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1. Introduction

In this chapter we are going to study metaheuristics based on the Automata Theory for the
Multi-objective Optimization of Combinatorial Problems. As well known, Combinatorial
Optimization is a branch of optimization. Its domain is optimization problems where the
set of feasible solutions is discrete or can be reduced to a discrete one, and the goal is to find
the best possible solution(Yong-Fa & Ming-Yang, 2004). In this field it is possible to find a lot
of problems denominated NP-Hard, that is mean that the problem does not have a solution
in Polynomial Time. For instance, problems such as Multi-depot vehicle routing problem(Lim
& Wang, 2005), delivery and pickup vehicle routing problem with time windows(Wang
& Lang, 2008), multi-depot vehicle routing problem with weight-related costs(Fung et al.,
2009), Railway Traveling Salesman Problem(Hu & Raidl, 2008), Heterogeneous, Multiple
Depot, Multiple Traveling Salesman Problem(Oberlin et al., 2009) and Traveling Salesman
with Multi-agent(Wang & Xu, 2009) are categorized as NP-Hard problems.

One of the most classical problems in the Combinatorial Optimization Field is the Traveling
Salesman Problem (TSP), it has been analyzed for years(Sauer & Coelho, 2008) either in a
Mono or Multi-objective way. It is defined as follows: “Given a set of cities and a departure
city, visit each city only once and go back to the departure city with the minimum cost”.
Basically, that is mean, visiting each city once, to find an optimal tour in a set of cities, an
instance of TSP problem can be seen in figure 1. Formally, TSP is defined as follows:

min
n

∑
i=1

n

∑
j=1

Cij · Xij (1)

Subject to:
n

∑
j=1

Xij = 1, ∀i = 1, . . . , n (2)

n

∑
j=1

Xij = 1, ∀j = 1, . . . , n (3)

∑
i∈κ

∑
j∈κ

Xij ≤ |κ| − 1, ∀κ ⊂ {1, . . . , n} (4)

Xij = 0, 1∀i, j (5)

4
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2 Will-be-set-by-IN-TECH

Where Cij is the cost of the path Xij and κ is any nonempty proper subset of the cities 1, . . . , m.
(1) is the objective function. The goal is the optimization of the overall cost of the tour. (2),
(3) and (5) fulfills the constrain of visiting each city only once. Lastly, Equation (4) set the
subsets of solutions, avoiding cycles in the tour.

Fig. 1. TSP instance of ten cities

TSP has an important impact on different sciences and fields, for instance in Operations
Research and Theoretical Computer Science. Most problems related to those fields, are based
in the TSP definition. For instance, problems such as Heterogeneous Machine Scheduling(Kim
& Lee, 1998), Hybrid Scheduling and Dual Queue Scheduling(Shah et al., 2009), Project
Management(de Pablo, 2009), Scheduling for Multichannel EPONs(McGarry et al., 2008),
Single Machine Scheduling(Chunyue et al., 2009), Distributed Scheduling Systems(Yu
et al., 1999), Relaxing Scheduling Loop Constraints(Kim & Lipasti, 2003), Distributed
Parallel Scheduling(Liu et al., 2003), Scheduling for Grids(Huang et al., 2010), Parallel
Scheduling for Dependent Task Graphs(Mingsheng et al., 2003), Dynamic Scheduling on
Multiprocessor Architectures(Hamidzadeh & Atif, 1996), Advanced Planning and Scheduling
System(Chua et al., 2006), Tasks and Messages in Distributed Real-Time Systems(Manimaran
et al., 1997), Production Scheduling(You-xin et al., 2009), Cellular Network for Quality
of Service Assurance(Wu & Negi, 2003), Net Based Scheduling(Wei et al., 2007), Spring
Scheduling Co-processor(Niehaus et al., 1993), Multiple-resource Periodic Scheduling(Zhu
et al., 2003), Real-Time Query Scheduling for Wireless Sensor Networks(Chipara et al., 2007),
Multimedia Computing and Real-time Constraints(Chen et al., 2003), Pattern Driven Dynamic
Scheduling(Yingzi et al., 2009), Security-assured Grid Job Scheduling(Song et al., 2006), Cost
Reduction and Customer Satisfaction(Grobler & Engelbrecht, 2007), MPEG-2 TS Multiplexers
in CATV Networks(Jianghong et al., 2000), Contention Awareness(Shanmugapriya et al.,
2009) and The Hard Scheduling Optimization(Niño, Ardila, Perez & Donoso, 2010) had been
derived from TSP. Although several algorithms have been implemented to solve TSP, there is
no one that optimal solves it. For this reason, this chapter discuss novel metaheuristics based
on the Automata Theory to solve the Multi-objective Traveling Salesman Problem.

This chapter is structured as follows: Section 2 shows important definitions to understand the
Multi-objective Combinatorial Optimization and the Metaheuristic Approximation. Section
3, 4 and 5 discuss Evolutionary Metaheuritics based on the Automata Theory for the
Multi-objective Optimization of Combinatorial Problems. Finally, Section 6 and 7 discuss
the Experimental Results of each proposed Algorithm using Multi-objective Metrics from the
specialized literature.
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Evolutionary Algorithms Based on the Automata Theory for the Multi-Objective Optimization of Combinatorial Problems 3

2. Preliminaries

2.1 Multi-objective optimization

The Multi-objective optimization consists in two or more objectives functions to optimize and
a set of constraints. Mathematically, the Multi-objective Optimization model is defined as
follows:

optimize F(X) = { f1(X), f2(X), . . . , fn(X)} (6)

Subject to:
H(X) = 0 (7)

G(X) ≤ 0 (8)

Xl ≤ X ≤ Xu (9)

Where F(X) is the set of objective functions, H(X) and G(X) are the constraints of the
problem. Lastly, Xl and Xu are the bounds for the set of variables X.

Unlike to Mono-objective Optimization, Multi-objective Optimization deal with searching a
set of Optimal Solutions instead of a Optimal Solution. For instance, table 1 shows three
solutions for a particualr Mono-objective Problem. If we suppose that those are related
to a maximization problem then the Optimal Solution (found) is the solution 1 otherwise
(minimization) will be the solution 2. On the other hand, in table 2 can be seen three solutions
for a particular Tri-objective Problem. Thus, if we suppose that all the components of the
solutions are related with a minimization problem, solution 2 is a dominated solution due to
all the components (0.8, 0.9 and 1.0) are the biggest values. On the other hand, solution
0 and 1 are no-dominated solutions due to in the first and second component (0.6 and 0.4)
solution 0 is bigger than the relative components of the solution 1 but in the third component
(0.5) solution 0 is lower than the same component in solution 1. Both examples show the

k F(Xk)
0 10
1 20
2 5

Table 1. Solutions for a particular Mono-objective Problem

difference between Mono-objective and Multi-objective Optimization. While the first deal
with finding the Optimal Solution, the last does with finding a set of Optimal Solutions. In
Combinatorial Optimization, the set of Optimal Solution is called Pareto Front. It contains all
the no-dominated solutions for a Multi-objective Problem. Figure 2 shows a Pareto Front for
a particular Tri-objective Problem. Lastly, it is probably that some Multi-objective Problems

k F(Xk) = { f0(Xk), f1(Xk), f2(Xk)}
0 {0.6, 0.4, 0.5}
1 {0.2, 0.3, 0.8}
2 {0.8, 0.9, 1.0}

Table 2. Solutions for a particular Tri-objective Problem

have an infinite Pareto Front, in those cases is necessary to determinate how many solutions
are required, for instance, using a maximum number of solution permitted in the Pareto Front.

83Evolutionary Algorithms Based on the Automata
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Fig. 2. Pareto Front for a particular Tri-objective Problem

2.2 Tabu search

Tabu Search(Glover & Laguna, 1997) is a basic local search strategy for the Optimization of
Combinatorial Problems. It is defined as follows: Given S as the Initial Solutions Set.

Step 1. Selection. Select x ∈ S

Step 2. Perturbation. Perturbs the solution x for the purpose of knowing its Neighborhood
(N(x)). Perturbing a solution means to modify the solution x in order to obtain a new solution

(xi
′
). The solutions found are called Neighbors, and those represent the Neighborhood.

For instance, figure 3 shows three perturbations for a x solutions and the new solutions

x1
′
,x2

′
and x3

′
found. The perturbation can be done according to the representation of the

solutions. Regularly, the representations of the solutions in Combinatorial Problems are based
on Discrete Structures such as Vectors, Matrices, Queues and Lists. Lastly, good solutions are
added to S.

Setp 3. Check Stop Condition. The stop condition can be delimited using rules such as number
of execution without improvement or maximum number of iteration exceeded.

Recently, novels Tabu Search inspired Algorithms have been developed in order to
solve Combinatorial Problems such as Permutation Flow Shop Scheduling(Ren et al.,
2011), Displacement based on Support Vector(Fei et al., 2011), Examination Timetabling
Problem(Malik et al., 2011), Partial Transmit Sequences for PAPR Reduction(Taspinar et al.,
2011), Inverse Problems(An et al., 2011), Fuzzy PD Controllers(Talbi & Belarbi, 2011b),
Instrusion Detection(Jian-guang et al., 2011), Tel-Home Care Problems(Lee et al., 2011),
Ant Colony inspired Problems(Zhang-liang & Yue-guang, 2011), Steelmaking-Continuous
Casting Production Scheduling(Zhao et al., 2011), Fuzzy Inference System(Talbi & Belarbi,
2011a) and Coordination of Dispatchable Distributed Generation and Voltage Control
Devices(Ausavanop & Chaitusaney, 2011).

84 Real-World Applications of Genetic Algorithms
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Fig. 3. The Neighborhood of a solution x is known after being perturbed

2.3 Genetic algorithms

Genetic Algorithms are Algorithms based on the Theory of Natural Selection(Wijkman, 1996).
Thus, Genetic Algorithms mimics the realBehavior Genetic Algorithms(Fisher, 1930) through
three basic steps: Given a set of Initial Solutions S

Step 1. Selection. Select solutions from a population. In pairs, select two solutions x, y ∈ S

Step 2. Crossover. Cross the selected solutions avoiding local optimums.

Step 3. Mutation. Perturbs the new solutions found for increasing the population. The
perturbation can be done according to the representation of the solution. In this step, good
solutions are added to S

Figure 4 shows the basics steps of a Genetic Algorithm. The most known Genetic

Fig. 4. Basics steps of a Genetic Algorithm

Algorithms from the literature(Dukkipati & Narasimha Murty, 2002) are the Non-Dominated
Sorting Genetic Algorithm(Deb et al., 2002) (NSGA-II) and the Strength Pareto Evolutionary
Algorithm 2(Zitzler et al., 2001; 2002) (SPEA 2). NSGA-II uses a no-dominated sort for
sorting the solutions in different Pareto Sets. Consequently, it demands a lot of time, but
it allows a global verification of the solutions for avoiding the Local Optimums. On the
other hand, SPEA 2 is an improvement of SPEA. The difference with the first version is that
SPEA 2 works using strength for every solution according to the number of solutions that it
dominates. Consequently, at the end of the iterations, SPEA 2 has the non dominated solutions
stronger avoiding Local Optimums. SPEA 2 and NSGA-II have been implemented to solve
a lot of problems in the Multiobjective and Combinatorial Optimization fiel. For instance,
problems such as Pattern-recognition based Machine Translation System(Sofianopoulos &
Tambouratzis, 2011), Tuning of Fuzzy Logic controllers for a heating(Gacto et al., 2011),
Real-coded Quantum Clones(Xiawen & Yu, 2011), Optimization Problems with Correlated
Objectives(Ishibuchi et al., 2011), Production Planning(Yu et al., 2011), Optical and Dynamic
Networks Designs(Araujo et al., 2011; Wismans et al., 2011), Benchmark multi-objective

85Evolutionary Algorithms Based on the Automata
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optimization(McClymont & Keedwell, 2011) and Vendor-managed Inventory(Azuma et al.,
2011) have been solved using SPEA and NSGA-II.

2.4 Simulated Annealing algorithms

Simulated Annealing(Kirkpatrick et al., 1983) is a generic probabilistic metaheuristic based
in the Annealing in Metallurgy. Similar to Tabu Search, Simulated Annealing explores the
neighborhood of solutions being flexible with no-good solutions. That is mean, accepting bad
solutions as well as good solution, but only in the first iterations. The acceptation of a bad
solution is based on the Boltzmann Probabilistic Distribution:

P(x) = e

(

−
(

E
Ti

))

(10)

Where E is the change of the Energy and Ti is the temperature in the moment i. In the first
level of the temperature, bad solutions are accepted as well, anyways, when the temperature
go down, Simulated Annealing behaves similar to Tabu Search (only accept good solutions).

Recentrly, similar to Genetic Algoritms and Tabu Search, many problems have been solved
using Simulated Annealing metaheuristic. For instance, Neuro Fuzzy - SystemsCzabaski
(2006), Contrast Functions for BSSGarriz et al. (2005), Cryptanalysis of Transposition
CipherSong et al. (2008), Transmitter-Receiver Collaborative-Relay BeamformingZheng et al.
(2011) and Two-Dimensional Strip Packing ProblemDereli & Sena Da (2007) have been solved
through Simulated Annealing inspired algorithms.

2.5 Deterministic Finite Automata

Formally, a Deterministic Finite Automata is a Quint-tuple defined as follows:

A = (Q, Σ, δ, q0, F) (11)

Set of transitions δ. The set of transitions (δ) describes the behavior of the automata. Let a ∈ S
and q, r ∈ Q, then the function is defined as follows:

δ(q, a) = r (12)

Example 1. Let A = (Q, Σ, δ, q0, F), where Q = {q0, q1, q2}, S = {0, 1}, F = {q1} and the set of
transitions δ defined in table 3, the representation of A using a state diagram can be derived
as shown in figure 5. Notice that each state of DFA has transitions with all the elements of Σ.

0 1
q0 q2 q0

q1 q1 q1

q2 q2 q1

Table 3. Set of transitions for the DFA of example 1

2.6 Metaheuristic Of Deterministic Swapping (MODS)

Metaheuristic Of Deterministic Swapping (MODS) (Niño et al., 2011) is a local search
strategy that explores the Feasible Solution Space of a Combinatorial Problem supported
in a data structure named Multi Objective Deterministic Finite Automata (MDFA) (Niño,
Ardila, Donoso & Jabba, 2010). A MDFA is a Deterministic Finite Automata that allows the

86 Real-World Applications of Genetic Algorithms
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Evolutionary Algorithms Based on the Automata Theory for the Multi-Objective Optimization of Combinatorial Problems 7

Fig. 5. Automata state diagram for the example 1.

representation of the feasible solution space of a Combinatorial Problem. Formally, a MDFA
is defined as follows:

M = (Q, Σ, δ, Q0, F(X)) (13)

Where Q represents all the set of states of the automata (feasible solution space), Σ is the
input alphabet that is used for δ (transition function) to explore the feasible solution space of
a combinatorial problem, Q0 contains the initial set of states (initial solutions) and F(X) are
the objectives to optimize.

Example 1. MDFA for a Scheduling Parallel Machine Problem:

A Company has three machines. It is necessary to schedule three processes in parallel P1,P2

and P3. Each process has a duration of 5, 10 y 50 minutes respectively. If the processes can
be executed in any of the machines, how many manners the machines can be assigned to the
processes? Given the Bi-objective function in (10), what is the optimal Pareto Front?

F(X) =

{

f1(X) =
3

∑
i=1

i · Xi, f2(X) =
3

∑
i=1

(

1

i

)

· Xi

}

(14)

First of all, we need to build the MDFA. For doing this, we must define the states of the MDFA
setting the structure of the solution for each state. Therefore, if we state that Xq = (Pk, Pi, Pj)
represents the solution for the state q: machine 1 executes the process Pk, machine 2 executes
the process Pi and machine 3 executes the process Pj then the arrays solution for each state

will be Xq0 = (P1, P2, P3), Xq1 = (P1, P3, P2), Xq2 = (P2, P1, P3), Xq3 = (P2, P3, P1), Xq4 =
(P3, P1, P2) y Xq5 = (P3, P2, P1). Now, we have six states q0,q1,q2,q3,q4 and q5, those represent
the feasible solution space of the Scheduling problem proposed. The set of states for the MDFA
of this problem can be seen in figure 6. Once the set of states is defined, the Input Alphabet

Fig. 6. Set of states for the MDFA of example 2

(Σ) and the Transition Function (δ) be done. It is very important to take into account, first,
the bond of both allows to perturb the solutions in all the possible manners, in other words,
we can change of state using the combination of Σ and δ. Obviously, doing this, we avoid

87Evolutionary Algorithms Based on the Automata
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unfeasible solutions. Regarding the proposed problem, we propose the set Σ as follows:

Σ = {(P1, P2), (P1, P3), (P2, P3)} (15)

Hence, it is elemental that δ(q0, (P1, P2)) = q2, δ(q0, (P1, P3)) = q5, ... , δ(q5, (P2, P3)) = q3. At
this part, the transitions has been defined therefore the MDFA can be seen in figure 7.

Finally, the solution of each state is replaced in (10). The results can be seen in table 4 and the
Optimal Pareto Front is shown in figure 8.

State Assignments Times F(X)
qi M1 M2 M3 M1 M2 M3 f1(X) f2(X)
q0 P1 P2 P3 10 50 5 125 36.66
q1 P1 P3 P2 10 5 50 170 29.16
q2 P2 P1 P3 50 10 5 85 56.66
q3 P2 P3 P1 50 5 10 90 55.83
q4 P3 P1 P2 5 10 50 175 26.66
q5 P3 P2 P1 5 50 10 135 33.33

Table 4. Values of F(X) for the states of example 2

Fig. 7. MDFA for example 2, Parallel execution of processes

As can be seen in figure 7, the feasible solution space for this problem was described using a
MDFA. Also, unfeasible solutions are not allowed because of the definition of Σ. Nevertheless,
the general problem was not solved, only a particular case of three variables (machines) was
done. For this reason, it was easy to draw the entire MDFA. However, problems like this
are intractable for a large number of variables, in other words, when the number of variables
grow the feasible solution space grows exponentially. In this manner, it is not a good idea
to draw the entire feasible solution space and pick the best solutions. Thus, what should we
do in order to solve any combinatorial problem, without taking into account its size, using a
MDFA? Looking an answer to this question, MODS was proposed.

MODS explores the feasible solution space represented through a MDFA using a search
direction given by an elitist set of solutions (Q∗). The elitist solution are states that, when

88 Real-World Applications of Genetic Algorithms
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Fig. 8. Pareto Front for the MDFA of example 2, Parallel execution of processes

were visited, their solution dominated at least one solution of an element in Qφ. Qφ contains
all the states with non-dominated solutions. Due to this, it can be inferred that the elements
of Q∗ are contained in Qφ, for this reason is true that:

Qφ = Qφ ∪ Q∗ (16)

Lastly, the template algorithm of MODS is defined as follows:

Step 1. Create the initial set of solutions Q0 using a heuristic relative to the problem to solve.

Step 2. Set Qφ as Q0 and Q∗ as φ.

Step 3. Select a random state q ∈ Qφ or q ∈ Q∗

Step 4. Explore the neighborhood of q using δ and Σ. Add to Qφ the solutions found that
are not dominated by elements of Q f . In addition, add to Q∗ those solutions found that
dominated at least one element from Qφ.

Step 5. Check stop condition, go to 3.

3. Simulated Annealing Metaheuristic Of Deterministic Swapping (SAMODS)

Simulated Annealing & Metaheuristic Of Deterministic Swapping(Niño, 2012) (SAMODS) is a
hybrid local search strategy based on the MODS theory and Simulated Annealing Algorithm
for the Multiobjective Optimization of combinatorial problems. Its main propose consists in
optimizing a combinatorial problem using a Search Direction and an Angle Improvement.
SAMODS is based in the next Automata:

M = (Q, Q0, P(q), F(X), A(n)) (17)

Alike MODS, Q0 is the set of initial solutions, Q is the feasible solution space and F(X) are the
functions of the combinatorial problem. P(q) and A(n) are defined as follows:

P(q) is the Permutation Function, formally it is defined as follows:

P(q) : Q → Q (18)

P receives a solution q ∈ Q and perturbs it returning a new solution ri ∈ Q. The perturbation
can be done based on the representation of the solutions. An example of some perturbations
based on the representation of the solution can be seen in figure 15.

89Evolutionary Algorithms Based on the Automata
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Fig. 9. Different representation and perturbation of solutions.

A(n) is the Weight Function. Formally, it is defined as follow:

A(n) : N → ℜn (19)

Where n is the number of objectives of the problem.

Function A receives a natural number as parameter and it returns a vector with the weights.
The weight values are randomly generated with an uniform distribution. Those represent the
weight to assign to each function of the combinatorial problem. The weight values returned
by the function fulfill the next constrain:

n

∑
i=1

αi = 1, 0 ≤ αi ≤ 1 (20)

Where αi is the weight assigned to function i. Table 5 shows some vectors randomly generated
by A(n).

Input Parameter Function Vector of Weights
2 A(2) {0.6, 0.4}
3 A(3) {0.2, 0.4, 0.4}
4 A(4) {0.3, 0.8, 0.1, 0.0}

Table 5. Some weight vectors generated by A(n)

But, what is the importance of those weights? The weights, in an implicit manner, allow
setting the angle direction to the solutions. The angle direction is the course being followed
by the solutions for optimizing F(X). Hence, when the weights values are changed, the angle of
optimization is changed and a new search direction is obtained. For instance, different search
directions for different weight values are shown in figure 16 in a Bi-objective combinatorial
problem. Due to this, (6) is rewritten as follows:

F(X) =
n

∑
i=1

αi · fi(X) (21)

Where n is the number of objectives of the problem and αi is the weight assigned to the
function i. The weights fulfills the constrain established in (20).

SAMODS main idea is simple: it takes advantage of the search directions given by MODS
and it proposed an angle direction given by the function A(n). Thus, there are two directions;
the first helps in the convergence of the Pareto Front and the second helps the solutions to
find neighborhoods where F(X) is optimized. Due to this, SAMODS template is defined as
follows:

Step 1. Setting sets. Set Q0 as the set of Initial Solutions. Set Qφ and Q∗ as Q0.

90 Real-World Applications of Genetic Algorithms

www.intechopen.com



Evolutionary Algorithms Based on the Automata Theory for the Multi-Objective Optimization of Combinatorial Problems 11

Fig. 10. Different angles given by different weights for a Bi-objective Problem.

Step 2. Settings parameters. Set T as the initial temperature, n as the number of objectives of
the problem and ρ as the cooler factor.

Step 3. Setting Angle. If T is equal to 0 then got to 8, else set Ti+1 = ρ × Ti, randomly select
s ∈ Qφ, set W = A(n) = {w1, w2, · · · , wn} and go to step 4.

Step 4. Perturbing Solutions. Set s
′
= P(s), add to Qφ and Q∗ according to the next rules:

Qφ = Qφ ∪
{

s
′
}

⇔ ( � ∃r ∈ Qφ)(r dominated to s
′
) (22)

Q∗ = Q∗ ∪
{

s
′
}

⇔ (∃r ∈ Q∗)(s
′

dominated to r) (23)

If Qφ has at least one element that dominated to s
′

go to step 5, otherwise go to step 7.

Step 5. Guess with dominated solutions. Randomly generated a number n ∈ [0, 1]. Set z as
follows:

z = e(−(γ/Ti)) (24)

Where Ti is the temperature value in moment i and γ is defined as follows:

γ =
n

∑
i=1

wi · fi(sX)−
n

∑
i=1

wi · fi(s
′

X) (25)

Where sX is the vector X of solution s, s
′

X is the vector X of solution s
′
, wi is the weight

assigned to the function i and n is the number of objectives of the problem. If n < z then set s

as s
′

and go to step 4 else go to step 6.

Step 6. Change the search direction. Randomly select a solution s ∈ Q∗ and go to step 4.

Step 7. Removing dominated solutions. Remove the dominated solution for each set (Q∗ and
Qφ). Go to step 3.

Step 8. Finishing. Qφ has the non-dominated solutions.

As can be seen in figure 11, alike MODS, SAMODS removes the dominated solutions when
the new solution found is not dominated. Besides, if the new solution found dominated
at least one element from the solution set (Qφ) then it will be added to the elitisms set
(Q∗) that works as a search direction for the Pareto Front. As far as here, SAMODS could
sounds as a simple local search strategy but not, when a new solution found is dominated,
SAMODS tries to improve it using guessing. Guessing is done accepting dominated solution
as good solutions. Alike Simulated Annealing inspired algorithms, the dominated solutions
are accepted under the Boltzmann Distribution Probability assigning weights to the objectives
of the problem. It is probably that perturbing a dominated solution, a non-dominated solution
can be found as can be seen in figure 12. Due to this, local optimums are avoided. When the
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temperature is low, the bad solutions are avoided because z value is low therefore SAMODS
accepts only non-dominated solutions. However, by that time, Qφ will be leaded on by Q∗.

Fig. 11. Behavior of SAMODS when the new solution found is not dominated. Once a new
solution found is non-dominated, it is added to the elitism set Q∗ and the dominated
solutions from Qφ are removed.

Fig. 12. Behavior of SAMODS when the new solution found is dominated. In this case,
guessing gives a new solution non-dominated.

4. Genetic Simulated Annealing Metaheuristic Of Deterministic Swapping

(SAGAMODS)

Simulated Annealing, Genetic Algorithm & Metaheuristic Of Deterministic Swapping(Niño,
2012) (SAGAMODS) is a hybrid search strategy based on the Automata Theory, Simulated
Annealing and Genetics Algorithms. SAGAMODS is an extension of the SAMODS theory.
It comes up as result of the next question: could SAMODS avoid quickly local optimums?
Although, SAMODS avoids local optimums guessing, it can take a lot of time accepting
dominated solutions for finding non-dominated. Thus, the answer to this question is based
on the Evolutionary Theory. SAGAMODS proposes crossover step before SAMODS template
is executed. Due to this, SAGAMODS supports to SAMODS for exploring distant regions of
the solution space.

Formally, SAGAMODS is based on the next automata:

M = (Q, QS, C(q, r, k), F(X)) (26)
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Where Q is the feasible solutions space, QS is the initial solutions and F(X) are the objectives
of the problem. C(q, r, k) is defined as follows:

Formally, Cross Function K is defined as follows:

C(q, r, k) : Q → Q (27)

Where q, r ∈ Q and k ∈ N. q and r are named parents solutions and k is the cross point. The
main idea of this function is cross two solutions in the same point and returns a new solution.
For instance, two solutions of 4 variables are cross in figure 13. Obviously, the crossover is
made regarding the representation of the solutions. Lastly, SAGAMODS template is defined

Fig. 13. Crossover between two solutions. Solutions of the states qk and qj are crossed in
order to get state qi

as follows:

Step 1. Setting parameters. Set QS as the solution set, x as the number of solutions to cross for
each iteration.

Step 2. Selection. Set QC (crossover set) as selection of x solutions in QS, QM (mutation set) as
φ and k as a random value.

Step 3. Crossover. For each si, si+1 ∈ QC/1 ≤ i < |QC|:

QM = QM ∪ {C(si, si+1, k)} (28)

Step 4. Mutation. Set Q0 as QM. Execute SAMODS as a local search strategy.

Step 5. Check stop conditions. Go to 2.

5. Evolutionary Metaheuristic Of Deterministic Swapping (EMODS)

Evolutionary Metaheuristic of Deterministic Swapping (EMODS), is a novel framework that
allows the Multiobjective Optimization of Combinatorial Problems. Its framework is based on
MODS template therefore its steps are the same: create Initial Solutions, Improve the Solutions
(Optional) and Execute the Core Algorithm. Unlike SAMODS and SAGAMODS, EMODS
avoids the slowly convergence of Simulated Annealing’s method. EMODS explores different
regions from the feasible solution space and search for non-dominated solution using Tabu
Search.

The Core Algorithm is defined as follows:
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Step 1. Set θ as the maximum number of iterations, β as the maximum number of state selected
in each iteration, ρ as the maximum number of perturbations by state and Qφ as Q0

Step 2. Selection. Randomly select a state q ∈ Qφ or q ∈ Q∗

Step 3. Mutation - Tabu Search. Set N as the new solutions found as result of perturbing q. Add
to Qφ and Q∗ according to the next equations:

(

Qφ = Qφ ∪ {q}
)

⇐⇒
(

� ∃r ∈ Qφ/q is dominated by r
)

(29)

(Q∗ = Q∗ ∪ {q}) ⇐⇒
(

∃r ∈ Qφ/r is dominated by q
)

(30)

Remove the states with dominated solutions for each set.

Step 4. Crossover. Randomly select states from Qφ and Q∗. Generate a random point of cross.

Step 5. Check stop condition, go to 3.

Step 2 and 3 support the algorithm in removing dominated solutions from the set of solutions
Qφ as can be seen in figure 3. However, one of the most important steps in the EMODS
algorithm is step 4. There, similar to SAGAMODS, the algorithm applies an Evolutionary
Strategy based in the crossover step of Genetic Algorithms for avoiding Local Optimums.
Due to the crossover is not always made in the same point (the k-value is randomly generated
in each state analyzed) the variety of solutions found are diverse avoiding local optimums. An
overview of EMODS behavior for a Tri-objective Combinatorial Optimization problem can be
seen in figure 14

6. Experimental analysis

6.1 Experimental settings

The algorithms were tested using well-known instances from the Multi-objective Traveling
Salesman Problem taken from TSPLIB(Heidelberg, n.d.). The instances worked are shown in
table 6 and the input parameters for the algorithms are shown in table 7. The test of the
algorithms was made using a Dual Core Computer with 2 Gb RAM. The optimal solutions
were constructed based in the best non-dominated solutions of all algorithms in comparison
for each instance worked.

6.2 Performance metrics

There are metrics that allow measuring the quality of a set of optimal solutions and the
performance of an Algorithm (Corne & Knowles, 2003). Most of them use two Pareto Fronts.
The first one is PFtrue and it refers to the real optimal solutions of a combinatorial problem.
The second is PFknow and it represents the optimal solutions found by an algorithm.

Generation of Non-dominated Vectors (GNDV) It measures the number of No Dominates
Solutions generated by an algorithm.

GNDV = |PFknow| (31)

A higher value for this metric is desired. Rate of Generation of No-dominated Vectors (RGNDV)
This metric measures the proportion of the No Dominates Solutions (31) generated by an
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Fig. 14. An overview of EMODS behavior for a Tri-objective Problem.

algorithm and the Real Solutions.

RGNDV =

(

GNDV

|PFtrue|

)

· 100% (32)

A value closer to 100% for this metric is desired. Real Generation of Non-dominated Vectors
(ReGNDV) This metric measures the number of Real Solutions found by an algorithm.

ReGNDV = |{y|y ∈ PFknow ∧ y ∈ PFtrue}| (33)
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Combinatorial Problem Instance Number of Objectives

KROAB100

2

KROAC100

KROAD100

KROAE100

KROBC100

KROBD100

KROBE100

KROCD100

KROCE100

KRODE100

KROABC100

3

KROABD100

KROABE100

KROACD100

KROACE100

KROADE100

KROBCD100

KROBCE100

KROBDE100

KROCDE100

KROABCD100

4

KROABCE100

KROABDE100

KROACDE100

KROBCDE100

KROABCDE100 5

Table 6. Instances worked for testing the proposed algorithms.

Algorithm Max. Iterations Max. Perturbations Initial Temperature Cooler Value Crossover Rate

MODS 100 80 NA NA NA

SAMODS 100 80 1000 0.95 NA

SAGAMODS 100 80 1000 0.95 0.6

EMODS 100 80 NA NA 0.6

Table 7. Parameters setting for each compared algorithm.

A value closer to |PFtrue| for this metric is desired.

Generational Distance (GD) This metric measures the distance between PFknow and PFtrue. It
allows to determinate the error rate in terms of the distance of a set of solutions relative to the
real solutions.

GD =

(

1

|PFknow|

)

·

(

|PFknow|

∑
i=1

di

)(1/p)

(34)
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Where di is the smallest Euclidean distance between the solution i of FPknow and the solutions
of FPtrue. p is the dimension of the combinatorial problem, it means the number of objective
functions. Inverse Generational Distance (IGD) This is another distance measurement between
FPknow and FPtrue:

IGD =

(

1

|PFtrue|

)

·

(

|PFknow|

∑
i=1

di

)

(35)

Where di is the smallest Euclidean distance between the solution i of PFknow and the solutions
of PFtrue. Spacing (S) It measures the range variance of neighboring solutions in PFknow

S =

(

1

|PFknow| − 1

)2

·

(

|PFknow|

∑
i=1

(

d − di

)2
)(1/p)

(36)

Where di is the smallest Euclidean distance between the solution i of PFknow and the rest of
solutions of PFknow. d is the mean of all di. p is the dimension of the combinatorial problem.

A value closer to 0 for this metric is desired. A value of 0 means that all the solutions are
equidistant.

Error Rate (ε) It estimates the error rate respect to the precision of the Real Algorithms Solutions
(33) as follows:

ε =

(
∣

∣

∣

∣

PFtrue

ReGNDV

∣

∣

∣

∣

)

· 100% (37)

A value of 0% in this metric means that the values of the Real Pareto Front are constructed
from the values of the Algorithm Pareto Front.

Lastly, notice that every metric by itself does not have sense. It is necessary to support in
the other metrics for a real judge about the quality of the solutions. For instance, if a Pareto
Front has a higher value in GNDV but a lower value in ReGNDV then the solutions has a
poor-quality.

6.3 Experimental results

The tests made with Bi-objectives, Tri-objectives, Quad-objectives and Quin-objectives TSP
instances are shown in tables 8, 9, 10 and 11 respectively. The average of the measurement
is shown in table 12. Furthermore, a graphical comparison for bi-objectives and tri objectives
instances worked is shown in figures 15 and 16 respectively.

6.4 Analysis

It can be concluded, that, in the case of two and three objectives, metrics such as S, IGD,
GD and ε determine the best algorithm. In this case, the measurement of the metrics is
similar for SAMODS and SAGAMODS. On the other hand, MODS has the most poor-quality
measurement for the metrics used and EMODS has the best quality measurement for the same
metrics.

Lastly, why are the results of the metrics similar for quint-instances? In this case, all the
solutions for each solution set are in the optimal set. The answer to this question is based in
the angle improvement. MODS as a local search strategy explore a part of the feasible solution
using its search direction (Q∗). However, SAMODS and SAGAMODS, in addition, use a
search direction given by the change of the search angle. While SAMODS was looking in a
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Fig. 15. Graphical comparison between MODS, SAMODS, SAGAMODS and EMODS for
Bi-objective TSP instances.

Fig. 16. Graphical comparison between MODS, SAMODS, SAGAMODS and EMODS for
Tri-objective TSP instances.

part of the feasible solution space, SAGAMODS was doing the same in other. The same reason
applies to EMODS. It can be possible because of the large size of the feasible solution space
(ℜ5). The possibility of exploring the same part of the solution space for different algorithms
is low.
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Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)

% S GD IGD ε

AB

MODS 289 0.0189 0 0% 0.0193 21.2731 2473.4576 100%

SAMODS 7787 0.5096 1247 16.01% 0.001 0.2404 229.2593 91.84%

SAGAMODS 8479 0.5549 2974 35.07% 0.0007 0.1837 158.8229 80.54%

EMODS 26125 1.7096 11060 42.33% 0.0002 0.0412 75.8814 27.62%

AC

MODS 217 0.0155 0 0% 0.034 28.575 2751.3232 100%

SAMODS 6885 0.4927 2303 33.45% 0.0008 0.2297 179.0354 83.52%

SAGAMODS 7023 0.5025 2431 34.61% 0.0008 0.2628 243.7536 82.6%

EMODS 20990 1.502 9241 44.03% 0.0002 0.0617 119.8825 33.87%

AD

MODS 281 0.0187 0 0% 0.0139 20.4429 2198.883 100%

SAMODS 6383 0.4253 1464 22.94% 0.0029 0.3188 275.9153 90.24%

SAGAMODS 6289 0.4191 764 12.15% 0.0016 0.2835 211.7935 94.91%

EMODS 17195 1.1458 12779 74.32% 0.0005 0.0521 53.5314 14.85%

AE

MODS 283 0.0189 0 0% 0.0533 21.3238 2433.63 100%

SAMODS 5693 0.3804 1433 25.17% 0.0016 0.4308 402.0483 90.42%

SAGAMODS 6440 0.4304 1515 23.52% 0.0013 0.3906 422.7859 89.88%

EMODS 20695 1.383 12016 58.06% 0.0002 0.066 124.7197 19.7%

BC

MODS 298 0.0212 0 0% 0.0158 19.537 2411.8365 100%

SAMODS 6858 0.488 789 11.5% 0.0024 0.3597 433.0882 94.39%

SAGAMODS 6919 0.4923 2201 31.81% 0.0015 0.2378 192.5601 84.34%

EMODS 21902 1.5584 11064 50.52% 0.0003 0.0582 115.5673 21.28%

BD

MODS 241 0.0198 0 0% 0.0239 21.7441 2251.0972 100%

SAMODS 6844 0.561 2054 30.01% 0.0021 0.2542 248.0971 83.16%

SAGAMODS 5934 0.4864 1971 33.22% 0.0018 0.2818 229.2093 83.84%

EMODS 19420 1.5919 8174 42.09% 0.0003 0.0432 57.6434 32.99%

BE

MODS 280 0.0259 0 0% 0.0309 19.0193 2622.5243 100%

SAMODS 6260 0.5789 952 15.21% 0.001 0.2601 245.1433 91.2%

SAGAMODS 5802 0.5365 1622 27.96% 0.0025 0.3912 476.4848 85%

EMODS 17362 1.6055 8240 47.46% 0.0004 0.0631 111.0209 23.8%

CD

MODS 286 0.022 0 0% 0.0184 18.0035 2040.9722 100%

SAMODS 6171 0.4751 1912 30.98% 0.0007 0.2588 196.3394 85.28%

SAGAMODS 6301 0.4851 994 15.78% 0.0014 0.2852 248.5855 92.35%

EMODS 18628 1.434 10084 54.13% 0.0002 0.0426 48.3785 22.37%

CE

MODS 224 0.0187 0 0% 0.0285 23.1312 2245.6542 100%

SAMODS 5881 0.4919 946 16.09% 0.0017 0.2894 242.2535 92.09%

SAGAMODS 4613 0.3859 939 20.36% 0.0028 0.481 411.854 92.15%

EMODS 15211 1.2724 10070 66.2% 0.0003 0.0339 22.2645 15.77%

DE

MODS 228 0.0147 0 0% 0.0477 23.6222 1864.9602 100%

SAMODS 6110 0.3928 1157 18.94% 0.0022 0.2942 207.7947 92.56%

SAGAMODS 7745 0.4979 407 5.26% 0.0012 0.2644 269.6204 97.38%

EMODS 20058 1.2896 13990 69.75% 0.0005 0.0304 23.8829 10.06%

Table 8. Measuring algorithms performance for Bi-objectives instances of Traveling Salesman
Problem with Multi-objective optimization metrics.
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Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)

% S GD IGD ε

ABC

MODS 2115 0.0307 83 3.92% 0.1567 0.2819 3075.4309 99.88%

SAMODS 12768 0.1853 227 1.78% 0.0722 0.0421 2256.4593 99.67%

SAGAMODS 12523 0.1818 328 2.62% 0.073 0.0427 2220.5614 99.52%

EMODS 70474 1.023 68254 96.85% 0.0477 0.001 5.6388 0.93%

ABD

MODS 1951 0.0292 74 3.79% 0.1524 0.305 3153.9212 99.89%

SAMODS 12094 0.1811 317 2.62% 0.0746 0.0441 2270.3475 99.53%

SAGAMODS 12132 0.1817 250 2.06% 0.0726 0.0441 2286.7374 99.63%

EMODS 68001 1.0184 66133 97.25% 0.0471 0.0011 6.3212 0.96%

ABE

MODS 1931 0.0281 63 3.26% 0.1496 0.315 3278.1554 99.91%

SAMODS 12461 0.1815 373 2.99% 0.0743 0.0438 2371.7641 99.46%

SAGAMODS 12391 0.1805 370 2.99% 0.0745 0.0436 2304.3277 99.46%

EMODS 70411 1.0257 67839 96.35% 0.0474 0.0012 8.0639 1.17%

ACD

MODS 2031 0.0305 66 3.25% 0.1425 0.2945 3213.7378 99.9%

SAMODS 12004 0.1802 241 2.01% 0.0734 0.0444 2277.0343 99.64%

SAGAMODS 12123 0.182 206 1.7% 0.0735 0.0442 2310.3683 99.69%

EMODS 67451 1.0127 66090 97.98% 0.0468 0.001 4.5012 0.77%

ACE

MODS 1950 0.0306 57 2.92% 0.1628 0.3024 3215.8357 99.91%

SAMODS 11382 0.1785 263 2.31% 0.074 0.0461 2271.6542 99.59%

SAGAMODS 11476 0.18 303 2.64% 0.0734 0.0456 2241.9933 99.52%

EMODS 64804 1.0162 63145 97.44% 0.048 0.0012 7.3103 0.98%

ADE

MODS 1824 0.0274 67 3.67% 0.1487 0.3289 3248.597 99.9%

SAMODS 12149 0.1827 179 1.47% 0.0733 0.0442 2336.2798 99.73%

SAGAMODS 11773 0.1771 258 2.19% 0.0771 0.0457 2346.6414 99.61%

EMODS 67767 1.0193 65981 97.36% 0.0468 0.0011 5.7824 0.76%

BCD

MODS 2065 0.03 43 2.08% 0.1451 0.2927 3206.9305 99.94%

SAMODS 13129 0.1908 260 1.98% 0.0712 0.0417 2387.8219 99.62%

SAGAMODS 12889 0.1873 253 1.96% 0.0786 0.042 2308.1811 99.63%

EMODS 70035 1.0176 68270 97.48% 0.0452 0.001 5.6235 0.81%

BCE

MODS 2009 0.0286 58 2.89% 0.1505 0.3065 3327.787 99.92%

SAMODS 12992 0.1852 229 1.76% 0.0701 0.0428 2448.3577 99.67%

SAGAMODS 12582 0.1794 201 1.6% 0.0736 0.0445 2503.0421 99.71%

EMODS 71176 1.0147 69654 97.86% 0.0464 0.0011 7.8122 0.7%

BDE

MODS 2039 0.0316 45 2.21% 0.1532 0.2914 3252.7813 99.93%

SAMODS 12379 0.192 205 1.66% 0.0728 0.0434 2401.8804 99.68%

SAGAMODS 12427 0.1928 195 1.57% 0.0742 0.0431 2377.0621 99.7%

EMODS 65509 1.0163 64015 97.72% 0.0476 0.0011 5.6322 0.69%

CDE

MODS 2010 0.0278 83 4.13% 0.1463 0.3022 3094.2824 99.89%

SAMODS 13084 0.1807 399 3.05% 0.0712 0.0414 2193.6586 99.45%

SAGAMODS 13009 0.1796 347 2.67% 0.0719 0.0418 2224.4738 99.52%

EMODS 74063 1.0227 71589 96.66% 0.0453 0.0011 7.2279 1.14%

Table 9. Measuring algorithms performance for Tri-objective instances of TSP with
Multi-objective optimization metrics.
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Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)

% S GD IGD ε

ABCD

MODS 5333 0.0925 3303 61.94% 0.3497 0.0256 6030.5288 94.27%

SAMODS 28523 0.4947 12178 42.7% 0.231 0.0042 3454.1238 78.88%

SAGAMODS 36802 0.6382 14967 40.67% 0.2203 0.0031 3092.5232 74.04%

EMODS 201934 3.502 27214 13.48% 0.1754 0.0005 1991.148 52.8%

ABCE

MODS 5533 0.0973 3439 62.15% 0.3452 0.0244 5861.8605 93.95%

SAMODS 27684 0.4868 11471 41.44% 0.2331 0.0043 3444.6454 79.83%

SAGAMODS 35766 0.6289 14552 40.69% 0.2232 0.0032 3118.6397 74.41%

EMODS 204596 3.5976 27408 13.4% 0.1754 0.0005 1885.4464 51.81%

ABDE

MODS 5259 0.0942 3142 59.75% 0.3487 0.0256 5864.5036 94.37%

SAMODS 27180 0.4869 11247 41.38% 0.232 0.0043 3398.9429 79.85%

SAGAMODS 34930 0.6257 14472 41.43% 0.2236 0.0033 2986.5319 74.08%

EMODS 195756 3.5067 26963 13.77% 0.1775 0.0005 1916.7141 51.7%

ACDE

MODS 5466 0.094 3400 62.2% 0.3405 0.0246 5617.5202 94.15%

SAMODS 26757 0.4602 11336 42.37% 0.235 0.0044 3394.8396 80.5%

SAGAMODS 34492 0.5932 14638 42.44% 0.2265 0.0033 2965.4482 74.83%

EMODS 196800 3.3845 28774 14.62% 0.1764 0.0005 1793.4489 50.52%

BCDE

MODS 5233 0.0879 3082 58.9% 0.3499 0.0259 5677.9988 94.83%

SAMODS 28054 0.471 11739 41.84% 0.2315 0.0042 3296.196 80.29%

SAGAMODS 36258 0.6087 15145 41.77% 0.2218 0.0032 2902.8041 74.57%

EMODS 203017 3.4083 29599 14.58% 0.1752 0.0005 1873.1748 50.31%

Table 10. Measuring algorithms performance for Quad-objectives instances of TSP with
Multi-objective optimization metrics.

Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)

% S GD IGD ε

ABCDE

MODS 7517 0.0159 7517 100% 0.5728 0.0125 15705.6864 98.41%

SAMODS 26140 0.0554 26140 100% 0.4101 0.0033 10801.6382 94.46%

SAGAMODS 26611 0.0564 26611 100% 0.4097 0.0033 10544.8901 94.36%

EMODS 411822 0.8723 411822 100% 0.3136 0.0001 950.4252 12.77%

Table 11. Measuring algorithms performance for Quint-objectives instances of TSP with
Multi-objective optimization metrics.
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Objectives Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)

% S GD IGD ε

2

MODS 262.7 0.0194 0 0% 0.0286 21.6672 2329.4338 100%

SAMODS 6487.2 0.4796 1425.7 22.03% 0.0016 0.2936 265.8974 89.47%

SAGAMODS 6554.5 0.4791 1581.8 23.97% 0.0015 0.3062 286.547 88.3%

EMODS 19758.6 1.4492 10671.8 54.89% 0.0003 0.0492 75.2773 22.23%

3

MODS 1992.5 0.0295 63.9 3.21% 0.1508 0.302 3206.7459 99.91%

SAMODS 12444.2 0.1838 269.3 2.16% 0.0727 0.0434 2321.5258 99.6%

SAGAMODS 12332.5 0.1822 271.1 2.2% 0.0743 0.0437 2312.3389 99.6%

EMODS 68969.1 1.0187 67097 97.3% 0.0468 0.0011 6.3914 0.89%

4

MODS 5364.8 0.0932 3273.2 60.99% 0.3468 0.0252 5810.4824 94.31%

SAMODS 27639.6 0.4799 11594.2 41.94% 0.2325 0.0043 3397.7495 79.87%

SAGAMODS 35649.6 0.619 14754.8 41.4% 0.2231 0.0032 3013.1894 74.39%

EMODS 200420.6 3.4798 27991.6 13.97% 0.176 0.0005 1891.9864 51.43%

5

MODS 7517 0.0159 7517 100% 0.5728 0.0125 15705.6864 98.41%

SAMODS 26140 0.0554 26140 100% 0.4101 0.0033 10801.6382 94.46%

SAGAMODS 26611 0.0564 26611 100% 0.4097 0.0033 10544.8901 94.36%

EMODS 411822 0.8723 411822 100% 0.3136 0.0001 950.4252 12.77%

Table 12. Measuring algorithms performance for Multi-objectives instances of TSP with
Multi-objective optimization metrics.

7. Conclusion

SAMODS, SAGAMODS and EMODS are algorithms based on the Automata Theory for the
Multi-objective Optimization of Combinatorial Problems. All of them are derived from the
MODS metaheuristic, which is inspired in the Theory of Deterministic Finite Swapping.
SAMODS is a Simulated Annealing inspired Algorithm. It uses a search direction in order
to optimize a set of solution (Pareto Front) through a linear combination of the objective
functions. On the other hand, SAGAMODS, in addition to the advantages of SAMODS, is
an Evolutionary inspired Algorithm. It implements a crossover step for exploring far regions
of a solution space. Due to this, SAGAMODS tries to avoid local optimums owing to it takes
a general look of the solution space. Lastly, in order to avoid slow convergence, EMODS is
proposed. Unlike SAMODS and SAGAMODS, EMODS does not explore the neighborhood of
a solution using Simulated Annealing, this step is done using Tabu Search. Thus, EMODS gets
optimal solution faster than SAGAMODS and SAMODS. Lastly, the algorithms were tested
using well known instances from TSPLIB and metrics from the specialized literature. The
results shows that for instances of two, three and four objectives, the proposed algorithm
has the best performance as the metrics values corroborate. For the last instance worked,

quint-objective, the behavior of MODS, SAMODS and SAGAMODS tend to be the same, them
have similar error rate but, EMODS has a the best performance. In all the cases, EMODS shows
the best performance. However, for the last test, all the algorithms have different solutions sets
of non-dominated solutions, and those form the optimal solution set.

102 Real-World Applications of Genetic Algorithms

www.intechopen.com



Evolutionary Algorithms Based on the Automata Theory for the Multi-Objective Optimization of Combinatorial Problems 23

8. Acknowledgment

First of all, I want to thank to God for being with me in my entire life, He made this possible.

Secondly, I want to thank to my parents Elias Niño and Arely Ruiz and my sister Carmen
Niño for their enormous love and support. Finally, and not less important, to thank to my
beautiful wife Maria Padron and our baby for being my inspiration.

9. References

An, S., Yang, S., Ho, S., Li, T. & Fu, W. (2011). A modified tabu search method applied to
inverse problems, Magnetics, IEEE Transactions on 47(5): 1234 –1237.

Araujo, D., Bastos-Filho, C., Barboza, E., Chaves, D. & Martins-Filho, J. (2011). A performance
comparison of multi-objective optimization evolutionary algorithms for all-optical
networks design, Computational Intelligence in Multicriteria Decision-Making (MDCM),
2011 IEEE Symposium on, pp. 89 –96.

Ausavanop, O. & Chaitusaney, S. (2011). Coordination of dispatchable distributed
generation and voltage control devices for improving voltage profile by tabu
search, Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), 2011 8th International Conference on, pp. 869 –872.

Azuma, R. M., Coelho, G. P. & Von Zuben, F. J. (2011). Evolutionary multi-objective
optimization for the vendor-managed inventory routing problem, Evolutionary
Computation (CEC), 2011 IEEE Congress on, pp. 1457 –1464.

Chen, K.-Y., Liu, A. & Lee, C.-H. (2003). A multiprocessor real-time process scheduling
method, Multimedia Software Engineering, 2003. Proceedings. Fifth International
Symposium on, pp. 29 – 36.

Chipara, O., Lu, C. & Roman, G.-C. (2007). Real-time query scheduling for wireless sensor
networks, Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE International,

pp. 389 –399.
Chua, T., Wang, F., Cai, T. & Yin, X. (2006). A heuristics-based advanced planning and

scheduling system with bottleneck scheduling algorithm, Emerging Technologies and
Factory Automation, 2006. ETFA ’06. IEEE Conference on, pp. 240 –247.

Chunyue, Y., Meirong, X. & Ruiguo, Z. (2009). Single-machine scheduling problem in plate hot
rolling production, Control and Decision Conference, 2009. CCDC ’09. Chinese, pp. 2500
–2503.

Corne, D. & Knowles, J. (2003). Some multiobjective optimizers are better than others,
Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on, Vol. 4, pp. 2506 – 2512
Vol.4.

Czabaski, R. (2006). Deterministic annealing integrated with insensitive learning in
neuro-fuzzy systems, in L. Rutkowski, R. Tadeusiewicz, L. Zadeh & J. Zurada (eds),
Artificial Intelligence and Soft Computing ICAISC 2006, Vol. 4029 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp. 220–229.

de Pablo, D. (2009). On scheduling models: An overview, Computers Industrial Engineering,
2009. CIE 2009. International Conference on, pp. 153 –158.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: Nsga-ii, Evolutionary Computation, IEEE Transactions on 6(2): 182 –197.

103Evolutionary Algorithms Based on the Automata
Theory for the Multi-Objective Optimization of Combinatorial Problems

www.intechopen.com



24 Will-be-set-by-IN-TECH

Dereli, T. & Sena Da, G. (2007). A hybrid simulated-annealing algorithm for two-dimensional
strip packing problem, in B. Beliczynski, A. Dzielinski, M. Iwanowski & B. Ribeiro
(eds), Adaptive and Natural Computing Algorithms, Vol. 4431 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp. 508–516.

Dukkipati, A. & Narasimha Murty, M. (2002). Selection by parts: ’selection in two episodes’
in evolutionary algorithms, Evolutionary Computation, 2002. CEC ’02. Proceedings of the
2002 Congress on, Vol. 1, pp. 657 –662.

Fei, X., Ke, W., Jidong, S., Zheng, X. & Guilan, L. (2011). Back analysis of displacement based
on support vector machine and continuous tabu search, Electric Technology and Civil
Engineering (ICETCE), 2011 International Conference on, pp. 2016 –2019.

Fisher, R. (1930). The genetical theory of natural selection, Clarendon Press, Oxford.
Fung, R., Tang, J. & Zhang, J. (2009). A multi-depot vehicle routing problem with

weight-related costs, Computers Industrial Engineering, 2009. CIE 2009. International
Conference on, pp. 1028 –1033.

Gacto, M., Alcala, R. & Herrera, F. (2011). Evolutionary multi-objective algorithm to effectively

improve the performance of the classic tuning of fuzzy logic controllers for a heating,
ventilating and air conditioning system, Genetic and Evolutionary Fuzzy Systems
(GEFS), 2011 IEEE 5th International Workshop on, pp. 73 –80.

Garriz, J., Puntonet, C., Morales, J. & delaRosa, J. (2005). Simulated annealing based-ga
using injective contrast functions for bss, in V. Sunderam, G. van Albada, P. Sloot
& J. Dongarra (eds), Computational Science ICCS 2005, Vol. 3514 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp. 505–600.

Glover, F. & Laguna, M. (1997). Tabu Search, Kluwer Academic Publishers, Norwell, MA, USA.
Grobler, J. & Engelbrecht, A. (2007). A scheduling-specific modeling approach for real

world scheduling, Industrial Engineering and Engineering Management, 2007 IEEE
International Conference on, pp. 85 –89.

Hamidzadeh, B. & Atif, Y. (1996). Dynamic scheduling of real-time aperiodic tasks on
multiprocessor architectures, System Sciences, 1996., Proceedings of the Twenty-Ninth
Hawaii International Conference on ,, Vol. 1, pp. 469 –478 vol.1.

Heidelberg, U. O. (n.d.). Tsplib - office research group discrete optimization - university of
heidelberg, URL: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

Hu, B. & Raidl, G. (2008). Solving the railway traveling salesman problem via a transformation
into the classical traveling salesman problem, Hybrid Intelligent Systems, 2008. HIS ’08.
Eighth International Conference on, pp. 73 –77.

Huang, Y., Brocco, A., Bessis, N., Kuonen, P. & Hirsbrunner, B. (2010). Community-aware
scheduling protocol for grids, Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on, pp. 334 –341.

Ishibuchi, H., Akedo, N., Ohyanagi, H. & Nojima, Y. (2011). Behavior of emo algorithms
on many-objective optimization problems with correlated objectives, Evolutionary
Computation (CEC), 2011 IEEE Congress on, pp. 1465 –1472.

Jian-guang, W., Ran, T. & Zhi-Yong, L. (2011). An improving tabu search algorithm for
intrusion detection, Measuring Technology and Mechatronics Automation (ICMTMA),
2011 Third International Conference on, Vol. 1, pp. 435 –439.

Jianghong, D., Zhongyang, X., Hao, C. & Hui, D. (2000). Scheduling algorithm for mpeg-2 ts
multiplexers in catv networks, Broadcasting, IEEE Transactions on 46(4): 249 –255.

104 Real-World Applications of Genetic Algorithms

www.intechopen.com



Evolutionary Algorithms Based on the Automata Theory for the Multi-Objective Optimization of Combinatorial Problems 25

Kim, G. H. & Lee, C. (1998). Genetic reinforcement learning approach to the heterogeneous
machine scheduling problem, Robotics and Automation, IEEE Transactions on 14(6): 879
–893.

Kim, I. & Lipasti, M. (2003). Macro-op scheduling: relaxing scheduling loop constraints,
Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on, pp. 277 – 288.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by Simulated Annealing,
Science, Number 4598, 13 May 1983 220, 4598: 671–680.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175

Lee, H.-C., Keh, H.-C., Huang, N.-C. & Chang, W.-H. (2011). An application of google map
and tabu-search algorithm for traveling salesman problem on tel-home care, Electric
Information and Control Engineering (ICEICE), 2011 International Conference on, pp. 4764
–4767.

Lim, A. & Wang, F. (2005). Multi-depot vehicle routing problem: a one-stage approach,
Automation Science and Engineering, IEEE Transactions on 2(4): 397–402.

Liu, J., Hamdi, M. & Hu, Q. (2003). Distributed parallel scheduling algorithms for high speed
virtual output queuing switches, Computer Systems and Applications, 2003. Book of
Abstracts. ACS/IEEE International Conference on, p. 27.

Malik, A. M. A., Othman, A. K., Ayob, M. & Hamdan, A. R. (2011). Hybrid integrated
two-stage multi-neighbourhood tabu search-emcq technique for examination
timetabling problem, Data Mining and Optimization (DMO), 2011 3rd Conference on,
pp. 232 –236.

Manimaran, G., Shashidhar, M., Manikutty, A. & Murthy, C. (1997). Integrated scheduling of
tasks and messages in distributed real-time systems, Parallel and Distributed Real-Time
Systems, 1997. Proceedings of the Joint Workshop on, pp. 64 –71.

McClymont, K. & Keedwell, E. (2011). Benchmark multi-objective optimisation test problems
with mixed encodings, Evolutionary Computation (CEC), 2011 IEEE Congress on,
pp. 2131 –2138.

McGarry, M., Reisslein, M., Colbourn, C., Maier, M., Aurzada, F. & Scheutzow, M. (2008).
Just-in-time scheduling for multichannel epons, Lightwave Technology, Journal of
26(10): 1204 –1216.

Mingsheng, S., Shixin, S. & Qingxian, W. (2003). An efficient parallel scheduling algorithm
of dependent task graphs, Parallel and Distributed Computing, Applications and
Technologies, 2003. PDCAT’2003. Proceedings of the Fourth International Conference on,
pp. 595 – 598.

Niño, E. D. (2012). Samods and sagamods: Novel algorithms based on the automata theory
for the multi-objective optimization of combinatorial problems, International Journal
of Artificial Intelligence - Special issue of IJAI on Metaheuristics in Artificial Intelligence
Pending: Pending.

Niño, E. D., Ardila, C., Donoso, Y. & Jabba, D. (2010). A novel algorithm based on
deterministic finite automaton for solving the mono-objective symmetric traveling
salesman problem, International Journal of Artificial Intelligence 5(A10): 101 – 108.

Niño, E. D., Ardila, C., Donoso, Y., Jabba, D. & Barrios, A. (2011). Mods: A novel metaheuristic
of deterministic swapping for the multi Ű objective optimization of combinatorials
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