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1. Introduction

The Klatt synthesizer is considered one of the most important formant synthesis. Therefore,
this chapter addresses the problem of automatic estimation of Klatt’s synthesizer parameters
in order to perform the imitation of voice (utterance copy), that is finding the parameters that
causes the synthesizer to generate a voice that sounds close enough to the natural voice,
so that the human ear does not notice the difference. Preliminary experimental results of a
framework based on evolutionary computing, more specifically, in a kind of genetic algorithm
(GA) called Multi-Objective Genetic Algorithms (MOGA), are presented. The task can be cast
as a hard inverse problem, because it is not a simple task to extract the desired parameters
automatically (Ding et al., 1997). Because of that, in spite of recent efforts (Breidegard &
Balkenius, 2003; Heid & Hawkins, 1998), most studies using parametric synthesizers adopt
a relatively time-consuming process (Klatt & Klatt, 1990) for utterance copy and end up using
short speech segments (words or short sentences). GA was chosen to peform this task because
they are known for their simplicity and elegance as robust search algorithms, as well as for
their ability to find high-quality solutions quickly for difficult high-dimensional problems
where traditional optimization methods may fail.

This chapter presents the application of GA to speech synthesis to solve the process of utterance
copy (Borges et al., 2008). With this framework, we use several objective (fitness) functions and
three possible ways of operating: Interframe, Intraframe and/or knowledge-based architectures
with adaptive control of probabilities distribution and stopping criteria according to the
convergence and number of generations. We also intend to fill a gap on the number of
research efforts on developing automatic tools for dealing with formant synthesizers and
help researchers to compare the performance of their solutions. The possibility of automatic
analyzing speech corpora is very important to increase the knowledge about phonetic and
phonological aspects of specific dialects, endangered language, spontaneous speech, etc. The
next paragraphs provide a brief overview of the Klatt’s speech synthesizer, the optimization
problem and the approach using MOGA to solve this.
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2 Genetic Algorithm

2. Speech synthesis

The voice synthesis consists on producing the human voice artificially, using the automatic
generation of voice signal. Aspects as the naturalness or the intelligibility are considered when
you evaluate the quality of the synthesized voice. Many researches on voice synthesis have
been developed for decades and some headway has been achieved, nevertheless the quality of
the terms about the naturalness of the voice produced still presents gaps, principally regarding
the adaptations that the speaking can suffer considering the intonation and the emotiveness
associated to the expressiveness of the content to be synthesized.

The efforts on producing the voice artificially started around the year of 1779 when the
Russian professor Christian Kratzenstein, made an acoustic resonator similar to the vocal tract,
where it was possible to produce the vowel sounds. At a later time, in 1791, Wolfgang von
Kempelen created a machine where it was possible to produce simple sounds or combiners,
and the difference was that the machine had a pressure chamber simulating the lungs, a kind
of vibrating shaft that worked like the human vocal cords and a leather tube representing the
vocal tract, allowing the emission of vowel and consonant sounds through the emission of its
components. In 1800, Charles Wheatstones rebuild a new version of the Kempelen machine
which possessed a more sophisticated mechanism and allowed the production of the vowels
and great part of the consonants, including the nasal ones.

The researches continued, but with the objective of constructing electric synthesizers. In 1922,
Stewart build a synthesizer composed by source that imitated the functionality of the lungs
(excitation) and of the resonant circuits that molds the acoustic resonators of the vocal tract.
With this machine it was possible the unique static generation of the vowel sounds with two
formants. The first device considered a electric synthesizer was the VODER (Voice Operating
Demonstrator) developed by Homer Dudley in 1939. It was composed by a bar to select the
kind of voice (voiced or voiceless) a pedal to control the fundamental frequency and ten keys
that controlled the artificial vocal tract. The basic structure of the VODER is very similar to
the systems used on the model source-filter. Currently, the technology involving the voice
synthesizers evolves and among these the synthesis that stand out are: by concatenation,
articulatory, by formants (rules) and most recently based on Hidden Markov Models (HMM).

The speech synthesizer is the back-end of text-to-speech (TTS) systems (Allen et al., 1987).
Synthesizers are also useful in speech analysis, such as in experiments about perception
and production. Formant-based (Lalwani & Childers, 1991) is a parametric synthesis
very eminent in many speech studies, especially linguistics, because most parameters of a
formant synthesizer are closely related to physical parameters and have a high degree of
interpretability, essential in studies of the acoustic correlates of voice quality, like male/female
voice conversion and simulation of breathiness, roughness, and vocal fry.

3. Formant-based and Klatt’s speech synthesizer

The techniques for voice synthesis can be divided in three classes: direct synthesis, the
synthesis through the simulation of the vocal tract and the synthesis utilizing a model
for the voice production (Styger & Keller, 1994). In the direct synthesis, the signal is
generated through the direct manipulation of the waveforms. An example of this kind is
the concatenative synthesis in which the sound units, like phonemes, are previously recorded
and to produce a new sound, these recorded units are concatenated to compose words and
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Multi-Objective Genetic Algorithm to Automatically Estimating the Input Parameters of Formant-Based Speech Synthesizers 3

sentences. This way, in this category there is no necessity of knowing the mechanisms of
voice production. The synthesis through the simulation of the vocal tract has the objective of
producing the voice through the simulation of the physical behavior of the organs responsible
for the production of the speech. The articulatory synthesis is an example of this category.

The synthesis based on a model for voice production consists on method that utilize the
source-filter model (Lemmetty, 1999) which allows the modeling of the vocal tract through
a linear filter, with a set of resonators that vary in time. The filter therefore is excited through
a source, simulating the vibration of the vocal cords for voiced sounds or the comprehension
of the vocal tract in the case of a noise. This way the sound is created in the vocal tract
and irradiated through the lips. The synthesis by formants, or based on rules, is one of the
most prominent techniques of this category, which is fundamented in a set of rules used to
determine the necessary parameters to synthesize the speech through a synthesizer. In this
synthesis there are two possible structures for a set of resonators: cascade or parallel, since
the combination of the two architectures can be used for a better performance. Among the
necessary parameters for the synthesizes based on rules, the fundamental frequency (F0),
the excitation parameter (OQ), the excitation degree of the voice (VO), the frequency and
amplification of the formants (F1...F3 e A1...A3), the frequency of an additional low frequency
resonator (FN), the intensity of the low and high regions (ALF, AHF) stand out, among others.

The Klatt’s synthesizer (Klatt & Klatt, 1990) is called a formant synthesizer because some
of its most important parameters are the formant frequencies: the resonance frequencies of
the vocal tract. Basically, the Klatt works as follows: for each frame (its duration is set by
the user, often in the range from 5 to 10 milliseconds), a new set of parameters drives the
synthesizer. The initial version of the Klatt was codified in FORTRAN and presented good
results on simulations for the production of a variety o sounds generated by the human speech
mechanism through the correct furnish of parameters of the source control and resonators.
Other versions of this synthesizer were developed, and the KLSYN88 was chosen for this
chapter, implemented on C language. The choice was made because its source code was
donated to the Signal Processing Laboratory (LaPS - Laboratório de Processamento de Sinais)
from UFPA by the Sensimetrics Enterprise (http://http://www.sens.com/, Visited on March,
2010.). Among the main differences between the KLSYN and the KLSYN88, the number of
parameters stands out, because the KLSYN88 has 48 parameters. For a complete description
of parameters of Klatt’s speech synthesizer, the reader is referred to (Klatt & Klatt, 1990). In
the latest versions of Klatt’s, six parameters are not used anymore - they all are assumed to be
zero, reducing our state space to 42 parameters. The problem to solve is: given an utterance to
be synthesized, find for each frame a sensible set of parameters to drive the synthesizer. The
number of parameters and their dynamic range make an exhaustive search unfeasible. GA
was adopted as the main learning strategy.

4. Genetic algorithm

The GAs are mathematics algorithms from the Computational Intelligence area specifically
the Evolutionary Computation (EC), where it searches Nature inspired techniques, the
development of intelligent systems that imitates aspects from the human behavior, such
as: evolution and adaptation. These possess a search technique and optimization based
on the probability, inspired by the Darwinian principle of the evolution of the species, and
on genetics where it utilizes the natural selection and the genetic reproduction through
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4 Genetic Algorithm

the evolutionary operators of selection, crossover and mutation. This way, the most able
individuals will have the chance of a longer longevity with higher probability of reproduction,
perpetuating the genetic codes for the next generations.

Considering a problem in the GA process, this should be modeled through a mathematical
function where the most apt individuals will have a greater or lower result, depending if the
object is to maximize or minimize the function. In a population a lot of individuals can exist
and each one of them corresponds to a possible solution of the mathematical function. If the
function has three variables, for example, each one is represented by a chromosome and their
concatenation composes an individual. A chromosome is composed by various characters
(genes), each one of them are in a determined position (locus), with its determined value
(allele).

The populations are evaluated periodically and it is verified in each one of them which
individuals are more able, and these are selected for the crossover. After the crossover,
each gene that composes the chromosome can suffer mutation. Following this phase of
mutation, a new evaluation of the individuals is made and the ones with greater degree of
fitness, that is the ones with the greatest value of the fitness function (performance function),
will guarantee the survival for the next population. The genetic operators tend to generate
solutions with greater values for the fitness function in which new generations are achieved.
This way, the evolutive cycles are repeated until the stop criterion is achieved, it may be: the
maximum number of generations, the optimization of the process of convergence or loss of
the populational diversity with too similar individuals (do Couto & Borges, 2008).

In addition to the fitness function utilized to measure how much a particular solution will
satisfy a condition, the GAs also need another objective function which is the optimization
object, it can have a set of restrictions to the values of the variables that compose it. These two
functions can be considered identical in optimization numerical problems (Coello et al., 2007).

The GAs present good results, when applied on complex problems that are characterized by:

• Having various parameters that need to be combined in search of the best solution;

• Problems with too many restrictions or conditions that cannot be modeled mathematically;

• Problems with a large search space.

On problems that the optimization with one objective is involved (mono-objective), the GA
will try to find an optimal global solution that can be minimum or maximum. In this case,
the solution minimize or maximize a function f (x) where x is a vector of decision variables of
dimension n, represented by x = (x1, ..., xn) belonging to a Ω universe (Coello et al., 2007).

In optimizations with more than one objective function (multi-objective), the task will be the
search of one or more optimal solutions, being that none of these can be said to be better
than the others considering all of the objectives, because some solutions can bring conflicting
scenarios.

5. Multi-objective Optimization Problem

An optimization problem is multi-objective (MOOP - Multi-objective Optimization Problem)
when it has various functions that should be maximized and/or minimized simultaneously,
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obeying a determined numbers of restrictions that any viable solution should obey. An MOOP
problem can be characterized by the Equation 1 (Deb, 2001).

Maximize/Minimize fm(x), m = 1, 2, ..., M;
subject to gj(x) ≥ 0 j = 1, 2, ..., J;

hk(x) = 0, k = 1, 2, ..., K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., n.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(1)

where x is a vector of n variables of decision x = (x1, x2, ..., xn)
T that consist on a quantity

of values to be chosen during the optimization problem. The limit restriction of the variables

(xi) restricts each variable of decision between the limit below x
(L)
i and over x

(U)
i .These limits

represent the space values of the variables of decision, or simply the space of decision. The
terms gj(x) e hk(x) are functions of restriction and a solution x that can not satisfy all of
the restrictions and the 2n limits will be considered a non factible solution. Otherwise, it
is considered a factible solution. The set of all the possible solutions is denominated viable
region, search space or simply S. The objective functions f1(x), f2(x), ..., fM(x), together,
are the optimization object and can be maximized or minimized. In some cases a conversion
of a maximization problem into a minimization problem may be necessary to avoid some
conflicting situations.

Differently from a mono-objective problem in which only a function is optimized, and
therefore, a single factible solution, on multi-objective problems there is not only one solution,
but a set of them, because it is considered that there is not a single solution that satisfies the
objective functions simultaneously, and that some solutions are better only on some objectives,
and on others not. Even so, the set of solutions needs to be defined and for this the Optimality
of Pareto Theory is used.

6. Dominance and optimal Pareto solutions

The terminology of Pareto establish that a vector of variables is considered optimum (x∗), if
a non factible vector x exists in which the degradation of a criterion (value of the objective
function) do not cause an improvement on at least another criterion, assuming in this case a
minimization problem as example. Therefore, there are no solutions better than the others
in all criterions but factible solutions (admissible) that sometimes will be better in some
criterions, and sometimes they will not.

The multi-objectives optimization algorithms are based on the domination concept and on
its searches, in which two solutions are compared to verify if a relationship of dominance
is established one over the other. Considering a problem with M objective functions, where

M > 1, the solution x(1) dominates the other solution x(2) if the two following conditions are
met (Deb, 2001):

1. The solution x(1) is not worse than x(2) in all of the objectives, or fi(x(1)) not ≺ fi(x(1)) for
all j = 1, 2, ..., M objectives;

2. The solution x(1) is narrowly better than x(2) in at least one objective, or f j(x1) ≻ fi(x(2))
to at least one j ∈ 1, 2, ..., M.
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where it is considered that the operator ≺ denotes the worst and the operator ≻ denotes the

better. If any of these conditions above is violated, the solution x(1) do not dominates the

solution x(2). If x(1) dominates x(2) (x(1) ≻ x(2)) it is possible to affirm that:

• x(2) is dominated by x(1);

• x(1) is not dominated by x(2);

• x(1) is not worse than x(2).

From this analysis considering the concept of optimality mentioned previously, a set
denominated optimal solutions of Pareto is made. These solutions are considered as
admissible or efficient, being their set represented by P̄∗. The correspondent vectors to
these solutions are denominated non-dominated. The aggregation of various non-dominated
vectors composes the Pareto front (Coello et al., 2007).

The concept of dominance can be applied to define sets of optimal local and global solutions.
The optimal local set of Pareto is defined when, for each x element belonging to the P̄ set,
an y solution does not exist on its neighborhood to dominate another element of the P̄ set
characterizing the belonging solutions to P̄ with a optimal local set of Pareto. If a solution
does not exist in the research space that dominates any other member in the set P̄ constitutes
an optimal global set of Pareto.

In the presence of multiple optimal solutions of Pareto, it is hard to choose a single solution
with no additional information about the problem. Because of that, it is important to find as
many optimal solutions of Pareto as possible, obeying the following objectives:

1. Guide the search as close as possible to the global optimal region of Pareto and;

2. Keep the populational diversity in Pareto optimal front.

7. Non-Dominated Sorting Genetic Algorithm II

The NSGA-II (Non-Dominated Sorting Genetic Algorithm II) is a Multi-Objective Evolutionary
Algorithm (MOEA) based on the a posteriori technique of search with emphasis in the search
for diverse solutions with the goal to generate different elements in the optimal set of Pareto.
The process of decision by a solution is made after (a posteriori) the realization of complete
search by optimal solutions.

This method was proposed in (Deb et al., 2000) as a modification of the original algorithm
mentioned in (Srinivas & Deb, 1994). The main characteristics are the elitism, the ranking
attribution and the crowding distance. The elitism is used as a mechanism for the preservation
and usability of the best solutions found previously on posterior generations. Through
the ranking, the algorithm is achieves the ordering of the non-dominated solutions of the
population. The crowding distance uses an operator of selection by tournament to preserve
the diversity between the non-dominated solutions in the posterior execution stages to obtain
a good spread of the solutions.

In the NSGA-II, the population Qt is created from the parent population Pt, where both have
N individuals and are combined to form together the population Rt, size 2N. After this
junction, it is performed an ordering of the best solutions to classify all the population Rt.
Even though it requires a greater computational effort, the algorithm allows the checking of a
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non global domination between the populations Pt and Qt. With the ending of the ordering
of the non-dominated solutions, the new set Pt is created and filled by solutions with different
non-dominated fronts (F1, F2, ..., Fn). The filling starts with the best non-dominated solution
from the first front, following the subsequent ones. As only N solutions can be inserted in
the new population, the rest of the solutions is simply cast-off. Each Fi set must be inserted
in its totality in the new population, and when |Pt+1|+ |Fi| > N the algorithm introduces a
method called crowding distance, where the most disperse solutions are preferred from the
Fi set and the other ones are cast-off. The daughter population Qt+1 is created from Pt+1

using the operators of selection by tournament, crossover and mutation. The Figure 1 shows
a sequence of the process of the NSGA-II.

Fig. 1. Diagram that shows the way in which the NSGA-II works - Adapted from (Coello
et al., 2007).

To verify the crowding distance, first is calculated the average distance of the two points, both
sides of these points, considering all of the objectives. The quantity di serves as a estimation of
the size of the biggest cuboid that includes the i point without the inclusion of any other point
of the population, being called crowding distance. In the Figure 2, the distance from the i-th
solution in its Pareto front (filled points) is the average lateral length from the cuboid drew by
the dashed lines.

The operator that do the crowding comparison incorporate a modification in the selection
method by tournament that considers the crowding of the solution (crowded tournament
selection operator). So, the solution i is considered a winner in the tournament by a solution
j, if it obeys the following restrictions:

1. The i has the best rank of non-dominance in the population;

2. If both solutions are in the same level, but i has a distance bigger than j (di > dj);

Considering two solutions in different levels of non-dominance, the chosen points are the ones
with lower level. If both points belong to the same front, then it is chosen localized points in
a region with a less number of points, so, solutions with bigger crowding distances.
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Fig. 2. A graphical illustration of crowding distance.

8. Automatically learning the input parameters

The present chapter has the objective of resolving the issue to estimate the values of the input
parameters of a formant synthesizer, as the Klatt for example, aiming to mimicking the human
voice. This problem is considered difficult since the parameters specific the temporization
of the source and the dynamic values for all the filters. Depending on the quantity of the
parameters involved in a possibility of possible combinations can be to big and not viable
of being made manually because each parameter has a vast interval of reasonable values.
According to Figure 3, it is necessary to estimate initial values for the input parameters of the
synthesizer, submitting to the synthesis and then evaluate the synthesized voice through a
comparison mechanism with target voice. After the verification, the values of the parameters
must be adjusted, that is, new re-estimated values are given as input bringing the synthesis
of the voice and a posterior comparison, until the generated voice is as close as possible from
the target.

Fig. 3. General problem description.

The Klatt synthesizer is the most utilized among the synthesizers by formants, that is why
it was chosen as object of this chapter. Besides that, even not being the focus of this study,
the Klatt can be used in TTS systems because it requires low computational cost to produce
the voice in high degree of intelligibility, but generally it is hard to reproduce the exact voice
signal sound emitted by a human speaker (de Oliveira Imbiriba, 2008).

However, another problem appears in consequence of the option of the formant synthesis that
consist in extracting the values of the Klatt’s parameters from a voice. These parameters can
be generated through the TTS systems, as the Dectalk (Hallahan, 1995), but specifically, to a
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single speaker. Some tools and techniques that utilize the signal processing appeared to try to
extract them of voice and not having them from text files, but the results were not satisfied.

Considering the complexity of the problem, the proposal is to utilize this type of model
to estimate automatically the parameters of a formant synthesizer, developing mechanisms
of comparison from voices (synthesized and target) e of adjustments of the re-estimated
parameters, attaching this methodology to a technique of extraction of the parameters from
the voice in which minimizes the degradation of the synthesized voice.

9. GASpeech framework

With the objective of automatizing the imitation of the natural voice (utterance copy), it was
developed in LaPS a methodology that uses MOGA. The methodology called GASpeech was
adapted from NSGA-II algorithm (Deb et al., 2000) and utilizes three architectures, described
later.

As illustrated in Figure 4, the GASpeech starts with the input text file and as exit there is the
synthesized voice. The rectangles represent programs or scripts and the rounded rectangles
correspond to files. First, the text files are submitted to Dectalk (Bickley & Bruckert, 2002)
where it is a TTS system produced by Fonix Corporation. The generated voices by it possess
high intelligibility, but are configured to a single male announcer (Paul). A demo version of
this TTS was provided to LaPS for academical purposes. The Dectalk generate an exit achieve
having 18 parameters in which they are mapped to the 13 parameters of the input file from
HLSyn through the script DEC2HLSyn. The HLSyn is utilized to generate the input file of
the Klatt synthesizer (version KLSYN88), having the 48 necessary parameters to the voice
synthesization. But, of the 48 parameters only 42 are utilized because in this chapter the
parallel resonators bank is not considered because of its values being always zero.

In possess of the files having the target voice and the corresponding values from Klatt’s
parameters, the simulation starts in the GASpeech. The population is initialized randomically
and each individual is a vector composed by 42 parameters according to the motives exposed
previously. The initial population is evaluated taking in consideration the objective functions
that can be: spectral distortion (SD), mean squared error (MSE) and cross correlation (CC).
After the evaluation, a rank is assigned to each individual. Individuals with best ranks are
selected to suffer crossover and mutation. As result, a new population is generated and this
one will take all the evaluative process and the genetic operators until the total number of
generations is achieved or another stop criterion is fulfilled (Figure 5).

The possible architectures are: Intraframe, Interframe, Knowledge-based or a combination of
the last two. Considering that a voice file is composed by various frames, in the Intraframe
methodology, it is believed that each frame is a conventional problem of GA. So, for example,
as the target sentence has the duration of one second and each frame of 10 milliseconds (no
superposition) , then 100 problems of GA are solved independently. To start the simulation,
the population of the first frame is obtained randomically and the user has the option of
utilizing a more adaptive model for the crossover and the mutation or operate them with
a fix value. In the Interframe methodology, the best individuals from the last population
from frame t (obtained rank = 1) are copied to the frame t + 1. Considering that it may
exist a big quantity of able individuals, only 10% of the population can be copied to a
following frame and the other individuals are initialized randomically (Borges et al., 2008).
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Fig. 4. GASpeech’s methodology.

In the Knowledge-based architecture, for each frame, N − 1 individuals from the population
are initialized randomically and the last individual is inserted through correct values of the
Klatt, applying a random variation. The initial idea consists in that this known individual was
extracted from the estimations made in tools such as Praat (Boersma & Weenink, Visited on
June, 2011.) and Winsnoori (Laprie, 2010), but these tools do not utilize the same version
as the Klatt adopted in this chapter, making it necessary therefore the development of a
mapping between the different versions. This architecture also can be utilized in conjunction
with a Interframe. In this case, besides the insertion of an individual partially known in the
population initialized randomically, the best individuals from the previous frame population
can be copied to a initial population of the following frame. This way, it is tried to keep a
previous knowledge in which is widespread to the following populations, lowering this way
the quantity of necessary generations to find the correct value of the Klatt’s parameters in each
frame.
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Fig. 5. Functional scheme of GASpeech.

The stop criterion defined were three, being them:

• Convergence: the simulation is finished when the convergence is obtained, being the
convergence parameter (∆) configured by the user, it can be the SD, the MSE and/or the
CC delay.

• The maximum number of generations: This criterion is used on traditional GAs and
finishes the simulation when the number of generations (ngen) is achieved, being this the
configured value by the user.

• The number of generations in evolution: In this criterion, when the frame achieves the
percentage (ngenwevolve) of the maximum number of generations with no evolution, the
simulation stops. This value is configured by the user and takes in consideration the
diversity degree, because when the individuals are the same or too similar, this aspect
is not being obeyed.

An individual in the GASpeech is composed by a vector of parameters, and in each frame, a
single individual must be choose to compose the file with various frames to be synthesized
in the end. As the multi-objective optimization can find more than one factible solution, the
software is configured to choose the optimal solution of Pareto with lowest value of SD. The
fact that the choice befall on the spectral distortion is because this function represents a little
better the quality of the generated voice signal, among the other functions. This way, the best
individual is the one in which the spectral distortion is lower or equal to 1. If it does not find
individuals with this characteristic, the process of decision by the best is used according to the
native NSGA-II, based on the elitism, ranking and crowding distance.

On the traditional GAs, the values of the crossover and mutation probabilities are fix,
predefined before the initial execution of the algorithm. However, these options can be
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inefficient since there is a great chance to take the algorithm to minimum places. With it,
(Ho et al., 1999) proposed an heuristic, so the parameters could have their values adapted,
although controlled. This strategy aims to vary the probabilities mentioned starting with
high values and decaying to lower values, considering this way that in the beginning there is
little information about the dominion of the problem and a bigger diversity of the population
is supposed to exist. In the end of the optimization process, there is some knowledge
about the domain and the best solutions must be explored. In the GASpeech, if the options
of the mutation and crossover probabilities utilized are adaptable, the initial values of the
probabilities are lowered according to Equations 2 and 3.

pn+1
m = pn

m − pn
mxδm (2)

pn+1
c = pn

c − pn
c xδc (3)

where δm e δc are the decreased rates for the mutation and the crossover, respectively,
considering a initial value configured for the probabilities of crossover and mutations (p0

m

e p0
c ) and minimum values that they can assume (min(pm) and min(pc)).

As mentioned before, the GASpeech works with multi-objective optimization and three
objective functions are utilized. These are: SD, MSE and CC delay. It was considered that the
lower the value of the three objective functions, better is the individual, so, a way of lowering
the values of the functions is search.

The SD is calculated through a FFT routine (Fast Fourier Transform) that has as objective
evaluate the distortion between the synthesized spectrum (H( f )) and the target (S( f )). The
equation is given by:

SD =

√

1

f 2 − f 1

∫ f 2

f 1

[

20 log10

|H( f )|

|S( f )|

]2

d f (4)

The MSE is a manner of quantifying the estimated value from the real one (Imbens et al., 2005).
The calculation is made through the Mean Squared Error and how it is desired to minimize
the error, the Equation 5 must be minimized.

MSE =
1

n

n

∑
j=1

(θt(j)− θs(j))2 (5)

where n is the number of samples per frame, θa(j) and θs(j) are, respectively, the index
samples j of each frame from the waveforms of the target and synthesized voices.

The delay in the CC can be calculated in the following form: consider two sequences x(i) and
y(i) where i = 0, 1, 2...N − 1. The normalized cross correlation r in the delay d is defined as:

r(d) =
∑i[(xi − x)(yi−d − y)]

√

∑i(xi − x)2
√

∑i(yi−d − y)2
(6)

where x and y are mean from the x and y series, respectively.

Considering the delay in the CC the third objective of the GASpeech, it is tried to minimize
the delay d for which the function r is maximum, where the signals x and y (Equation 6) are
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frames of the original and synthesized voices. The justification to this fact is that when r is
maximum to d = 0, it means that the signal has maximum correlation in the moment that
there is no delay, then the peaks of these signals tend to be aligned.

10. Experiments

The experiments that are made aim the target-voice generated from the Klatt synthesizer
version KLSYN88 where it utilizes 48 parameters. The acquisition of the target voice to the
various speech sentences was made from a Dectalk TTS system, to a single speaker, Paul. The
sentences were processed one by one, as shown on Figure 6, considering the frequency of
11025 Hz.

Fig. 6. Preparation of the voice files.
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For the experimental effects, nine sentences were chosen considering the variation by phonetic
transcription. Each one of them was labeled as shown on Table 1. To evaluate the generated
voices it was utilized SD, MSE and CC metrics.

Label Description

p1007 You don’t belong in professional baseball.

p1010 We’ll pay you back if you’ll let us.

p1013 Draw each graph on a new axis.

p1016 They assume no burglar will ever enter here.

p1032 The wagons were burning fiercely.

p1036 He had four extra eggs for breakfast.

p1069 He recognized his jacket and trousers .

p1074 Our aim must be to learn as much as we teach.

p1159 Blockade is one answer offered by experts.

Table 1. Sentences used.

The experiments made possess as configuration the combinations of the following options:

• Three objectives: SD, MSE and CC simultaneously, as objective functions.

• Two types of architecture: Interframe and the one combined with the Knowledge-based
architecture, since the Intraframe architecture was less efficient further to the ones
mentioned.

• 10 levels of complexity: the individuals were composed according to the combinations
specified on Table 2.

Label Description

FeB Formants and bandwidths.

FeBF0 FeB and F0.

20par FeB and parameters FNP BNP FNZ BNZ A2F A3F A4F A5F A6F AB.

20parF0 FeBF0 and parameters FNP BNP FNZ BNZ A2F A3F A4F A5F A6F AB.

23par 20par and parameters B2F B3F B4F.

23parF0 20parF0 and parameters B2F B3F B4F.

25par 23par and parameters B5F B6F.

25parF0 23parF0 and parameters B5F B6F.

27par 25par and parameters DF1 DB1.

27parF0 25parF0 and parameters DF1 DB1.

Table 2. Levels of complexity.

To initialize a simulation it is necessary a input file in which is generated by the GASpeech
itself, having the specified configurations on Figure 7. In the example, it is utilized only three
Klatt’s parameters (F1, F2 and F3) being necessary to inform the value zone that each one of
them can receive.

When initializing the simulations it was needed to indicate through the command line the
following options:

• −I <file_name>: the file of parameters to be passed to the GASpeech.
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Fig. 7. GASpeech’s configuration file.

• −T <file_name>.raw: audio file (target voice) in the RAW format.

• −O <file_name>.raw: name of the output file where its generated in the RAW format too,
grouping the best individuals of each frame.

• −C <value>: stop criterion based on the informed value.

• −i <value>: choose by the Interframe methodology with a percentage referring to the best
individuals of each frame that will be copied to the next frame.

• −a: option to do the adaptation of the values related to the crossover and mutation
probabilities.

The utilized values to the parameters during the simulations are described on Table 3.

Parameters Value

Number of generations (ngen) 1000

Population size 200

p0
c 0.9

p0
m 0.5

δc 0.01

δm 0.03

min(pc) 0.1

min(pm) 0.1

∆ 0

ngenwevolve 0.3

Table 3. Parameters used in GASpeech.

The simulations considered three objectives (SD, MSE e CC), adaptations of crossover
and mutations probabilities, Interframe architecture isolated and then combined with
Knowledge-based.

The best results were obtained when it was considered only the formants and the bandwidth
(FeB – 10 parameters). The Interframe methodology combined with the Knowledge-based
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architecture showed slightly better results, being able to find the reasonable solutions in the
previous frame, transferring to the next frame. This caused the increase of the investigation
power (exploitation) and lowered the quantity of utilized generations to find the correct value
of the Klatt parameters to each frame, because of the almost correct values passed through an
individual of the population.

The simulations involving 20, 25 and 27 parameters presents an intelligible generated
voice, to all the sentences mentioned, considering an subjective evaluation. But, from the
simulations with more than 27 parameters, the quality of the voice decays considerably.
This degradation still is most evident when the F0 parameter is considered (fundamental
frequency). The combination of the Interframe architecture with the Knowledge-based, brought
little improvement regarding the obtained results, reducing only the quantity of utilized
generations, until the achievement of the generated voice.

The Table 4 below shows the values of the SD, MSE, and CC obtained to two of the sentences
mentioned before (p1007 e p1010), considering only the FeB, 20, 25 e 27 parameters with the
Interframe and this architecture combined with the Knowledge-based. The values of the metrics
indicate that the MSE and the CC presents little variance between the generated files with a
good quality of voice and the ones with a degraded voice, except when the voice quality is
very bad as in p1007_27par, p1007_27parK, p1010_27par and p1010_27parK. In these cases,
the CC values are negative characterizing a delay between target and synthesized voices.

Label SD MSE CC Subjective

p1007_FeB 0.3176 0 0.0061 Good

p1007_FeBK 0.2271 0 0.0060 Good

p1007_20par 0.7124 0 0.0059 Good

p1007_20parK 0.7415 0 0.0063 Good

p1007_25par 0.6737 0 0.0059 Reasonable

p1007_25parK 0.6146 0 0.0058 Reasonable

p1007_27par 3.2883 0.0084 -0.0223 Bad

p1007_27parK 2.7798 0.0090 -0.0298 Bad

p1010_FeB 0.2991 0 0.0037 Good

p1010_FeBK 0.2671 0 0.0037 Good

p1010_20par 0.6346 0 0.0035 Good

p1010_20parK 0.6534 0 0.0037 Good

p1010_25par 0.6584 0 0.0037 Reasonable

p1010_25parK 0.6363 0 0.0038 Reasonable

p1010_27par 3.3749 0.0098 -0.0168 Bad

p1010_27parK 3.0881 0.0115 -0.0171 Bad

Table 4. SD, MSE and CC values of generated voices.

The SD when evaluated in the file as a whole do not present coherent values according to the
values that you can see in p1007_20par and p1007_20parK when compared to p1007_25par
and p1007_25parK because the generated files with Knowledge-based architecture are a little
better than those generated only by Interframe and therefore should have a lower value for SD.
However, when the SD frame value per frame is considered (Figures 8 - 11), its behavior can
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be observed with more detail, with the possibility of identifying which frames were generated
with the values of the Klatt parameters too different when compared to the target.

In the following Figures the behavior of the SD value can be observed when the quantity
of estimated parameters grows. For each sentence (p1007 and p1010), simulations were
performed using 10, 20, 25 and 27 parameters. In Figures 8 and 9, SD values for each
frame is shown using only the Interframe architecture and this combined with Knowledge-based,

Fig. 8. Spectral Distortion for p1007 sentence with Interframe methodology.

Fig. 9. Spectral Distortion for p1007 sentence with Knowledge-based methodology.

Fig. 10. Spectral Distortion for p1010 sentence with Interframe methodology.
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Fig. 11. Spectral Distortion for p1010 sentence with Knowledge-based methodology.

repectively. May be noted that the Knowledge-based architecture presents lower values of SD by
frame compared with Interframe, indicating that the partially known individual that is inserted
in the population helps to find Klatts parameters value closest to the correct values. The same
analysis is true for the sentence p1010 as shown in Figures 10 and 11. But it is clear that SD
values grows according to the insertion of more parameters to be estimated, indicating the
difficulty that the GASpeech finds when the increases the amount of the variables involved in
the problem.

11. Conclusions

This chapter presented a brief description about the estimation problem of a formant
synthesizer, such as the Klatt. The combination of its input parameters to the imitation of the
human voice is not a simple task, because a reasonable number of parameters to be combined
and each one of them has an interval of acceptable values that must be carefully adjusted to
produce a determined voice.

The GASpeech used genetic algorithm to estimate the Klatt parameters, however the achieved
results were not completely satisfactory, regarding the generated voice when more than 27
parameters are estimated. Good results were achieved only utilizing 10 of the 42 variant
parameters. So, careful adjustments is necessary in the framework such as the application
of the probabilities of mutation and crossover specific to each Klatt parameter, the utilization
of a specific auto-adaptation of these probabilities to a case of real encoding of the variables
(Deb et al., 2007) and an specific treatment to better estimate the values of the fundamental
frequency due to the fact that an incorrect value of this parameter causes a significant
degradation of the quality of the generated voice.

Therefore, it is important to point out that the estimations of the values from the Klatt’s
parameters, with the objective that they will be as close as possible of the real values,
depending on the adequate metric, that really reflect the quality of the produced voice. As
seen in the previous session, SD, the MSE, and the CC delay are not adequate when these
metrics are calculated considering all frames of the voice files because the metrics values
obtained frame by frame is added to obtain an overall average for each synthesized voice file,
and in some situations does not reflect the actual quality of voice. Therefore, it is necessary
to develop a more efficient mechanism for evaluating the quality of the generated voice as a
whole and include it in the GASpeech framework.
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