; Wei et al., 2011). Following axonal sprouting and dendritic 
reorganization, sometimes just 21 days after the ischemia, synaptic density increases 
suggesting the development of mature synapses (Stroemer et al., 1995 as cited in 
Carmichael, 2003). In addition it has been shown in a rodent model that synaptic density 
steadily decreased up to one week following global cerebral ischemia (Sulkowski et al., 
2006). 

2.1.2 Endogenous neurogenesis 

While it was not believed that the adult human brain was able to form new neurons, Altman 
and Das provided the first evidence that neurogenesis occurred in the mature rodent brain 
(Altman and Das 1965 and 1967). These data opened a new chapter in neuroscience 
research. Besides the physiological functions, such as memory formation and learning, 
endogenous neurogenesis has become a major focus of research in different brain lesions 
(Gao et al., 2009; Kokaia and Lindvall, 2003; Shen et al., 2010; etc.) and their potential 
therapies (Kim et al., 2009; Leker et al., 2009; Xiong et al., 2011). The majority of the 
endogenous cerebral stem cells are located in the subventricular zone and hippocampal 
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subgranular zone and can generate either neuronal or glial cells (Zhao et al., 2008) in the 
lesion site using signals from the damaged cells for their activation and migration released. 

These pluripotent cells express certain proteins that are typically present during brain 
development, and therefore are useful markers to track neurogenesis in adulthood 
following brain injury, such as ischemia. One of the markers is nestin, an intermediate 
filament protein, which is expressed in the astrocytes and radial glia cells in the developing 
brain and disappears after the 11th postnatal day in the rat (Kalman and Ajtai, 2001). 
Although previous data suggest that nestin immunopositivity in the adult bran is associated 
with immature cells that are involved in neuogenesis (von Bohlen und Halbach, 2007; Yue et 
al. 2006), it also a marker of reactive gliosis following various brain lesions (see e.g. Duggal 
et al. 1997). It also have been reported that following focal ischemia in the rat nestin positive 
cells from the ipsilateral subventricular zone can differentiate into glial cells (Holmin et al., 
1997; Nakagomi et al., 2009; Shen et al., 2010). Therefore, in the adult brain, nestin 
expression recurs in both proliferating cells and in reactive astrocytes. 

2.2 Vascular plasticity 

Vascular plasticity includes processes such as angiogenesis and arteriogenesis. Angiogenesis 
is related to hypoxia and results in new capillaries from the pre-existing vessels, whereas 
arteriogenesis is induced most importantly by increased shear stress that results in newly 
formed blood vessels (Heil and Sharper, 2004; Heil et al., 2006; Schierling et al., 2009; Xiong 
et al., 2010); however, the differences in the cause and the result is usually are not this clear 
cut. Angiogenesis has a major role in brain regeneration after ischemia as increased blood 
supply directly enhances cell survival and regenerative processes (Font et al., 2010). Blood 
vessels not only provide metabolic support but also participate in neurogenesis by leading 
progenitor cells to the site of injury (Jin et al., 2002; Kojima et al., 2010 as cited in Font et al., 
2010; Sun et al., 2010; Udo et al., 2008; Xiong et al., 2010; Yang et al., 2010).There is extensive 
evidence that neovascularization (both angiogenesis and arteriogenesis) is induced 
following acute (del Zoppo and Mabuchi, 2003; Issa et al., 2005) and chronic (Busch et al., 
2003; Wappler et al., 2011a) brain ischemia.  

Hypoxia induced hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor 
(VEGF) are the most common angiogenesis stimulators (Busch et al., 2003; Carmeliet and 
Collen, 1997; Liu et al., 1995; Levy et al., 1995) and are involved in capillary sprouting rather 
than in larger collateral vessel remodeling (Busch et al., 2003; Carmeliet and Collen, 1997) 
because they act on endothelial cells without inducing smooth muscle proliferation (Busch 
et al., 2003). In addition, several other factors, such as fibroblast growth factor (FGF) (Issa et 
al., 2005), angiopoetins (Lin et al., 2000), transforming growth factor ǃ (TGFǃ) (Haggani et 
al., 2005; Krupinski et al., 1996), platelet derived growth factor (PDGF) (Issa et al., 2005; 
Krupinski et al., 1997), tissue-type plasminogen activator (Carmeliet and Collen, 1997), etc. 
are just as critical in new vessel formation after brain injury. Most of these molecules have 
separate effects on cerebroprotection and regeneration, such as the TGFǃ-s (Vincze et al., 
2010). In addition, nitric oxide derived from endothelial nitric oxide synthetase (eNOS) also 
induces endothelial cell proliferation and migration, smooth muscle cell differentiation, and 
other angiogenic processes, where ischemia and shear stress are triggering mechanisms 
(Amano et al., 2003; Cui et al., 2009; Murohara et al., 1998; Papapetropoulos et al., 1997; Prior 
et al., 2003; Rudic et al., 1998). Angiogenesis inhibitors, such as endostatin, angiostatin, 
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thrombospondin-1 and thrombospondin-2 have also been detected following brain ischemia 
(Issa et al., 2005), which provide another avenue for therapeutic interventions.  

In addition to these growth factors extracellular matrix proteins, such as laminin and 
dystroglycan complex (DGC) proteins, are also involved in vascular remodeling in the brain 
(Wappler et al., 2011a). The DGC proteins may have an important function in signal 
transduction connecting the extracellular signals and laminin itself with a wide variety of 
intracellular proteins, such as nitric oxide synthase, ion channels, kinases, and actin 
(Culligan and Ohlenieck, 2002; Wappler et al., 2011a). Thus, certain DGC proteins make 
good immunohistochemical markers of vascular reorganization (Wappler et al., 2011a) in 
addition to the more frequently used laminin. 

Neuroregenerative agents that increase angiogenesis, such as estrogen (Ardelt et al., 2005), 
have been described to improve functional outcome in models of cerebral ischemia 
(Hermann and Zechariah, 2009; Goldstein, 2009). These experimental data correlate with 
clinical data where higher microvessel density in the brain after ischemia was accompanied 
by shorter recovery time and longer survival (Christoforidis et al., 2005; Font et al., 2010; 
Krupinski et al., 1994; Navarro-Sobrino et al., 2011; Wei et al., 2001). 

2.3 Glial plasticity 

Glial cells in the brain include astrocytes, microcytes, and oligodendrocytes, of which 

astrocytes are the most numerous. In the last decade glial cells have been recognized not just 

for structural but for metabolic and for throphic support. By secreting nerve growth factor 

[NGF], basic fibroblast growth factor [bFGF], transforming growth factor ǃ [TFG-ǃ], platelet-

derived growth factor [PDGF], brain-derived neurotrophic factor [BDNF], ciliary 

neurotrophic factor, Neuropilin-1, vascular endothelial growth factor [VEGF], etc., they 

modulate the function of neurons and other cell types. Glial cells are active participants of 

synaptic interactions and higher level of cerebral function; and key elements of cerebral 

blood flow regulation (Araque and Navarrete, 2010; Attwell et al., 2010; Iadecola and 

Nedergaard, 2007; Metea and Newman, 2006; Nedergaard and Dirnagl, 2005). Glial cells 

also play a key role in regulating neuronal survival and regeneration by regulating the 

extracellular ion homeostasis, supporting other cells` energy metabolism, reducing 

glutamate toxicity, promoting neurogenesis, synaptogenesis and angiogenesis, activating 

endothelial cells, disrupting blood brain barrier (BBB), increasing inflammation, etc. 

(Himeda et al., 2007; Nedergaard and Dirnagl, 2005; Trendelenburg and Dirnagl, 2005). 

Generating new astrocytes is also an important feature in brain regeneration that has been 

mentioned previously in this chapter. 

The formation of glial scar and its beneficial and non-beneficial properties are also of great 
interest when investigating astrocytic reaction following focal brain ischemia. Unlike other 
tissues where injury repair results in a fibrous scar, brain injury is followed by a special scar 
formed by the activated astorocytes and the extracellular matrix molecules of proteoglycans. 
These include heparan sulfate, dermatan keratan sulfate, sulfate proteoglycans, and 
chondroitin sulfate, which are released by reactive astrocytes to compose a barrier of axonal 
growth. The role glial scar formation following brain ischemia is still unknown and intense 
research is ongoing to understand if it is harmful or supportive (Rolls et al., 2009; Silver and 
Miller, 2004). Besides its support on the injured tissue (Rolls et al., 2009), its inhibitory effect 
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on axonal growth is equally important (Cole and McCabe, 1991; Filder et al., 1999; Katoh-
Semba et al., 1995; Rudge and Silver, 1990; Smith-Thomas et al., 1994; Snow et al., 1990). 
Nevertheless, sulphated proteoglycans have also been described as supporting axonal 
growth (Hikino et al., 2003; Nakanishi et al., 2006), making glial cell based therapeutic 
strategies more difficult to design. On In contrast, myelin-associated inhibitors from 
oligodendrocytes and myelin debris, namely myelin-associated glycoprotein (MAG), Nogo-
A and oligodendrocyte myelin glycoprotein (OMgp) have clearly inhibitory effect on neurite 
outgrowth (for review see Yiu and He, 2006) and are under investigation because blocking 
their function results in enhanced brain regeneration. 

3. Inducing cerebral plasticity following brain ischemia 

A therapeutic window for drugs that increase neural plasticity is wider than those that 

target cytoprotection following cerebral ischemia (Zhang and Chopp, 2009) giving hope for 

improved functional outcomes in more stroke patients. A cerebroprotective drug can 

increase synaptic density in several ways. Cytoprotection, a process where cells can utilize 

more energy to maintain features that are not necessary in cell survival, can contribute to 

increased neuronal survival and therefore plasticity in the injured area. Presumably for the 

same reason increased oxygen and metabolic support improve cellular plasticity after 

different ischemic events in the brain as already mentioned above.  

Whether anti-apoptotic genes are able to induce neuronal plasticity by themselves other 

than by improving metabolic status is important to understand the pathophysiology of 

brain ischemia. In order to investigate this question we used Bcl-Xl or Bcl-2 gene construct 

transfections in an in vitro hypoxia model and we observed increased expression of 

synaptophysin-I and nestin mRNAs and proteins under normoxic conditions. Following 

hypoxia only nestin expression was significantly different from the untreated hypoxic group 

(Gal et al., 2009). These data indicate increased that anti-apoptotic gene expression itself can 

contribute to the amelioration of brain plasticity and its effect might be modified under 

different stress conditions. Several drugs that are known to be cytoprotective against 

cerebral ischemia, such as (-)-D-Deprenyl (Simon et al, 2001), and 17-estradiol (Wappler et 

al., 2011), also participate in brain regeneration. Although both have anti-apoptotic effect, (-

)-D-Deprenyl increases GAP-43 expression whereas 17-estradiol treatment does not, 

suggesting that similar pathways may mediate enhanced regeneration through different 

intracellular signaling (Simon et al, 2001; Szilagyi et al., 2009; Wappler et al., 2011) both in 

vitro and in vivo. This is supported by btudies on other cerebroprotective drugs, such as 

erythropoietin (EPO) (Iwai et al., 2010), statins (Céspedes-Rubio et al., 2010), amphetamine 

(Liu et al., 2011), melatonin (Chen et al., 2009; González-Burgos et al., 2007), and different 

spices (Kannappan et al., 2011), where different ways of imporoved brain plasticity was 

described.  

3.1 Estrogen 

3.1.1 Estrogen in the brain, estrogen receptors 

Corpechot and colleges described the first time that the cerebral sex steroid concentration is 
much higher than the circulating estrogen level both in men and women (Corpechot et al., 
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1981). Subsequently, estrogen synthesis (Le Gascone et al., 1987) and the essential enzymes 
(Hojo et al., 2004) involved were detected in the brain. 

The majority of the investigated intracellular effects of estrogen are related to two estrogen 

receptors (ERs) in the brain, ER- and ER-. Both of these receptors are expressed in the 
central nervous system; however, their distribution show different pattern. While ER-ǂ is 
highly expressed in the hippocampus, hypothalamus, and preoptic area accompanied by a 
low expression in the cortex, ER-ǃ is densely expressed in the cortex together with a high 
receptor density in the hippocampus, amygdala, cerebellum, etc. (Brann et al., 2011; 
Merchenthaler et al., 2003; Shughrue et al., 1997, Shughrue and Merchenthaler, 2000). Both 
of these ERs form homo- or hetero dimers after binding an estrogen molecule, such as 
estrone, estriol, or the most effective 17ǃ-estradiol (E2). These dimers can bind to the 
estrogen responsive elements of the DNA and regulate the expression of several genes, such 
as bcl-2, IGF-1 (insulin like growth factor-1), NGF, (BDNF (McKenna and O’Malley, 2002; 
Merchenthaler et al., 2003; Nilsson et al., 2001; Sharma and Mehra, 2008). However, besides 
this “classical” signaling pathway, which requires hours to days to take place, estrogen can 
induce rapid changes via its non-genomic pathways. These non-genomic responses are 
mediated through extranuclear ERs, and occur within minutes of estrogen exposure through 
activation of several signaling cascades, such as phosphatidylinositol-3-kinase (PI3K), 
extracellular signal regulated kinase (ERK), mitogen-activated protein kinase (MAPK) or 
protein kinase C (PKC) (Bourque et al., 2009; Brann et al., 2011; Koszegi et al., 2011; 
Lebesgue et al., 2009; Rebas et al., 2005). Extranuclear receptors have been detected in the 
cytoplasm of the cell body, but also in the dendrites and axons of the neurons, while ER 
immunoreactivity was also seen in the organelle membranes, and synaptic vesicles (Milner 
et el., 2005). In addition, other brain cells, such as glial cells, have also been shown to express 
ERs (Milner et al., 2005; Woolley, 2007). 

A third estrogen receptor, the G-protein-coupled ER (GPR30), has also been detected in the 

brain (Funakoshi et al., 2006); however, limited data is available regarding its role under 

physiological and pathological conditions. One of its reported functions in the hippocampus 

is to increase synaptic transmission (Filardo et al., 2002; Lebesgue et al., 2009). This receptor 

is more likely to be associated with the ERK/CREB intracellular signaling pathway 

(Lebesgue et al., 2009), and presumably activates other intracellular signaling cascades as 

well. GPR30 protein expression was described in the neuronal plasma membrane and 

endoplasmic reticulum in several brain regions, such as the hippocampus (Funakoshi et al., 

2006; Matsuda et al., 2008). 

There is strong evidence that the three different estrogen receptors can crosstalk, for 

example regulating gene expression through ERK and Src signaling via transcription factor, 

and histone phosphorylation (Brann et al., 2011; Madak-Erdogan et al., 2008). GPR30 

pathway also can crosstalk with other extranuclear pathways through Akt activation 

(Lebesgue et al., 2009). 

The effect of age on ERs is worth to mention here as the incidence of cerebral ischemia is 
higher in the elderly and the old, which can modify the effect of estrogen therapy. Both ER-ǂ 
and ER-ǃ expressing cell number decreased significantly in the hippocampus of the aged 
rats; however, optical density of immunoreactivity per cell showed a significant increase for 
both ER-ǂ and ER-ǃ immunoreactivity in the CA1 neurons, whereas in CA3 neurons, it was 

www.intechopen.com



 
Brain Plasticity Following Ischemia: Effect of Estrogen and Other Cerebroprotective Drugs 

 

97 

significantly reduced (Mehra et al., 2005). Increased expression of ERs per cell is supposedly 
a compensatory phenomenon. ER-ǃ immunoreactivity was, however, found decreased in 
the CA1 dendritic synapses in old female rats in another study (Waters et al., 2011).  

3.1.2 Estrogen: Afforded protection and plasticity following brain ischemia 

Estrogens are known to increase synaptic density in the intact brain (McEwen, 2002; 
Merchenthaler et al., 2003; Rune et al., 2006; Sá et al., 2009; Sharma et al., 2007; Woolley, 
2007) even following administration of a single dose of this hormone (Sá et al., 2009; 
Wappler et al., 2011b). Even during oestrus cycle there is an intense fluctuation in dendritic 
density in rodents. Furthermore, ovariectomy or menopause itself results in a significant 
decrease of synaptic and dendritic density (Ojo et al., 2011; Woolley and McEwen, 1992). 
Data on estrogen effect also suggest that it acts directly at synapses by activating second 
messenger signaling, resulting in a rapid altering in neuronal excitability, synaptic 
transmission, and/or synaptic plasticity (Woolley, 2007). There is; however, limited data on 
neuronal plasticity following brain ischemia (Wappler et al., 2011b). 

Several studies have shown that E2 therapy is neuroprotective in cerebral ischemia. 

Estrogen increases the number of surviving cells following ischemia (Liu et al., 2009; 

Merchenthaler et al., 2003; Platha et al., 2004; Wappler et al., 2010), reduces excitotoxicity 

(Connell et el., 2007; Herson et al., 2009; Weaver et al., 1997), inflammation (Herson et al., 

2009 ; Stein, 2001; Suzuki et al., 2007), moderates blood–brain barrier dysfunction (Liu et al., 

2005), is antioxidant (Connell et el., 2007), increases cerebral blood flow (Herson et al., 2009; 

Hurn et al., 1995; Pelligrino et al., 1998), reduces spontaneous postischemic hyperthermia 

(Platha et al., 2004), etc. Cerebral ischemia studies in ER-ǂ and ER-ǃ KO mice models, and 

pharmacological receptor inhibition have shown that ER-ǂ is the primary mediator of 

neuroprotection. (Brann et al., 2011; Dubal et al., 2001; Liu et al., 2009; Merchenthaler et al., 

2003; Miller et al., 2005). Both genomic and non-genimic effects seem to be involved in 

estrogen afforded neuroprotection (Merchenthaler et al., 2003). Selective GPR30 agonists 

have also been found neuroprotective in in vitro and in vivo models of brain ischemia 

(Gingerich et al., 2010; Lebesque et al., 2010; Zhang et al., 2010), however, its specific role in 

the pathophysiology of ischemic attack is still unknown. 

Genomic effects of estrogen includes the inhibition of apoptosis (through bcl-2, bax, caspase-

3); the diminution of inflammation (e.g. through tumor necrosis factor-ǂ; interleukin 1, and 

6); the induction of growth factor, structural protein, and neuropeptide expression; etc. 

(Merchenthaler et al., 2003). High dose, acute estrogen treatment in global cerebral ischemia 

also induces cerebral plasticity by increasing synapsin-I and nestin gene expression in 

gerbils as we described previously (Wappler et al., 2011b). GAP-43 expression was however 

not elevated further due to the treatment compared to the already increased level after brain 

ischemia in our model. 

Most of the data on estrogen`s effect in brain ischemia were observed following chronic 

rather than acute treatment in rodents, which is a postmenopausal estrogen 

supplementation model as opposed to a model of acute therapy. There have also been a 

small number of studies that used older, or diseased animals, or females, especially 

investigating long term outcome (Wappler et al., 2010).  
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4. Estrogen modulates synaptic density age, and subregion dependently in 
the gerbil hippocampus after global brain ischemia  

Our previous reports have demonstrated protective effects of E2 pre-treatment in gerbils 
following ischemia by increased cell survival, memory function and attention (Wappler et 
al., 2010). We also showed that increased cerebral plasticity takes place 4 days after the 
ischemia in the same model (Wappler et al., 2011b). Therefore, we hypothesized that E2 pre-
treatment increase the hippocampal synaptic plasticity both in shorter (4 days) and longer 
(25 days) time points in gerbils at different ages. 

4.1 Materials and methods 

4.1.1 Animals 

Ovariectomized gerbils of 4 (young), and 18 (old) months of age were used in our 
experiments. The animals were housed in an air-conditioned room at 22±1 ◦C with a 12 h 
light/dark cycle, and had free access to water and food. All the procedures on animals were 
approved by the Animal Examination Ethical Council of the Animal Protection Advisory 
Board at the Semmelweis University, Budapest, Hungary. 

4.1.2 Surgery and 17β-estradiol treatment 

The gerbils were anaesthetized with halothane (induction: 4%, maintaining: 1.5-2.5%) in a 30% 

O2/70% N2O mixture, breathing spontaneously via a face mask. Bilateral ovariectomy, and 10 

min bilateral carotid occlusion or sham neck surgery were performed as previously described 

(Wappler et al. 2010). Briefly, bilateral ovariectomy was performed through lateral incisions in 

each animal. Two weeks later transient bilateral carotid artery occlusion (10 min) was 

established through a midline cervical incision using atraumatic aneurysm clips (Codman, 

Johnson and Johnson, Le Locle, NE, Switzerland). The neck tissue was reunited in two layers 

with non-absorbable, 4.0 silk sutures (Ethicon, Johnson and Johnson). Sham surgery consisted 

of the midline cervical incision and carotid preparation followed by 10 min period, after which 

the incision was closed. Thirty minutes prior to surgery, estradiol treated group wasgiven 17ǃ-

estradiol (Sigma Chemical Co. St Louis, MO, USA) 0.4 ml/100 g (4 mg/kg) body weight. On 

the other hand, sham-operated and untreated ischemic animals were injected vehicle solution 

(50% alcohol in normal saline) in a dose of 0.4 ml/100 g body weight intraperitoneally. 

4.1.3 Immunohistochemistry 

On the post-operative day (POD) 4 or 25 (n=5 in each groups) animals were sacrificed under 
deep halothane anesthesia, and brains were isolated and immersion fixed first in 10% 
buffered paraformaldehyde for 2 days, then in 4% buffered paraformaldehyde for another 5 
days. The brain tissues were then embedded into paraffin. From each animal five 20μm-

thick coronal sections, 100 m apart from each other were prepared as previously described 
(Mehra et al., 2005; Mehra et al., 2007). Goat anti-polyvalent IHC Staining Kit (Labvision, 
Neomaker lab, USA) was used according to manufacturer protocol for the 
immunohistochemical localization. SYP specific rabbit polyclonal antibody (Santa Cruz 
Biotechnology, USA) in a 1:200 dilution was used for 48 – 72 hours at 4 °C for the incubation. 
Sections were then incubated with biotinylated secondary antibody for 24 hours at 4 °C 
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followed by streptavidin-HRP complex for 2 hours at RT. For proper maintenance of the 
cytoarchitectural integrity including preventing undesirable background staining, the 
sections were thoroughly rinsed with wash buffer (0.1M PBS, pH 7.4) between each 
incubation steps. Localization of the antigen-antibody site was done with the substrate-
chromogen reaction using DAB. Immunoreactive sites became brownish under the bright 
field microscope. Adjacent sections were stained with cresyl violet (CV) to facilitate 
demarcation of various layers and subfields of the hippocampus. Intermittently some IHC 
stained sections were also counterstained with CV for the same purpose. 

To eliminate non-specific staining, negative controls were processed by incubating the 
sections with species-specific normal serum, whereas human breast cancer tissue served as 
the positive controls (data not shown). Sections from all the groups and the 
immunohistochemical controls were processed simultaneously and repeatedly to rule out 
any procedural variations. 

4.1.4 Image analysis 

Semi-quantitative estimation of synaptophysin immunoreactivity (SYP-ir) was carried out 
on every layer (such as the stratum oriens, stratum pyramidale, and stratum radiatum) in 
the CA1 and CA2-3 subfields of the dorsal hippocampus in all animals. For the semi-
quantitative analysis, integrated optical density (IOD) of SYP-ir was measured using image 

from five hippocampal sections of each animal, 100 m apart from each other as previously 
described (Mehra et al., 2005). These images were viewed under the Nikon Microphot -Fx 
microscope mounted with a Cool Snap Digital camera (Roper Scientific, USA) and attached 
to the image analysis system driven by Image Pro-Plus software (v 6.2, Media Cybernetics, 

USA). The size of the sampling field was 5000 m2, where 7-9 non-overlapping digital 
photomicrographs per section were taken. The quantitative analysis was the same as 
previously described (Mehra et al., 2005). In brief, photomicrographs were first converted to 
gray scale with proper background correction, and a standard optical density curve was 
generated for each image prior to analysis (density of corpus callosum devoid of any pre-or 
postsynaptic protein was measured as background, and substracted from the image). IOD 
was measured as cumulative sum of the optical density of immunodense areas. 
Mathematical values of IOD for comparison between the groups were obtained as arbitrary 
units (mathematical algoritm) by the analysis software. Data from individual animals of 
each group were pooled together and the results were expressed as mean IOD ± SD. 

4.1.5 Statistics 

Statistical analysis was performed using GraphPad Prism version 5.02 for Windows 
(GraphPad Software, San Diego California USA). One-way ANOVA with post-hoc 
Newman-Keuls Multiple Comparison Test was done to compare mean IOD between 
groups. The level of significance was set at p<0.05. 

4.2 Results 

4.2.1 Synaptophysin immunoreactivity: Aspect of age 

Cell loss in this model of cerebral brain ischemia can be detected both in CA1, and CA3 
regions following 10 minutes occlusion, in contrast to the short occlusion times, where only 
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the CA1 region is affected (Wappler et al., 2010), however, there are surviving cells that 
gives positive staining to synaptic markers. In the present study, the observed changes in 
SYP-ir were not limited to just one layer (stratum oriens, stratum pyramidale, or stratum 
radiatum), but the whole hippocampal region in each case, therefore we discuss our data 
using the CA1 or the CA3 hippocampal regions. 

Young animals showed a significantly lower SYP-ir compared to the old animals after 
ovariectomy, which resulted in a significant difference between the baseline levels (p<0.01 
young control vs. old control) (Fig.1., panel A). This might have been caused by the more 
pronounced change in the circulating estrogen level after ovariectomy in the young than in 
the old, where the estrogen production of the ovaries is low or there is no estrogen 
production at all. Due to this difference between the baseline values, age-comparisons were 
more difficult to make between age groups. Changes are therefore presented as percentages 
of the age-matched controls (Fig.1., panel B). Old gerbils had more severe synaptic loss in 
the CA1 area than young gerbils where no significant change following the injury was 
detected (see 4.2.2. for more details and significant differences among each age group). 
Estrogen treatment had, however, a positive impact on the synaptic density following 
ischemia in young animals in the CA3 region (see 4.2.2. for more details and significances 
between treated and non-treated groups), whereas, the same treatment was less effective in 
the old gerbils, but still helped imporved SYP-ir to a certain extent (Fig.1., panel B).  

 

Fig. 1. SYP-ir in the gerbil hippocampus after global cerebral ischemia and estrogen 
treatment: age comparison. Panel A: control (OVX) groups. Data are expressed as 
means±SEM. See detailed description in the text. **p<0.01 vs. young group same 
hippocampal region. Panel B: effect of ischemia and ischemia+E2 treatment. Data are 
expressed as percentages of the age-matched controls±SEM. See detailed description in the 
text. *p<0.05, **p<0.01, ***p<0.001 vs. the same treatment group of the 4 months old animals. 
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Please note that not every significant change is marked on this figure that you can find in 
the text. 

4.2.2 Synaptophysin immunoreactivity: Aspect of time and synaptic regeneration 

Cerebral ischemia itself decreased SYP-ir only in the CA2-3 region in the young, but 
decreased in both CA1 and CA2-3 regions in the old animals. This can be explained by the 
fact that ovariectomy itself decreases synaptic density in the young animals (Woolley and 
McEwen, 1992), and not every area is affected the same way. Areas that are more dependent 
on E2 to preserve their synapses might show a relatively lower decrease after ischemia, as 
theire baseline synaptic density is very low, and another stress that is not severe enough, can 
not cause a significant decrease. In contrast, ovariectomy does not make a significant 
difference in the circulating E2 levels in the old gerbils, however, there is a slight, but 
progressive loss of synaptic density and an increased vulnerability to ischemia with age (Ojo 
et al., 2011; Popa-Wagner et al., 2007), the latter causing a significant decrease even 
compared to a slightly lower control level. In addition, in the young, at the early time point 
there was an improvement due to E2 pre-treatment in the CA1 region (p<0.05 young 
ischemia POD4 vs. young ischemia+E2 POD4; significance not shown on figure), but at the 
later time point there was a decrement in synaptic density in the E2-treated group compared 
to the ischemic group (p<0.05 young ischemia POD25 vs. young ischemia+E2 POD25; 
significance not shown on figure). This can be explained by a higher estrogen-dependency 
and vulnerability in the CA1 region compared to the CA2-3 region in gerbils. In the old 
animals ischemia significantly decreased synaptic density in the CA1 region, however, we 
did not observe significant improvement with the estrogen pre-treatment in POD4. It only 
was observed at the late time point, which was close to be significant (p=0.054 old ischemia 
POD25 vs. old ischemia+E2 POD25). This is probably because of the decreasing tendency in 
SYP-ir following ischemia itself by POD25 that made a more prominent difference between 
the treated and non-treated group, as E2 treatment seemed to preserve the POD4 synaptic 
density level. We would like to note that there was no signs of recovery in the old animals 
following ischemia itself as SYP-ir did not icrease by POD25 compared to the POD4 value in 
the same group. 

Moreover, in this study, estrogen pre-treatment increased synaptic density in the 
hippocampal CA2-3 region in both age groups, however, the increment was more 
pronounced in the young. The young group showed further increment in synaptic density 
following ischemia (Fig.2.). In the CA2-3 region at the early and late time point synaptic 
density increased following estrogen pre-treatment in the young group (p<0.01 young 
ischemia POD4 vs. young ischemia+E2 POD4; and p<0.001 young ischemia POD25 vs. 
young ischemia+E2 POD25; significances not shown on figure), in addition, following 
ischemia itself SYP-ir also increased in the young in the CA2-3 area (p<0.05 young ischemia 
POD4 vs. young ischemia POD25; significance not shown on figure). However, no 
significant changes were detected in the old group with the estrogen pre-treatment, and no 
regenerative changes were observed after ischemia itself either. 

4.2.3 Summarizing our results 

Even a single dose of E2 treatment can induce long term changes in synaptic density in the 
injured hippocampus in our gerbil model of cerebral ischemia. At the same time, differences 
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in age, as well as differences in the investigated brain regions, modulate the degree and the 
permanence of this E2 effect. 

 

Fig. 2. SYP-ir in the gerbil hippocampus after global cerebral ischemia and estrogen 
treatment: dynamic changes with time. See detailed description in the text. Data are 
expressed as means±SEM. *p<0.05, ** p<0.01, ***p<0.001 vs. age-matched control. Please 
note that only significant changes vs. control groups are shown on the figure, differences 
between ischemia and ischemia+E2, etc. can be found in the text. 

It was an unexpected result for us, that the CA3 region was more vulnerable to ischemia, in 

terms of synaptic loss, than the CA1 region in the young animals. This result, however, was 

probably due to the previous ovariectomy that might have had a bigger impact on the CA1 

region. This is consistent with our results in the aged animals, where the ischemia decreased 

synaptic density more in the CA1 region, as expected in this model. It is also possible that 

aging may predispose to a tendency of diminished synaptogenesis and ability to improve 

synaptic density, especially in the hippocampal CA3 subfield. Our results emphasize the 

importance of investigating cerebral regenerative potential in older, female animals as well 

as at later time points following ischemic injury. 

5. Conclusion 

Post-ischemic brain regeneration is well documented at the tissue, cellular, and subcellular 

levels that offer further opportunities for drug development to improve functional outcome. 

In addition, estrogen, a well known regulator of synaptic density, has a long term impact on 

regeneration after global cerebral ischemia even as a single, high-dose treatment. Age, 

however, has influence on its effects, which highlights the importance of using old animals 

in this field. 
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