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1. Introduction

Classical biotechnology is the science of production of human-useful processes and products
under controlled conditions, applying biological agents – microorganisms, plant or animal
cells, their exo- and endo- products, e.g. enzymes, etc. (Viesturs et al., 2004). The conventional
agriculture or chemistry cannot perform these processes as efficiently or at all. In fact,
conventional biotechnology has been the largest industrial activity on earth for a very long
time. Modern biotechnology goes much further with respect to control of the biological
processes.

Particularly microorganisms have received a lot of attention as a biotechnological instrument
and are used in so-called cultivation processes. Numerous useful bacteria, yeasts and fungi
are widely found in nature, but the optimum conditions for growth and product formation
in their natural environment is seldom discovered. In artificial (in vitro) conditions, the
biotechnologist can intervene in the microbial cell environment (in a fermenter or bioreactor),
as well as in their genetic material, in order to achieve a better control of cultivation processes.
Because of their extremely high synthetic versatility, ease of using renewable raw materials,
great speed of microbial reactions, quick growth and relatively easy to modify genetic
material, many microorganisms are extremely efficient and in many cases indispensable
workhorses in the various sectors of industrial biotechnology.

Cultivation of recombinant micro-organisms e.g. Escherichia coli, in many cases is the
only economical way to produce pharmaceutical biochemicals such as interleukins, insulin,
interferons, enzymes and growth factors. Simple bacteria like E. coli are manipulated to
produce these chemicals so that they are easily harvested in vast quantities for use in medicine.
E. coli is still the most important host organism for recombinant protein production. Scientists
may know more about E. coli than they do about any other species on earth. Research on
E. coli accelerated even more after 1997, when scientists published its entire genome. They
were able to survey all 4,288 of its genes, discovering how groups of them worked together
to break down food, make new copies of DNA and do other tasks. But despite decades of
research there is a lot more we need to know about E. coli. To find out more, E. coli experts
have been joining forces. In 2002, they formed the International E-coli Alliance to organize
projects that many laboratories could do together. As knowledge of E. coli grows, scientists
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are starting to build models of the microbe that capture some of its behavior. It is important to
be able to predict how fast the microbe will grow on various sources of food, as well as how
its growth changes if individual genes are knocked out. Here is the place of mathematical
modelling. Some of recent researches and developed models of E. coli are presented in
(Covert et al., 2008; Jiang et al., 2010; Karelina et al., 2011; Opalka et al., 2011; Petersen et al.,
2011; Skandamis & Nychas, 2000).

Modelling of biotechnological processes is a common tool in process technology.
Development of adequate models is an important step for process optimization and
high-quality control. In an ideal world, process modelling would be a trivial task. Models
would be constructed in a simple manner just to reproduce the true process behaviour. In
the real world it is obvious that the model is always a simplification of the reality. This is
especially true when trying to model natural systems containing living organisms. For many
industrial relevant processes however detailed models are not available due to insufficient
understanding of the underlying phenomena. The mathematical models, which naturally
could be incomplete and inaccurate to a certain degree, can still be very useful and effective
tools in describing those effects which are of great importance for control, optimization, or
for understanding of the process. At present the models can be applied in practice since
computers allow numerical solution of process models of such complexity that could hardly
be imagined a couple of decades ago. Thus numerical solution of the models is the fundament
for the development of economic and powerful methods in the fields of bioprocess design,
plant design, scale-up, optimization and bioprocess control (Schuegerl & Bellgardt, 2000).

The mathematical modelling of biotechnological processes is an extremely wide field that
covers all important kinds of processes with many different microorganisms or cells of plants
and animals. The mathematical model is a tool that allows to be investigated the static and
dynamic behaviour of the process without doing (or at least reducing) the number of practical
experiments. In practice, an experimental approach often has serious limitations that make it
necessary to work with mathematical models instead.

Modelling approaches are central in system biology and provide new ways towards the
analysis and understanding of cells and organisms. A common approach to model cellular
dynamics is the sets of nonlinear differential equations. Real parameter optimization of
cellular dynamics models has especially become a research field of great interest. Such
problems have widespread application.

The principle of mathematical optimization consists in choice of optimization criteria, choice
of control parameters and choice of exhaustive method. Parameter identification of a
nonlinear dynamic model is more difficult than the linear one, as no general analytic results
exist. The difficulties that may arise are such as convergence to local solutions if standard
local methods are used, over-determined models, badly scaled model function, etc. Due
to the nonlinearity and constrained nature of the considered systems, these problems are
very often multimodal. Thus, traditional gradient-based methods may fail to identify the
global solution. In this case only direct optimization strategies can be applied, because they
exclusively use information about values of the goal function. These optimization methods
provide more guarantees of converging to the global optimal solution. Although a lot of
different global optimization methods exist, the efficacy of an optimization method is always
problem-specific. A major deficiency in computational approaches to design and optimization
of bioprocess systems is the lack of applicable methods.

262 Real-World Applications of Genetic Algorithms
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There are many possible variants such as numerical methods (Lagarias et al., 1998; Press et al.,
1986). But while searching for new, more adequate modeling metaphors and concepts,
methods which draw their initial inspiration from nature have received the early attention.
During the last decade metaheuristic techniques have been applied in a variety of areas.
Heuristics can obtain suboptimal solution in ordinary situations and optimal solution in
particular. Since the considered problem has been known to be NP-complete, using heuristic
techniques can solve this problem more efficiently. Three most well-known heuristics are
the iterative improvement algorithms, the probabilistic optimization algorithms, and the
constructive heuristics. Evolutionary algorithms like Genetic Algorithms (GA) (Goldberg,
2006; Holland, 1992; Michalewicz, 1994) and Evolution Strategies, Ant Colony Optimization
(ACO) (Dorigo & Di Caro, 1999; Dorigo & Stutzle, 2004; Fidanova, 2002; Fidanova et al.,
2010), Particle Swarm Optimization (Umarani & Selvi, 2010), Tabu Search (Yusof & Stapa,
2010), Simulated Annealing (Kirkpatrick et al., 1983), estimation of distribution algorithms,
scatter search, path relinking, the greedy randomized adaptive search procedure, multi-start
and iterated local search, guided local search, and variable neighborhood search are
- among others - often listed as examples of classical metaheuristics (Bonabeau et al.,
1999; Syam & Al-Harkan, 2010; Tahouni et al., 2010), and they have individual historical
backgrounds and follow different paradigms and philosophies (Brownlee, 2011). In this work
the GA and ACO are chosen as the most common direct methods used for global optimization.

The GA is a model of machine learning deriving its behaviour from a metaphor of the
processes of evolution in nature. This is done by the creation within a machine of a
population of individuals represented by chromosomes. A chromosome could be an array
of real numbers, a binary string, a list of components in a database, all depending on the
specific problem. Each individual represents a possible solution, and a set of individuals
form a population. In a population, the fittest are selected for mating. The individuals
in the population go through a process of evolution which is, according to Darwin, made
up of the principles of mutation and selection; however, the modern biological evolution
theory distinguishes also crossover and isolation mechanisms improving the adaptiveness
of the living organisms to their environment. The principal advantages of GA are domain
independence, non-linearity and robustness. The only requirement for GA is the ability to
calculate the measure of performance which may be highly complicated and non-linear. The
above two characteristics of GA assume that GA is inherently robust. A GA has a number of
advantages. It can work with highly non-linear functions and can cope with a great diversity
of problems from different fields. It can quickly scan a vast solution set. Bad proposals do not
effect the end solution negatively as they are simply discarded. The inductive nature of the
GA means that it doesn’t have to know any rules of the problem - it works by its own internal
rules. This is very useful for complex or loosely defined problems. However, the conventional
GA has a very poor local performance because of the random search used. To achieve a good
solution, great computational cost is inevitable. The same qualities that make the GA so robust
also can make it more computationally intensive and slower than other methods.

On the other hand ACO is a rapidly growing field of a population-based metaheuristic
that can be used to find approximate solutions to difficult optimization problems. ACO is
applicable for a broad range of optimization problems, can be used in dynamic applications
(adapts to changes such as new distances, etc) and in some complex biological problems
(Fidanova & Lirkov, 2009; Fidanova, 2010; Shmygelska & Hoos, 2005). ACO can compete
with other global optimization techniques like genetic algorithms and simulated annealing.
ACO algorithms have been inspired by the real ants behavior. In nature, ants usually wander
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randomly, and upon finding food return to their nest while laying down pheromone trails.
If other ants find such a path, they are likely to not keep traveling at random, but to follow
the trail instead, returning and reinforcing it if they eventually find food. However, as time
passes, the pheromone starts to evaporate. The more time it takes for an ant to travel down the
path and back again, the more time the pheromone has to evaporate and the path becomes less
noticeable. A shorter path, in comparison will be visited by more ants and thus the pheromone
density remains high for a longer time. ACO is implemented as a team of intelligent agents
which simulate the ants behavior, walking around the graph representing the problem to solve
using mechanisms of cooperation and adaptation.

In this chapter GA and ACO are applied for parameter identification of a system of nonlinear
differential equations modeling the fed-batch cultivation process of the bacteria Escherichia
coli. A system of ordinary differential equations is proposed to model E. coli biomass
growth and substrate (glucose) utilization. Parameter optimization is performed using real
experimental data set from an E. coli MC4110 fed-batch cultivation process. The cultivation
is performed in Institute of Technical Chemistry, University of Hannover, Germany during the
collaboration work with the Institute of Biophysics and Biomedical Engineering, BAS, Bulgaria,
granted by DFG.

The experimental data set includes records for substrate feeding rate, concentration of biomass
and substrate (glucose) and cultivation time. In considered here nonlinear mathematical
model the parameters that should be estimated are maximum specific growth rate (µmax),
saturation constant (kS) and yield coefficient (YS/X).

The parameter estimation is performed based upon the use of Hausdorff metric (Rote,
1991), in place of the most commonly used metric – Least Squares regression. Hausdorff
metrics are used in geometric settings for measuring the distance between sets of points.
They have been used extensively in areas such as computer vision, pattern recognition and
computational chemistry (Chen & Lovell, 2010; Nutanong et al., 2010; Sugiyama et al., 2010;
Yedjour et al., 2011). A modified Hausdorff Distance is proposed to evaluate the mismatch
between experimental and model predicted data.

The results from both metaheuristics GA and ACO are compared using the modified
Hausdorff Distance. The algorithms accuracy (value of the objective function) and the
resulting average, best and worst model parameter estimations are compared for the model
identification of the E. coli MC4110 fed-batch cultivation process.

The chapter is organized as follows: In Section 2 the problem definition is formulated. As a
case study an fed-batch cultivation of bacteria E. coli is presented. Further optimization criteria
is defined. In Section 3 the theoretical background of the GA is presented. In Section 4 the
theoretical background of the ACO is presented. The numerical results and a discussion are
presented in Section 5. The GA and ACO adjustments for considered parameter identification
problem application are discussed too. Conclusion remarks are done in Section 6.

2. Problem definition

Cultivation process are known to be very complex and modeling may be a rather time
consuming. However, it is neither necessary nor desirable to construct comprehensive
mechanistic process models that can describe the system in all possible situations with a high
accuracy. In order to optimize a real biotechnical production process, the model must be
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regarded as a step to reach more easily the final aim. The model must describe those aspects
of the process that significantly affect the process performance.

The costs of developing mathematical models for bioprocesses improvement are often too
high and the benefits too low. The main reason for this is related to the intrinsic complexity
and non-linearity of biological systems. In general, mathematical descriptions of growth
kinetics assume hard simplifications. These models are often not accurate enough at
describing the underlying mechanisms. Another critical issue is related to the nature of
bioprocess models. Often the parameters involved are not identifiable. Additionally, from
the practical point of view, such identification would require data from specific experiments
which are themselves difficult to design and realize. The estimation of model parameters with
high parameter accuracy is essential for successful model development.

The important part of model building is the choice of a certain optimization procedure for
parameter estimation, so with a given set of experimental data to calibrate the model in order
to reproduce the experimental results in the best possible way.

Real parameter optimization of simulation models has especially become a research field of
great interests in recent years. Nevertheless, this task still represents a very difficult problem.
This mathematical problem, so-called inverse problem, is a big challenge for the traditional
optimization methods. In this case only direct optimization strategies can be applied, because
they exclusively use information about values of the goal function. Additional information
about the goal function like gradients, etc., which may be used to accelerate the optimization
process, is not available. Since an evolution of a goal for one string is provided by one
simulation run, proceeding of an optimization algorithm may require a lot of computational
time. Thus or therefore, various metaheuristics are used as an alternative to surmount the
parameter estimation difficulties.

2.1 E. coli fed-batch cultivation process

To maximize the volumetric productiveness of bacterial cultures it is important to grow E. coli
to high cell concentration. The use of fed-batch cultivation in the fermentation industry takes
advantage of the fact that residual substrate concentration may by maintained at a very low
level in such a system.

The general state space dynamical model described by Bastin and Dochain (Bastin & Dochain,
1991) is accepted as representing the dynamics of an n components and m reactions bioprocess:

dx

dt
= Kϕ(x, t)− Dx + F − Q (1)

where x is a vector representing the state components; K is the yield coefficient matrix; ϕ is
the growth rates vector; the vectors F and Q are the feed rates and the gaseous outflow rates.
The scalar D is the dilution rate, which will be the manipulated variable, defined as follows:

D =
Fin

V
(2)

where Fin is the influent flow rate and V is the bioreactor’s volume.

Application of the general state space dynamical model (Bastin & Dochain, 1991) to the E.
coli cultivation fed-batch process leads to the following nonlinear differential equation system
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(Roeva, 2008b):
dX

dt
= µmax

S

kS + S
X −

Fin

V
X (3)

dS

dt
= −

1

YS/X
µmax

S

kS + S
X +

Fin

V
(Sin − S) (4)

dV

dt
= Fin (5)

where:

X – biomass concentration, [g/l];
S – substrate concentration, [g/l];
Fin – feeding rate, [l/h];
V – bioreactor volume, [l];
Sin – substrate concentration in the feeding solution, [g/l];

µmax – maximum value of the specific growth rate, [h−1];
kS – saturation constant, [g/l];
YS/X – yield coefficient, [-].

The growth rate of bacteria E. coli is described according to the classical Monod equation:

µ = µmax
S

kS + S
(6)

The mathematical formulation of the nonlinear dynamic model (Eqs. (3) - (5)) of E. coli
fed-batch cultivation process is described according to the mass balance and the model is
based on the following a priori assumptions:

• the bioreactor is completely mixed;

• the main products are biomass, water and, under some conditions, acetate;

• the substrate glucose mainly is consumed oxidatively and its consumption can be
described by Monod kinetics;

• variation in the growth rate and substrate consumption do not significantly change the
elemental composition of biomass, thus balanced growth conditions are only assumed;

• parameters, e.g. temperature, pH, pO2 are controlled at their individual constant set
points.

For the parameter estimation problem real experimental data of the E. coli MC4110 fed-batch
cultivation process are used. Off-line measurements of biomass and on-line measurements of
the glucose concentration are used in the identification procedure. The cultivation condition
and the experimental data have been presented in (Roeva et al., 2004). Here a brief description
is presented.

The fed-batch cultivation of E. coli MC4110 is performed in a 2l bioreactor (Bioengineering,
Switzerland), using a mineral medium (Arndt & Hitzmann, 2001), in Institute of Technical
Chemistry, University of Hannover. Before inoculation a glucose concentration of 2.5 g/l is
established in the medium. Glucose in feeding solution is 100 g/l. Initial liquid volume is
1350 ml, pH is controlled at 6.8 and temperature is kept constant at 35◦C . The aeration rate
is kept at 275 l/h air, stirrer speed at start 900 rpm, after 11h the stirrer speed is increased in
steps of 100 rpm and at end is 1500 rpm. Oxygen is controlled around 35%.

266 Real-World Applications of Genetic Algorithms
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Off-line analysis
For off-line glucose measurements as well as biomass and acetate concentration determination
samples of about 10 ml are taken roughly every hour. Off-line measurements are performed
by using the Yellow Springs Analyser (Yellow Springs Instruments, USA).

On-line analysis
For on-line glucose determination a flow injection analysis (FIA) system has been employed
using two pumps (ACCU FM40, SciLog, USA) for a continuous sample and carrier flow rate.
To reduce the measurement noise the continuous-discrete extended Kalman filter are used
(Arndt & Hitzmann, 2001).

Glucose measurement and control system
For on-line glucose determination a FIA system has been employed using two pumps (ACCU
FM40, SciLog, USA) for a continuous sample and carrier flow rate at 0.5 ml/min and 1.7
ml/min respectively. 24 ml of cell containing culture broth were injected into the carrier
stream and mixed with an enzyme solution of 350 000 U/l of glucose oxidase (Fluka,
Germany) of a volume of 36 ml. After passing a reaction coil of 50 cm length the oxygen uptake
were measured using an oxygen electrode (ANASYSCON, Germany). To determine only the
oxygen consumed by cells no enzyme solution were injected. Calculating the difference of
both dissolved oxygen peak heights, the glucose concentration can be determined. The time
between sample taking and the measurement of the dissolved oxygen was ∆t = 45 s.

For the automation of the FIA system as well as glucose concentration determination the
software CAFCA (ANASYSCON, Germany) were applied. To reduce the measurement
noise the continuous-discrete extended Kalman filter were used. This program was
running on a separate PC and got the measurement results via a serial connection. A PI
controller was applied to adjust the glucose concentration to the desired set point of 0.1 g/l
(Arndt & Hitzmann, 2001).

The initial process conditions are (Arndt & Hitzmann, 2001):
t0 = 6.68 h, X(t0) = 1.25 g/l, S(t0) = 0.8 g/l, Sin = 100 g/l.

The bioreactor, as well as FIA measurement system and the computers used for data
measurement from the FIA system and for the process control are presented in Figure 1.

2.2 Optimization criterion

In practical view, modelling studies are performed to identify simple and easy-to-use models
that are suitable to support the engineering tasks of process optimization and, especially, of
control. The most appropriate model must satisfy the following conditions:

(i) the model structure should be able to represent the measured data in a proper manner;

(ii) the model structure should be as simple as possible compatible with the first requirement.

On account of that the cultivation process dynamic is described using simple Monod-type
model, the most common kinetics applied for modelling of cultivation processes
(Bastin & Dochain, 1991).

The optimization criterion is a certain factor, whose value defines the quality of an estimated
set of parameters. The parameter estimation is performed based on Hausdorff metric. To
evaluate the mishmash between experimental and model predicted data a modified Hausdorff
Distance is proposed.

267Application of Genetic Algorithms and Ant Colony 
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Fig. 1. Experimental equipment

When talking about distances, we usually mean the shortest: for instance, if a point X is said
to be at distance D of a polygon P, we generally assume that D is the distance from X to the
nearest point of P. The same logic applies for polygons: if two polygons A and B are at some
distance from each other, we commonly understand that distance as the shortest one between
any point of A and any point of B. That definition of distance between polygons can become
quite unsatisfactory for some applications. However, we would naturally expect that a small
distance between these polygons means that no point of one polygon is far from the other
polygon. It’s quite obvious that the shortest distance concept carries very low informative
content.

In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu-Hausdorff
distance, (Rote, 1991) measures how far two subsets of a metric space are from each other. It
turns the set of non-empty compact subsets of a metric space into a metric space in its own
right. It is named after Felix Hausdorff. Informally, two sets are close in the Hausdorff distance
if every point of either set is close to some point of the other set. The Hausdorff distance is the
longest distance you can be forced to travel by an adversary who chooses a point in one of the
two sets, from where you then must travel to the other set. In other words, it is the farthest
point of a set that you can be to the closest point of a different set. More formally, Hausdorff
distance from set A to set B is a maxmin function defined as:

h(A, B) = max
a∈A

{

min
b∈B

{d(a, b)}

}

, (7)

where a and b are points of sets A and B respectively, and d(a, b) is any metric between these
points. For simplicity, we will take d(a, b) as the Euclidean distance between a and b. If sets
A and B are made of lines or polygons instead of single points, then h(A, B) applies to all
defining points of these lines or polygons, and not only to their vertices. Hausdorff distance
gives an interesting measure of their mutual proximity, by indicating the maximal distance
between any point of one set to the other set. Better than the shortest distance, which applied
only to one point of each set, irrespective of all other points of the sets.

In this work the Hausdorff metric is used for first time for solving of model parameter
optimization problem regarding cultivation process models.

268 Real-World Applications of Genetic Algorithms
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3. Genetic Algorithm

GA originated from the studies of cellular automata, conducted by John Holland and his
colleagues at the University of Michigan. Holland’s book (Holland, 1992), published in 1975,
is generally acknowledged as the beginning of the research of genetic algorithms. The GA
is a model of machine learning which derives its behavior from a metaphor of the processes
of evolution in nature (Goldberg, 2006). This is done by the creation within a machine of a
population of individuals represented by chromosomes. A chromosome could be an array of
real numbers, a binary string, a list of components in a database, all depending on the specific
problem. The GA are highly relevant for industrial applications, because they are capable of
handling problems with non-linear constraints, multiple objectives, and dynamic components
– properties that frequently appear in the real-world problems (Goldberg, 2006; Kumar et al.,
1992). Since their introduction and subsequent popularization (Holland, 1992), the GA
have been frequently used as an alternative optimization tool to the conventional methods
(Goldberg, 2006; Parker, 1992) and have been successfully applied in a variety of areas, and
still find increasing acceptance (Akpinar & Bayhan, 2011; Al-Duwaish, 2000; Benjamin et al.,
1999; da Silva et al., 2010; Paplinski, 2010; Roeva & Slavov, 2011; Roeva, 2008a).

Basics of Genetic Algorithm
GA was developed to model adaptation processes mainly operating on binary strings and
using a recombination operator with mutation as a background operator. The GA maintains
a population of individuals, P(t) = xt

1, ..., xt
n for generation t. Each individual represents

a potential solution to the problem and is implemented as some data structure S. Each
solution is evaluated to give some measure of its "fitness". Fitness of an individual is
assigned proportionally to the value of the objective function of the individuals. Then,
a new population (generation t + 1) is formed by selecting more fit individuals (selected
step). Some members of the new population undergo transformations by means of "genetic"
operators to form new solution. There are unary transformations mi (mutation type), which
create new individuals by a small change in a single individual (mi : S → S), and higher
order transformations cj (crossover type), which create new individuals by combining parts
from several individuals (cj : S × . . . × S → S). After some number of generations the
algorithm converges - it is expected that the best individual represents a near-optimum
(reasonable) solution. The combined effect of selection, crossover and mutation gives so-called
reproductive scheme growth equation (Goldberg, 2006):

ξ (S, t + 1) ≥ ξ (S, t) · eval (S, t) /F̄ (t)

[

1 − pc ·
δ (S)

m − 1
− o (S) · pm

]

.

Differences that separate genetic algorithms from the more conventional optimization
techniques could be defined as follows (Goldberg, 2006):

1. Direct manipulation of a coding – GA works with a coding of the parameter set, not the
parameter themselves;

2. GA searches in a population of points, not a single point;

3. GA uses payoff (objective function) information, not derivatives or other auxiliary
knowledge;

4. GA uses probabilistic transition rules (stochastic operators), not deterministic rules.

Compared with traditional optimization methods, GA simultaneously evaluates many points
in the parameter space. This makes convergence towards the global solution more probable. A

269Application of Genetic Algorithms and Ant Colony 
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genetic algorithm does not assume that the space is differentiable or continuous and can also
iterate many times on each data received. A GA requires only information concerning the
quality of the solution produced by each parameter set (objective function value information).
This characteristic differs from optimization methods that require derivative information
or, worse yet, complete knowledge of the problem structure and parameters. Since GA
do not demand such problem-specific information, they are more flexible than most search
methods. Also GA do not require linearity in the parameters which is needed in iterative
searching optimization techniques. Genetic algorithms can solve hard problems, are noise
tolerant, easy to interface to existing simulation models, and easy to hybridize. Therefore,
this property makes genetic algorithms suitable and more workable in use for a parameter
estimation of considered here cultivation process models. Moreover, the GA effectiveness
and robustness have been already demonstrated for identification of fed-batch cultivation
processes (Carrillo-Uretaet al., 2001; Ranganath et al., 1999; Roeva, 2006; 2007).

The structure of the GA is shown by the pseudocode below (Figure 2).

begin
i = 0
Initial population P(0)
Evaluate P(0)
while (not done) do (test for termination criterion)
begin

i = i + 1
Select P(i) from P(i − 1)
Recombine P(i)
Mutate P(i)
Evaluate P(i)

end
end

Fig. 2. Pseudocode for GA

The population at time t is represented by the time-dependent variable P, with the initial
population of random estimates being P(0). Here, each decision variable in the parameter set
is encoded as a binary string (with precision of binary representation). The initial population
is generated using a random number generator that uniformly distributes numbers in the
desired range. The objective function (see Eq. (16)) is used to provide a measure of how
individuals have performed in the problem domain.

4. Ant colony optimization

ACO is a stochastic optimization method that mimics the social behaviour of real ants
colonies, which manage to establish the shortest route to feeding sources and back. Real
ants foraging for food lay down quantities of pheromone (chemical cues) marking the path
that they follow. An isolated ant moves essentially at random but an ant encountering
a previously laid pheromone will detect it and decide to follow it with high probability
and thereby reinforce it with a further quantity of pheromone. The repetition of the above
mechanism represents the auto-catalytic behavior of a real ant colony where the more the ants
follow a trail, the more attractive that trail becomes. The original idea comes from observing
the exploitation of food resources among ants, in which ants’ individually limited cognitive
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abilities have collectively been able to find the shortest path between a food source and the
nest.

Basics of Ant Algorithm
ACO is implemented as a team of intelligent agents which simulate the ants behavior,
walking around the graph representing the problem to solve using mechanisms of cooperation
and adaptation. The requirements of ACO algorithm are as follows (Bonabeau et al., 1999;
Dorigo & Stutzle, 2004):

• The problem needs to be represented appropriately, which would allow the ants to
incrementally update the solutions through the use of a probabilistic transition rules, based
on the amount of pheromone in the trail and other problem specific knowledge.

• A problem-dependent heuristic function, that measures the quality of components that can
be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the pheromone value.

• A probabilistic transition rule based on the value of the heuristic function and the
pheromone value, that is used to iteratively construct a solution.

The structure of the ACO algorithm is shown by the pseudocode below (Figure 3).

Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k=0 to number of ants
ant k chooses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Fig. 3. Pseudocode for ACO

The transition probability pi,j, to choose the node j when the current node is i, is based on the
heuristic information ηi,j and the pheromone trail level τi,j of the move, where i, j = 1, . . . . , n.

pi,j =
τa

i,jη
b
i,j

∑k∈Unused τa
i,kηb

i,k

, (8)

where Unused is the set of unused nodes of the graph.

The higher the value of the pheromone and the heuristic information, the more profitable it
is to select this move and resume the search. In the beginning, the initial pheromone level is
set to a small positive constant value τ0; later, the ants update this value after completing the
construction stage. ACO algorithms adopt different criteria to update the pheromone level.

The pheromone trail update rule is given by:

τi,j ← ρτi,j + ∆τi,j, (9)
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where ρ models evaporation in the nature and ∆τi,j is new added pheromone which is
proportional to the quality of the solution. Thus better solutions will receive more pheromone
than others and will be more desirable in a next iteration.

5. Numerical results and discussion

For parameter identification of model parameters (µmax, kS, YS/X) of E. coli fed-batch
cultivation process model, GA and ACO algorithms are applied.

5.1 Application of GA for parameter optimization of E. coli cultivation process model

On this subsection we will describe in more details about the application of GA for parameter
optimization of E. coli cultivation process model.

Solution Representation
The strings of artificial genetic systems are analogous to chromosomes in biological systems.
The total genetic package (genotype) in artificial genetic systems is called a structure. In
natural systems, the organism formed by interaction of the genotype with its environment
is called the phenotype. In artificial genetic systems, the structures decode to form a
particular parameter set, solution alternative, or point (in the solution space). Thus a
chromosome representation is needed to describe each individual in the population of interest.
The representation scheme determines how the problem is structured in the GA and also
determines the genetic operators that are used. Each individual or chromosome is made up of
a sequence of genes from a certain alphabet. Here applied alphabet consists of binary digits 0
and 1. Binary representation is the most common one, mainly because of its relative simplicity.
A binary 20 bit representation is considered here. It has been shown that more natural
representations are more efficient and produce better solutions (Chipperfield & Fleming, 1995;
Goldberg, 2006; Michalewicz, 1994). The representation of the individual or chromosome
for function optimization involves genes with values within the variables upper and lower
bounds.

Three model parameters are represent in the chromosome - maximum specific growth rate
(µmax), saturation constant (kS) and yield coefficient (YS/X). The following upper and lower
bounds are considered (Cockshott & Bogle, 1999; Levisauskas et al., 2003):

0 < µmax < 0.7,

0 < kS < 1,

0 < YS/X < 30.

Selection Function
The next question is how to select parents for crossover. The selection of individuals to
produce successive generations plays an extremely important role in a GA. A probabilistic
selection is performed based upon the individual’s fitness such that the better individuals
have an increased chance of being selected. An individual in the population can be selected
more than once with all individuals in the population having a chance of being selected to
reproduce into the next generation. There are several schemes for the selection process -
roulette wheel selection and its extensions, scaling techniques, tournament, elitist models,
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and ranking methods (Chipperfield & Fleming, 1995; Goldberg, 2006; MathWorks, 1999;
Michalewicz, 1994). The selection method used here is the roulette wheel selection.

A common selection approach assigns a probability of selection, Pj, to each individual, j based
on its fitness value. A series of N random numbers is generated and compared against the

cumulative probability, Ci =
i

∑
j=1

Pj of the population. The appropriate individual, i, is selected

and copied into the new population if Ci−1 < U(0, 1) ≤ Ci. Various methods exist to assign
probabilities to individuals: roulette wheel, linear ranking and geometric ranking. Roulette
wheel, developed by Holland (Holland, 1992) is the first selection method. The probability, Pi,
for each individual is defined by:

P[ Individual i is chosen] =
Fi

PopSize

∑
j=1

Fj

, (10)

where Fi equals the fitness of individual i and PopSize is the population size.

The fitness function, is normally used to transform the objective function value into a measure
of relative fitness. A commonly used transformation is that of proportional fitness assignment.

Genetic Operators
The genetic operators provide the basic search mechanism of the GA. The operators are
used to create new solutions based on existing solutions in the population. There are two
basic types of operators: crossover and mutation. The crossover takes two individuals and
produces two new individuals. The crossover can be quite complicated and depends (as well
as the technique of mutation) mainly on the chromosome representation used. The mutation
alters one individual to produce a single new solution. By itself, mutation is a random walk
through the string space. When used sparingly with reproduction and crossover, it is an
insurance policy against premature loss of important notions.

Let X and Y be two m-dimensional row vectors denoting individuals (parents) from the
population. For X and Y binary, the following operators are defined: binary mutation and
simple crossover.

Binary mutation flips each bit in every individual in the population with probability pm

according to Eq. (11) (Houck et al., 1996):

xi =

{

1 − xi, if U(0, 1) < pm

xi, otherwise
. (11)

Simple crossover generates a random number r from a uniform distribution from 1 to m and

creates two new individuals X′ and Y′ according to Eqs. (12) and (13) (Houck et al., 1996).

x′i =

{

xi, if i < r
yi, otherwise

. (12)

y′i =

{

yi, if i < r
xi, otherwise

. (13)
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In proposed genetic algorithm fitness-based reinsertion (selection of offspring) is used
(Pohlheim, 2003).

Initialization, Termination, and Evaluation Functions
The GA must be provided an initial population as indicated in step 3 of Figure 2. The most
common method is to randomly generate solutions for the entire population. However, since
GA can iteratively improve existing solutions (i.e., solutions from other heuristics and/or
current practices), the beginning population can be seeded with potentially good solutions,
with the remainder of the population being randomly generated solutions (Houck et al., 1996).

The GA moves from generation to generation selecting and reproducing parents until a
termination criterion is met. The most frequently used stopping criterion is a specified
maximum number of generations.

Evaluation functions of many forms can be used in a GA, subject to the minimal requirement
that the function can map the population into a partially ordered set. As stated, the evaluation
function is independent of the GA (i.e., stochastic decision rules) (Houck et al., 1996).

Genetic Parameters
Some adjustments of the genetic parameters, according to the regarded problem, have to be
done to improve the optimization capability and the decision speed. Primary choice of the
genetic operators and parameters depends on the problem, as well as on the chosen encoding.
The inappropriate choice of operators and parameters in the evolutionary process makes the
GA susceptible to premature convergence. Based on performed pre-test procedures and other
results in (Roeva, 2008a;b), the GA parameters are set as follows.

There are two basic parameters of genetic algorithms - crossover probability and mutation
probability. Crossover probability (xovr) should be high generally, about 65-95%, here – 75%.
Mutation probability (mutr) is randomly applied with low probability – 0.01 (Obitko, 2005;
Pohlheim, 2003). The rate of individuals to be selected (generation gap – ggap) should be
defined as well. In proposed genetic algorithm generation gap is 0.97 (Obitko, 2005; Pohlheim,
2003).

Particularly important parameters of GA are the population size (nind) and number of
generations (maxgen). If there are too low number of chromosomes, GA has a few possibilities
to perform crossover and only a small part of search space is explored. On the other hand,
if there are too many chromosomes, GA slows down. To solve the considered optimization
problem the population size is chosen to be 100 after several algorithm performance pre-tests.
In the same manner the number of generations is set at 200.

For the considered here parameter optimization, the type of the basic operators in GA is
summarized in Table 1. The values of genetic algorithm parameters are listed in Table 2.

5.2 Application of ACO for parameter optimization of E. coli cultivation process model

On this subsection we will describe in more details about the application of ACO for
parameter optimization of E. coli cultivation process model. First we represent the problem by
graph. We need to find optimal values of three parameters which are interrelated. Therefore
we represent the problem with three-partitive graph. The graph consists of three levels. Every
level represents a search area of one of the parameter we optimise. Every area is discretized
thus, to consists of 1000 points (nodes), which are uniformly distributed in the search interval
of every of the parameters. The first level of the graph represents the parameter µmax. The
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Operator Type

encoding binary

fitness function linear ranking

selection function roulette wheel selection
crossover function simple crossover

mutation function binary mutation

reinsertion fitness-based

Table 1. Operators of GA

Parameter Value

ggap 0.97

xovr 0.75

mutr 0.01
nind 100

maxgen 200

Table 2. Parameters of GA

second level represents the parameter kS. The third level represents the parameter YS/X. There
are arcs between nodes from consecutive levels of the graph and there are no arcs between
nodes from the same level. The pheromone is deposited on the arcs, which shows how good
is this parameter combination.

Our ACO approach is very close to real ant behaviour. When starting to create a solution, the
ants choose a node from the first level in a random way. Than for nodes from second and third
level they apply probabilistic rule. The transition probability consists only of the pheromone.
The heuristic information is not used. Thus the transition probability is as follows:

pi,j =
τi,j

∑k∈Unused τi,k
, (14)

The ants prefer the node with maximal probability, which is the node with maximal quantity
of the pheromone on the arc, starting from the current node. If there are more than one
candidate for next node, the ant choses randomly between the candidates. The process is
iterative. At the end of every iteration we update the pheromone on the arcs. The quality of
the solutions is represented by the value of the objective function. In our case the objective
function is the mean distance between simulated data and experimental data which are the
concentration of the biomass and the concentration of the substrate. We try to minimize it,
therefore the new added pheromone by ant i in our case is:

∆τ = (1 − ρ)/J(i) (15)

Where J(i) is the value of the objective function according the solution constructed by ant i.
Thus the arcs corresponding to solutions with less value of the objective function will receive
more pheromone and will be more desirable in the next iteration.

The values of the parameters of ACO algorithms are very important, because they manage
the search process. Therefore we need to find appropriate parameter settings. They are the
number of ants, in ACO we can use a small number of ants between 10 and 20 without having
to increase the number of iterations to achieve good solutions; initial pheromone, normally it
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has a small value; evaporation rate, which shows the importance of the last found solutions
according to the previous ones. Parameters of the ACO were tuned based on several pre-tests
according to the considered here optimization problem. After tuning procedures the main
algorithm parameters are set to the optimal settings. The parameter setting for ACO is shown
in Table 3.

Parameter Value

number of ants 20
initial pheromone 0.5

evaporation 0.1

Table 3. Parameters of ACO algorithm

5.3 Objective function

To form the objective function we apply modified Hausdorff distance, which is conformable
to our problem. We have two sets of points, simulated and measure data, which formed two
lines. We calculated the Euclidean distance d(t) between points from two lines corresponding
to the same time moment t. After that we calculate the Euclidean distance from point of one
of the lines in time t to the points from other line in the time interval (t− d(t), t+ d(t)) and we
take the minimal of this distances. This is the distance between two lines in time moment t.
Thus we decrease the number of calculations comparing with traditional Hausdorff distance
because it is obvious that the distance to the points out of the interval (t − d(t), t + d(t)) will
be large. At the end we sum all this distances between the points and the lines. Thereby we
eliminate eventual larger distance in some time moment because of not precise measurement.

When the Least Squares regression is applied as metric, the distance between two lines can be
very big and in the same time it is seen that they are geometrically close to each other. This
can happen especially in the steep parts of the lines. Applying Hausdorff metrics avoids this,
because it measures the geometrical similarity.

Thus, the objective function is presented as a minimization of a modified Hausdorff distance
measure J between experimental and model predicted values of state variables, represented
by the vector y:

J =
m

∑
i=1

h
(

yexp(i), y mod (i)
)2

→ min (16)

where m is the number of state variables; yexp – known experimental data; y mod – model
predictions with a given set of the parameters.

5.4 Numerical calculation

Computer specification to run all identification procedures are Intel Core 2 2.8 GHz, 3.5
GB Memory, Linux operating system and Matlab 7.5 environment. Matlab is a technical
computing environment for high computation. Matlab integrates numerical analysis, matrix
computation and graphics in an easy-to-use environment. User-defined Matlab functions
are simple text files of interpreted instructions. Therefore, Matlab functions are completely
portable from one hardware architecture to another without even a recompilation step.

Because of the stochastic characteristics of the applied algorithms a series of 30 runs for each
algorithm is performed. For comparison of the GA and ACO the best, the worst and the
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Fig. 4. Time profiles of the biomass, respectively GA and ACO

average results of the 30 runs, for the J value and execution time are watched. For realistic
comparison the execution time is fixed to be 1h.

The obtained results are presented in Tables 4 and 5. Regarding the Tables 4 and 5 we observe

Parameters Average GA Best GA Worst GA

µmax 0.5266 0.5537 0.5253

kS 0.0163 0.0187 0.0164
YS/X 2.0295 2.0318 2.0536

J 2.0699 1.7657 2.3326

Table 4. Results from parameter identification using GA

Parameters Average ACO Best ACO Worst ACO

µmax 0.5444 0.5283 0.5313
kS 0.0223 0.0174 0.0209

YS/X 2.0256 2.0300 2.0100

J 1.8744 1.6425 2.5322

Table 5. Results from parameter identification using ACO

that the average value of the objective function achieved by ACO algorithm is better than this
achieved by GA algorithm. The best value of the objective function achieved by the ACO
algorithm is better than this achieved by GA algorithm, but the worst result achieved by ACO
algorithm is worst than this achieved by the GA. Thus the interval where the value of the
objective function varies is larger when we apply ACO algorithm than GA algorithm. But
regarding the average value we can say that the most achieved values of the objective function
are close to the best found value. Therefore we can conclude that the ACO algorithm performs
better for this problem than GA algorithm.

The objective function is a sum of the modified Hausdorff distance between the modeled and
measured data of the biomass and substrate. On Figure 4 with line are represented the values
of the modelled biomass and with stars are represented the values of the measured biomass.
In most cases, graphical comparisons clearly show the existence or absence of systematic
deviations between model predictions and measurements. It is evident that a quantitative
measure of the differences between calculated and measured values is an important criterion
for the adequacy of a model. We observe that with both algorithms there is coincidence
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between modelled and measured data. Hence the difference between the values of the
objective function achieved by different algorithms comes from the value of the substrate,
achieved by them.
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Fig. 5. Time profiles of the substrate: experimental data and models predicted data - best GA
result
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Fig. 6. Time profiles of the substrate: experimental data and models predicted data - best
ACO result

On Figures 5 and 6 the modelled substrate is represented by dash line, by solid line is
represented the measured substrate. We observe that the modelled data by the ACO algorithm
are closer to the measured data than this by the GA algorithm.

On Figure 7 is represented the improvement of the value of the objective function during the
execution time. With dash line is represented the improvement of the objective function by
GA. With dash-dot line is represented the improvement of the objective function by ACO
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Fig. 7. Improving the objective function during the time

algorithm. The ACO algorithm achieves much better solution at the beginning, because it is
constructive method. During the time the achieved values of the objective function by both
algorithms become close to each other.

6. Conclusion

In this chapter GA and ACO are applied for parameter identification of a system of nonlinear
differential equations modeling the fed-batch cultivation process of the bacteria E. coli. A
system of ordinary differential equations is proposed to model E. coli biomass growth and
substrate (glucose) utilization. Parameter optimization is performed using real experimental
data set from an E. coli MC4110 fed-batch cultivation process. In considered nonlinear
mathematical model the parameters that should be estimated are maximum specific growth
rate (µmax), saturation constant (kS) and yield coefficient (YS/X). The parameter estimation
is performed based upon the use of a modified Hausdorff metric, in place of most common
used metric – Least Squares regression. Parameters of the two algorithms (GA and ACO) were
tuned based on several pre-tests according considered here optimization problem. Based on
the obtained result it is shown that the best value of the objective function J is achieved by
the ACO algorithm. Comparison of the worst obtained results from the two metaheuristics
is shown that the GA achieved better estimations than ACO. Analysing of average results it
could be concluded that the ACO algorithm performs better for the problem of parameter
optimization of an E. coli fed-batch cultivation process model.
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