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1. Introduction 

Simultaneous modeling and optimization allows a cost-effective alternative to cover large 

number of experiments. The model should be able to improve overall process performance 

particularly for the complex process. A hybrid Artificial Neural Network - Genetic 

Algorithm (ANN-GA) was developed to model, to simulate, and to optimize simultaneously 

a catalytic–plasma reactor. The present contribution is intended to develop an ANN-GA 

method to facilitate simultaneous modeling and multi-objective optimization for co-

generation of synthesis gas, C2 and higher hydrocarbons from methane and carbon dioxide 

in a dielectric-barrier discharge (DBD) plasma reactor. The hybrid approach simplifies the 

complexity in process modeling the DBD plasma reactor. 

A hybrid of ANN-GA method has been used for integrated process modelling and multi-

objectives optimization. The detail hybrid algorithm for simultaneous modelling and multi-

objective optimization has been developed in previous publication which focused on plasma 

reactor application (Istadi & Amin, 2005, 2006, 2007). They reported that the hybrid ANN-

GA technique is a powerful method for process modelling and multi-objectives optimization 

(Nandi et al., 2002, 2004; Ahmad et al., 2004; Stephanopoulos & Han, 1996; Huang et al., 2003; 

Radhakrishnan & Suppiah, 2004; Fissore et al., 2004; Nandi et al., 2002, 2004; Ahmad et al., 

2004; Kundu et al., 20009; Marzbanrad & Ebrahimi, 2011; Bhatti et al., 2011). The method is 

better than other technique such as response surface methodology (RSM) (Istadi & Amin, 

2006, 2007), particularly for complex process model. The RSM proposes a quadratic model 

as empirical model for representing the effect of independent variables toward the targeting 

response. Therefore, all models which may not follow the quadratic trend are forced to the 
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quadratic model. Disadvantage of the RSM method is then improved by the hybrid ANN-

GA. In the later method, an empirical mathematical modelling of catalytic cracking was 

conducted by ANN strategy, while the multi-objectives optimization of operating conditions 

to reach optimal responses was performed using GA method.  

In terms of single-response optimization applications, the selection of optimization method 
is very important to design an optimal catalyst as well as the relations between process 
parameters and catalytic performances (Wu et al., 2002). Pertaining to the catalyst design, 
some previous researchers introduced ANN to design the catalysts (Hattori & Kito, 1991, 
1995; Hou et al., 1997). The ANN is feasible for modeling and optimization, and 
consequently, large number experiments can be avoidable (Wu et al., 2002). According to the 
complex interaction among the catalyst compositions, the process parameters and the metal-
support interaction with no clear reaction mechanism as in CO2 OCM process, the empirical 
models are more useful in the catalyst design especially in the optimization studies. The 
reason is that the phenomenological modeling of interactions in the catalyst design is very 
complex. Unfortunately, a single-response optimization is usually insufficient for the real 
CO2 OCM process due to the fact that most responses, i.e. methane conversion, product 
selectivity and product yield, are dependent during the process. Therefore, simultaneous 
modeling and multi-objective optimization techniques in complex plasma reactor is worthy. 
A simultaneous multi-objective optimization is more realistic than a single-response from 
reliability point of view. Empirical and pseudo-phenomenological modeling approaches 
were employed by previous researchers (Wu et al., 2002; Larentis et al., 2001; Huang et al., 
2003) for optimizing the catalytic process. The empirical modeling is efficient for the 
complex process optimization, but the drawback is that the model has no fundamental 
theory or actual phenomena meaning.  

Pertaining to multi-objective optimization, a graphical multi-responses optimization 
technique was implemented by previous researchers for xylitol crystallization from 
synthetic solution (de Faveri et al., 2004), but it was not useful for more than two 
independent variables or highly nonlinear models. In another study, a generalized distance 
approach technique was developed to optimize process variables in the production of 
protoplast from mycelium (Muralidhar et al., 2003). The optimization procedure was carried 
out by searching independent variables that minimize the distance function over the 
experimental region in the simultaneous optimal critical parameters. Recently, robust and 
efficient technique of elitist Non-dominated Sorting Genetic Algorithm (NSGA) was used to 
obtain solution of the complex multi-objective optimization problem (Huang et al., 2003; 
Nandasana et al., 2003; Zhao et al., 2000; Nandi et al., 2004). A hybrid GA with ANN was also 
developed (Huang et al., 2003) to design optimal catalyst and operating conditions for O2 
OCM process. In addition, a comprehensive optimization study of simulated moving bed 
process was also reported using a robust GA optimization technique (Zhang et al., 2002b). 

Several methods are available for solving multi-objective optimization problem, for 

example, weighted sum strategy (The MathWorks, 2005; Youness, 2004; Istadi, 2006), ε-

constraint method (Yu et al., 2003; The MathWorks, 2005; Youness, 2004), goal attainment 

method (Yu et al., 2003; The MathWorks, 2005), NSGA (Nandasana et al., 2003; Zhang et al., 

2002b; Yu et al., 2003), and weighted sum of squared objective function (WSSOF) (Istadi & 

Amin, 2006b, 2007; Istadi, 2006) to obtain the Pareto set. The NSGA method has several 

advantages (Zhang et al., 2002b): (a) its efficiency is relatively insensitive to the shape of the 
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Pareto-optimal front; (b) problems with uncertainties, stochasticities, and discrete search 

space can be handled efficiently; (c) spread of the Pareto set obtained is excellent, and (d) 

involves a single application to obtain the entire Pareto set. Among the methods, the NSGA 

is the most powerful method for solving a complex multi-responses optimization problem. 

In the multi-objective optimization of the CO2 OCM process, the goal attainment combined 

with hybrid ANN-GA method was used to solve the optimization of catalytic-plasma 

process parameters. The multi-objective optimization strategy was combined 

simultaneously with ANN modelling and GA optimization algorithm. The multi-objective 

optimization deals with generation and selection of non-inferior solution points or Pareto-

optimal solutions of the responses / objectives corresponding to the optimal operating 

parameters. The DBD plasma-catalytic coupling of methane and carbon dioxide is an 

intricate process within the plasma-catalytic reactor application. A hybrid ANN-GA 

modelling and multi-objective optimization was developed to produce a process model that 

simulated the complex DBD plasma – catalytic process. There were no previous researchers 

focused on the simultaneous modelling and multi-objective optimization of DBD plasma – 

catalytic reactor using the hybrid ANN-GA. 

The objective of this chapter is to model and to optimize the process performances 

simultaneously in the DBD plasma-catalytic conversion of methane to higher hydrocarbons 

such that the optimal process performances (CH4 conversion and C2 hydrocarbons yield) are 

obtained at the given process parameters. In this Chapter, multi-objective optimization of 

two cases, i.e. C2 hydrocarbon yield and C2 hydrocarbons selectivity, and C2 hydrocarbons 

yield and CH4 conversion, to produce a Pareto Optimal solution is considered. In the 

process modeling, a number of experimental data was needed to validate the model. The 

ANN-based model required more example data which were noise-free and statistically well-

distributed. Therefore, design of experiment was performed using central composite design 

with full factorial design for designing the training and test data sets. The method was 

chosen in order to provide a wider covering region of parameter space and good 

consideration of variable interactions in the model. This chapter is organized according to 

sections 1, 2, 3 and 4. After Introduction in section 1, section 2 covers design of experiment 

and strategy for simultaneous modeling and optimization including hybrid ANN-GA 

algorithm. In section 3, multi-objective optimization of methane conversion to higher 

hydrocarbons process over plasma – catalytic reactor is applied. In this section, ANN 

simulation of the DBD plasma – catalytic reactor performance is also presented with respect 

to the two cases. The final section, section 4 offers conclusions about the chapter. 

2. Design of experiment, modeling, and optimization strategies 

2.1 Central composite design for design of experiment 

Central Composite Design for four factors was employed for designing the experimental 

works in which variance of the predicted response Y at some point X is only a function of 

distance from the point to the design centre (Montgomery, 2001). Hence, the variance of Y 

remained unchanged when the design is rotated about the centre. In the design, standard 

error, which depends on the coordinates of the point on the response surface at which Y is 

evaluated and on the coefficients ┚, is the same for all points that are same distance from the 

central point. The value of ┙ for star point with respect to design depends on the number of 
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points in the factorial portion of the design which is given in Equation (1) (Montgomery, 

2001; Clarke & Kempson, 1997). 

 ( )
1/4

  c┙ n=  (1) 

where nc is number of points in the cube portion of the design (nc = 2k, k is number of 
factors). Since there are four parameters/factors in this experiment, the nc number is equal to 
24 (= 16) points, and ┙=2 according to Equation (1). 

An experimental design matrix revealed in Table 1 consists of sets of coded conditions 
expressed in natural values (Istadi & Amin, 2006a) with a two-level full factorial design (nc), 
star points (ns) and centre points (n0). Based on this table, the experiments for obtaining the 
responses of CH4 conversion (X(CH4)), C2 hydrocarbons selectivity (S(C2)) and C2 
hydrocarbons yield (Y(C2)) were carried out at the corresponding independent variables. 
Number experimental data were used for validating the hybrid ANN-GA model of the 
catalytic-plasma CO2 OCM process. Sequence of the experimental work was randomized in 
order to minimize the effects of uncontrolled factors. The experimental data from catalytic-
plasma reactor operation with respect to combination of four factors including their respected 
responses (plasma-catalytic reactor performances: CH4 conversion, C2 hydrocarbons 
selectivity, C2 hydrocarbons yield, and H2 selectivity) are presented in Table 2. 

 

Factors Range and levels 

-┙ -1 0 +1 +┙ 

CH4/CO2 Ratio (X1), [-] 0.8 1.5 2.5 3.5 4.2 

Discharge voltage (X2), kV 12.5 13.5 15.0 16.5 17.5 

Total feed flow rate (X3), cm3/min 18 25 35 45 52 

Reactor temperature (X4), oC 81 150 250 350 418 

Note: -1 (low level value); +1 (high level value); 0 (centre point); +α and -α (star points) 

Table 1. Central Composite Design with fractional factorial design for the catalytic DBD 
plasma reactor (Istadi, 2006) 

2.2 Simultaneous modelling and multi-objective optimization 

The integrated ANN-GA strategy meets the objective based on two steps: (a) development 

of an ANN-based process model which has inputs of process operating parameters of 

plasma – catalytic reactor, and output(s) of process output/response variable(s), i.e. yield of 

C2hydrocarbons or hydrogen, or methane conversion; and (b) development of GA technique 

for multi-objective optimization of the ANN model. Input space of the ANN model is 

optimized using the GA technique such that the optimal response(s) or objective(s) are 

obtained corresponding to the optimal process parameters. The developed simultaneous 

algorithm is presented in a hybrid Algorithm of ANN-GA schematically for simultaneous 

modeling and optimization.  

In the GA, a population of strings (called chromosomes), which encode individual solutions 
towards an optimization problem, adjusts toward better solutions. The solutions are 
represented in binary strings. The evolution begins from a population of randomly 
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generated individuals and grows to produce next generations. In each generation, the fitness 
of each individual in the new population is evaluated and scored (recombination and 
mutation) to form a new population. During the fitness evaluation, the resulted ANN model 
is used. The new population is then used in the next iteration. The algorithm terminates 
when either a maximum generations number has been reached, or a best fitness level has 
been approached for the population. The multi-objective optimization can be formulated by 
converting the problem into a scalar single-objective optimization problem which is solvable 
by unconstrained single-response optimization technique. Many methods can be used for 
converting the problems into scalar optimization problem, such as weighted sum of squared 
objective functions (WSSOF), goal attainment, weighted sum strategy, and ε-constraint 
method. 

Schematic diagram of the feed-forward ANN used in this model development is depicted in 

Figure 1. Detail stepwise procedure used for the hybrid ANN-GA modelling and multi-

objectives optimization is modified from the previous publications (Istadi, 2006; Istadi & 

Amin, 2007). The modified algorithm is described in this section and is depicted 

schematically in Figure 2. The fit quality of the ANN model was checked by a correlation 

coefficient (R) or a determination coefficient (R2) and Mean Square Error (MSE). The ANN 

model generated was repeated until the R2 reached higher than 0.90. The commonly 

employed error function to check the fit quality of the model is the MSE as defined in 

Equation (2).  

 ( )
2

, ,
1 1

1
   

 

pi N k K

i k i k
p i k

MSE t y
N K

= =

= =

= −   (2) 

where Np and K denote the number of patterns and output nodes used in the training, i 

denotes the index of the input pattern (vector), and k denotes the index of the output node. 

Meanwhile, ti,k and yi,k express the desired (targeted or experimental) and predicted values 

of the kth output node at ith input pattern, respectively. 

With respect to the ANN modelling, a feed-forward ANN model was used in this model 

development which was trained using back-propagation training function. In general, four 

steps are developed in the training process: assemble the training data, create the network 

object, train the network, and simulate the network response to new inputs. The schematic 

of the feed-forward neural network used in the model development is depicted in Figure 1. 

As shown, the network consists of three layers nodes, i.e. input, hidden, and output layers 

comprising four numbers of each processing nodes. Each node in the input layer is linked to 

all nodes in the hidden layer and simultaneously the node in the hidden layer is linked to all 

nodes in the output layer using weighting connections (W). The weights are adjusted in the 

learning process in which all the patterns of input-output are presented in the learning 

phase repeatedly. In addition, the feed-forward neural network architecture also addresses 

the bias nodes which are connected to all nodes in subsequent layer, and they provide 

additional adjustable parameters (weights) for the fitting.  

From Figure 1, WH and WO denote the weights between input and hidden nodes and 
between hidden and output nodes, respectively. Meanwhile, yH and yO denote the outputs 
vector from hidden and output layers, respectively. In this system, bH and bO signify the 
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scalar bias corresponding to hidden and output layers, respectively. The weighted input (W) 
is the argument of the activation/transfer function f, which produces the scalar output y. 
The activation function net input is a summing function (nH or nO) which is the sum of the 
weighted input (WH or WO) and the bias b. In order that the ANN network accurately 
approximates the nonlinear relationship existing between the process inputs and outputs, it 
needs to be trained in a manner such that a pre-specified error function is minimized. There 
are many learning algorithms available and the most popular and successful learning 
algorithm used to train multilayer network is back-propagation scheme. Any output point 
can be obtained after this learning phase, and good results can be achieved.  

 

Process variables Responses/ Dependent variables 
(%) 

CH4/CO2 
ratio 
(X1) 

Discharge 
voltage 

(X2) 

Total feed 
flow rate (X3)

Reactor 
Temperature 

(X4) 

X(CH4)
(Y1) 

S(C2+)
(Y2) 

S(H2) 
(Y3) 

Y(C2+) 
(Y4) 

3.5 16.5 45 150 21.45 26.13 13.24 5.61 

3.5 16.5 25 150 23.48 33.41 12.13 7.85 

* 3.5 13.5 45 350 18.76 28.43 13.16 5.33 

1.5 16.5 25 350 27.55 27.47 8.11 7.57 

3.5 13.5 25 350 20.22 35.21 12.87 7.12 

1.5 13.5 45 150 23.11 26.98 8.01 6.24 

1.5 16.5 45 350 28.03 24.45 7.48 6.85 

* 1.5 13.5 25 150 30.02 24.15 8.54 7.25 

0.8 15.0 35 250 32.14 12.54 5.17 4.03 

4.2 15.0 35 250 21.12 34.77 13.99 7.34 

2.5 12.5 35 250 18.55 29.76 10.22 5.52 

2.5 17.5 35 250 41.32 28.01 10.12 11.57 

2.5 15.0 18 250 38.65 31.77 11.32 12.28 

* 2.5 15.0 52 250 20.88 30.00 11.56 6.26 

2.5 15.0 35 81 25.49 28.04 9.87 7.15 

2.5 15.0 35 418 26.74 32.55 10.41 8.70 

2.5 15.0 35 250 25.77 31.33 11.55 8.07 

2.5 15.0 35 250 23.41 30.74 9.87 7.20 

2.5 15.0 35 250 25.14 29.65 10.44 7.45 

* 2.5 15.0 35 250 26.11 28.14 9.54 7.35 

Note: X, S, and Y denote conversion, selectivity and yield, respectively, and C2+ comprises C2H4, C2H6, 

C2H2, C3H8. 

* These data were used as test set. 

X1 (CH4/CO2 feed ratio); X2 (Discharge voltage, kV); X3 (Total feed flow rate, cm3/min); X4 (Reactor 

wall temperature, oC); Pressure: 1 atm; Catalyst loading: 5 gram; Frequency: 2 kHz (pulse) 

Table 2. Experimental data of hybrid catalytic DBD plasma reactor at low temperature 

(Istadi, 2006) 
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Therefore, an input vector from the training set is applied to the network input nodes, and 
subsequently outputs of the hidden and output nodes are computed. The outputs are 
computed as follows: (a) the weighted sum of all the node-specific input is evaluated, which 
is then transformed using a nonlinear activation function (f), such as tangent-sigmoid 
(tansig) and linear (purelin) transfer functions for hidden and output layers, respectively; (b) 
the outputs from the output nodes {yi,k} are then compared with their target values {ti,k}, and 
the difference is used to compute the MSE (Equation 2); (c) upon the MSE computation, the 
weight matrices WH and WO are updated using the corresponding method (Levenberg-
Marquardt) (Hagan & Menhaj, 1994; Yao et al., 2005). 

In the back-propagation training method, the input x and target t values were normalized 
linearly to be within the range [-1 1]. The normalization of inputs and outputs leads to 
avoidance of numerical overflows due to very large or very small weights (Razavi et al., 
2003; Bowen et al., 1998; Yao et al., 2005). This normalization was performed to prevent 
mismatch between the influence of some input values to the network weights and biases. 
Network training was performed using Levenberg-Marquardt algorithm due to its fast 
convergence and reliability in locating the global minimum of the mean-squared error 
(MSE) (Levenberg-Marquardt) (Hagan & Menhaj, 1994; Yao et al., 2005). The transfer 
function at the hidden layer nodes is tangent sigmoid, which is nonlinear but differentiable. 
The output node utilizes the linear transfer function so that the input values n equal to the 
output values y. The normalized output values yn are retransformed to its original range 
(Razavi et al., 2003; Bowen et al., 1998; Yao et al., 2005).  

 

Fig. 1. A schematic diagram of the multi-layered perceptron (MLP) in feed-forward neural 
network with back-propagation training (X1: CH4/CO2 ratio; X2: discharge voltage; X3: total 
feed flow rate; X4: reactor temperature; yo1: CH4 conversion; yo2: C2 hydrocarbons selectivity; 
yo3: Hydrogen selectivity; and yo4: C2 hydrocarbons yield)  
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In terms of multi-objective optimization, GA was used for solving the scalar optimization 

problem based on the principle of survival of the fittest during the evolution. The GA 

implements the “survival of the fittest” and “genetic propagation of characteristics” 

principles of biological evolution for searching the solution space of an optimization 

problem. In nature, individuals must adapt to the frequent changing environment in order 

to survive. The GA is one of the strategic randomized search techniques, which are well 

known for its robustness in finding the optimal or near-optimal solution since it does not 

depend on gradient information in its walk of life to find the best solution. Various kinds of 

algorithm were reported by previous researchers (Tarca et al., 2002; Nandi et al., 2002, 2004; 

Kundu et al., 2009; Bhatti et al., 2011).  

The GA uses and manipulates a population of potential solutions to find optimal solutions. 

The generation is complete after each individual in the population has performed the 

genetic operators. The individuals in the population will be better adapted to the 

objective/fitness function, as they have to survive in the subsequent generations. At each 

step, the GA selects individuals at random from the current population to be parents and 

uses them to produce the children for the next generation. Over successive generation, the 

population evolves toward an optimal solution. The GA uses three main types of rules at 

each step to create the next generation from the current population: (a) Selection rules select 

the individuals, called parents, that contribute to the population at the next generation; (b) 

Crossover rules combine two parents to form children for the next generation; (c) Mutation 

rules apply random changes to individual parents to form children. 

The detail stepwise procedures for the hybrid ANN-GA algorithm for simultaneous 
modelling and optimization are described below and are depicted schematically in Figure 2: 

Step 1. (Development of an ANN-based model): Specify input and output experimental 
data of the system used for training and testing the ANN-based model. Create the 
network architecture involving input, hidden and output layers. Investigate the 
optimal network architecture (optimal number of hidden layer) and make sure that 
the network is not overfitted. 

Step 2. (Training of the ANN-based model): Normalize the experimental input and output 

data to be within the range [-1 1]. The normalization is performed to prevent 

mismatch between the influence of some input values to the network weights and 

biases. Train the network using the normalized data by utilizing a robust training 

algorithm (Levenberg-Marquardt). 

Step 3. (Initialization of solution population): Set the initial generation index (Gen) to zero 

and the number of population (Npop). Set the number of independent variables 

(nvars). Generate a random initial population of Npop individuals. Each individual 

possesses vector entries with certain length or called as genes which are divided into 

many segments based on the number of decision variables (nvars). 

Step 4. (Fitness computation): In this step the performance (fitness) of the solution vector 

in the current population is computed by using a fitness function. Normalize the 

solution vector xj to be within the range [-1 1]. Next, the vector xj is entered as 

inputs vector to the trained ANN-based model to obtain the corresponding outputs 

yj, yj=f(xj,W, b). Re-transform the output vector yj to the original values that are 

subsequently utilized to compute the fitness value/scores of the solution.  

www.intechopen.com



Different Tools on Multi-Objective Optimization of a Hybrid Artificial 
Neural Network – Genetic Algorithm for Plasma Chemical Reactor Modelling 

 

9 

 

Fig. 2. Flowchart of the hybrid ANN-GA algorithms for modelling and optimization 

Step 5. (Scaling the fitness scores): Scale/rank the raw fitness scores to values in a range that 
is suitable for the selection function. In the GA, the selection function uses the scaled 
fitness values to choose the parents for the next generation. The range of the scaled 
values influences performance of the GA. If the scaled values vary too widely, the 
individuals with the highest scaled values reproduce too rapidly, taking over the 
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population gene pool too quickly, and preventing the GA from searching other areas 
of the solution space. On the other hand, if the scaled values vary only a little, all 
individuals have approximately the same chance of reproduction and the search will 
progress slowly. The scaling function used in this algorithm scales the raw scores 
based on the rank of each individual instead of its score. Because the algorithm 
minimizes the fitness function, lower raw scores have higher scaled values.  

Step 6. (Parents selection): Choose the parents based on their scaled values by utilizing the 
selection function. The selection function assigns a higher probability of selection to 
individuals with higher scaled values. An individual can be selected more than 
once as a parent.  

Step 7. (Reproduction of children): Reproduction options determine how the GA creates 
children for the next generation from the parents. Elite count (Echild) specifies the 
number of individuals with the best fitness values that are guaranteed to survive to 
the next generation. Set elite count to be a positive integer within the range: 1 ≤ Echild 
≤ Npop. These individuals are called elite children. Crossover fraction (Pcross) 
specifies the fraction of each population, other than elite children, that are produced 
by crossover. The remaining individuals in the next generation are produced by 
mutation. Set crossover fraction to be a fraction between 0 and 1. 

- Crossover: Crossover enables the algorithm to extract the best genes from different 
individuals by selecting genes from a pair of individuals in the current generation 
and recombines them into potentially superior children for the next generation 
with the probability equal to crossover fraction (Pcross) from Step 7.  

- Mutation: Mutation function makes small random changes in the individuals, 
which provide genetic diversity and thereby increases the likelihood that the 
algorithm will generate individuals with better fitness values.  

Step 8. (Replaces the current population with the children): After the reproduction is 
performed and the new children are obtained, the current populations are replaced 
with the children to form the next generation.  

Step 9. Update/increment the generation index): Increment the generation index by 1: 
Gen=Gen+1. 

Step 10. (Repeat Steps 4-9 until convergence is achieved): Repeat the steps 4-9 on the new 
generation until the convergences are met. The GA uses the following five criteria 
to determine when the algorithm stops: 

• Generations: the algorithm stops when the number of generation reaches the 
maximum value (Genmax). 

• Fitness limit: the algorithm stops when the value of the fitness function for the best 
point in the current population is less than or equal to Fitness limit. 

• Time limit: the algorithm stops after running for an amount of time in seconds equal 
to Time limit. 

• Stall generations: the algorithm stops if there is no improvement in the objective 
function for a sequence of consecutive generations of length Stall generations. 

• Stall time limit: the algorithm stops if there is no improvement in the objective 
function during an interval of time in seconds equal to Stall time limit.The algorithm 
stops if any one of these five conditions is met. 

Step 11. (Assign the top ranking of children to the optimal solution vector): After the GA 
convergence criteria is achieved, the children possessing top ranking of fitness 
value is assigned to the optimized population or decision variable vector, x*. 
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There is a vector of objectives, F(X) = {F1(X), F2(X),…, FM(X)} where M denotes the number 
of objectives, that must be considered in chemical engineering process. The optimization 
techniques are developed to find a set of decision parameters, X={X1, X2, …, XN} where N is 
the number of independent variables. As the number of responses increases, the optimal 
solutions are likely to become complex and less easily quantified. Therefore, the 
development of multi-objectives optimization strategy enables a numerically solvable and 
realistic design problem (Wu et al., 2002; Yu et al., 2003). In this method, a set of design goals, 
F* = {F1*, F2*, ..., FM*} is associated with a set of objectives, F(X) = {F1(X), F2(X),…, FM(X)}. The 
multi-objectives optimization formulation allows the objectives to be under- or over-
achieved which is controlled by a vector of weighting coefficient, w={w1, w2, ..., wM}. The 
optimization problem is formulated as follow: 

 
1 1 1

, x  

2 2 2

inimize     subject to      

                                              

m F (x) - w ┛ F *

F (x) - w ┛ F *

γ
γ

∈ Ω
≤

≤
 (3) 

Specification of the goals, (F1*, F2*), defines the goal point. The weighting vector defines the 
direction of search from the goal point to the feasible function space. During the 
optimization, γ is varied which changes the size of the feasible region. The constraint 
boundaries converge to the unique solution point (F1s, F2s). 

3. Results and discussion 

3.1 Development and testing of artificial neural network – Genetic algorithm model  

In developing a phenomenological model, it is mandatory to consider detailed kinetics of 
stated multiple reactions in the conservation equations. However, due to the tedious 
procedures involved in obtaining the requisite kinetic information within phenomenological 
model, the empirical data-based ANN-GA modelwas chosen for maximizing the process 
performances. In this study, simultaneous modeling and multi-objectives optimization of 
catalytic-plasma reactor for methane and carbon dioxide conversions to higher 
hydrocarbons (C2) and hydrogen was done. The purpose of multi-objectives optimization is 
to maximize the process performances simultaneously, i.e. CH4 conversion (Y1) and C2 
hydrocarbons yield (Y4). Accordingly, four parameters namely CH4/CO2 ratio (X1), 
discharge voltage (X2), total feed flow rate (X3), and reactor temperature (X4), generate input 
space of the ANN model. In the ANN model, the four parameters and four targeted 
responses (CH4 conversion (yo1), C2 hydrocarbons selectivity (yo2), Hydrogen selectivity (yo3), 
and C2 hydrocarbons yield (yo4) were developed and simulated. 

Regarding the simultaneous modeling and optimization using the ANN-GA method (Figure 
2), accuracy of the hybrid method was validated by a set of simple discrete data extracted 
from a simple quadratic equation (i.e. y= -2x2 + 15x + 5). From the testing, the determination 
coefficient (R2) of the method closes to 1 means the empirical method (ANN-GA) has a good 
fitting, while the relative error of the optimized results (comparison between GA results and 
analytical solution) are below 10%.  

In this chapter, Multi Input and Multi Output (MIMO) system with 4 inputs and 4 outputs 

of the ANN model was developed. Prior to the network training, numbers of experimental 

data (Table 2) were supplied into the training. The data were obtained based on the 
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experimental design (central composite design) as revealed in Tables 1 and 2. In each 

network training, the training data set was utilized for adjusting the weight matrix set, W. 

The performance of the ANN model is considered as fitness tests of the model, i.e. MSE, R, 

and epoch number (epochs). Comparison of the ANN model performance for various 

topologies was performed. The MSE decreases and R increases with increasing number of 

nodes in the hidden layer. However, increasing number of hidden layer takes more time in 

computation due to more complexity of the model. Therefore, optimization of layer number 

structure is important step in ANN modeling. 

The ANN model fitness in terms of comparison between targeted (t) and predicted (y) 
performances is shown in Figures 3 and 4. In the figures, the ANN models are fit well to the 
experimental data which is demonstrated by high determination coefficients (R2) of 0.9975 
and 0.9968 with respect to CH4 conversion (y1) and C2 hydrocarbons yield (y2) models, 
respectively. The high R2 and low MSE value implies a good fitting between the targeted 
(experimental) and the predicted (calculated) values. Therefore, the ANN-based models are 
suitable for representing the plasma-catalytic conversion of methane and carbon dioxide to 
higher hydrocarbons. From the simulation, the hybrid ANN-GA algorithm is supposed to 
be powerful for simultaneous modeling and optimizing process conditions of the complex 
process as inline with the previous literatures (Istadi & Amin, 2006, 2007) with similar 
algorithm. The R2 by this method is high enough (higher than 0.95). The ANN-GA model has 
advantageous on the fitted model which is a complex non linear model. This is to improve the 
weaknesses of the response surface methodology that is forced to quadratic model. 

3.2. Multi-objective oOptimization of DBD plasma - Catalytic reactor performances 

In this study, simultaneous modeling and multi-objective optimization of catalytic-plasma 

reactor for methane and carbon dioxide conversions to higher hydrocarbons (C2) and 

hydrogen was performed. The multi-objective optimization is aimed to maximize the CH4 

conversion (Y1) and C2 hydrocarbons yield (Y4) simultaneously. Accordingly, four respected 

parameters, namely CH4/CO2 ratio (X1), discharge voltage (X2), total feed flow rate (X3), and 

reactor temperature (X4) are optimized stated as input space of the ANN model. In the ANN 

model, the four parameters and four targeted responses (CH4 conversion (yo1), C2 

hydrocarbons selectivity (yo2), hydrogen selectivity (yo3), and C2 hydrocarbons yield (yo4)) 

were developed and simulated. In this case, two responses or objectives can be optimized 

simultaneously to obtain optimum four respected process parameters, i.e. CH4 conversion 

and C2 hydrocarbons yield (yo1 and yo4), CH4 conversion and C2hydrocarbon selectivity (yo1 

and yo2), or CH4 conversion and hydrogen selectivity (yo1and yo3). For maximizing F1 and F4 

(CH4 conversion and C2hydrocarbons yield, respectively), the actual objective functions are 

presented in Equation 4 which is one of the popular approaches for inversion (Deb, 2001; 

Tarafder et al., 2005). The equation was used due to the default of the optimization function 

is minimization. 

 
,

1

1
i

i o

F
F

=
+

 (4) 

where Fi,o denotes the real objective functions, while Fi is the inverted objective functions for 
minimization problem. 
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For the multi-objectives optimization, the decision variables/operating parameters bound 
were chosen from the corresponding bounds in the training data as listed in Table 3. 
Meanwhile, Table 4 lists the numerical parameter values used in the GA for all optimization 
runs. In this optimization, rank method was used for fitness scaling, while stochastic 
tournament was used for selection method to specify how the GA chooses parents for the 
next generation. Meanwhile, scattered method was chosen for crossover function and 
uniform strategy was selected for mutation function. From the 40 numbers of population 
size, two of them are elite used in the next generation, while 80% of the rest population was 
used for crossover reproduction and 20% of them was used for mutation reproduction with 
5% rate. 

 

Operating Parameters Bounds 

CH4/CO2 feed ratio 1.5 ≤ X1 ≤ 4.0 
Discharge voltage (kV) 12 ≤ X2 ≤ 17 
Total feed flow rate (cm3/min) 20 ≤ X3 ≤ 40 
Reactor temperature (oC) 100 ≤ X4 ≤ 350 

Table 3. Operating parameters bound used in multi-objectives optimization of DBD plasma 
reactor without catalyst 

 

Computational Parameters Values 

Population size 40 
Elite count 2 
Crossover fraction 0.80 
Number of generation 20 
Fitness scaling function fitscalingrank 
Selection function selectiontournament 
Crossover function crossoverscattered 
Mutation function mutationuniform 
Mutation probability 0.05 

Table 4. Computational parameters of GA used in the multi-objectives optimization 

The Pareto optimal solutions owing to the simultaneous CH4 conversion and C2 

hydrocarbons yield and the corresponding four process parameters are presented in Figure 

5. The Pareto optimal solutions points are obtained by varying the weighting coefficient (wk) 

in Equation (3) (goal attainment method) and performing the GA optimization 

corresponding to each wk so that the γ reaches its minimum value (Fk(x)-wk.┛ ≤ Fk) (goal). 

From Figure 5, it was found in the Pareto optimal solution that if CH4 conversion improves, 

C2hydrocarbons yield deteriorates or vice versa. Theoretically, all sets of non-

inferior/Pareto optimal solutions are acceptable. The maximum CH4 conversion and C2 

hydrocarbons yield of 48 % and 15 %, respectively are recommended at corresponding 

optimum process parameters of CH4/CO2 feed ratio 3.6, discharge voltage 15 kV, total feed 

flow rate 20 cm3/min, and reactor temperature of 147 oC. Larger CH4 amount in the feed 

and higher feed flow rate enhance the C2+ hydrocarbons yield which is corroborated with 

the results of Eliasson et al. (2000). From the Pareto optimal solutions and the corresponding 

optimal operating parameters, the suitable operating conditions ranges for DBD plasma 
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reactor owing to simultaneous maximization of CH4 conversion and C2hydrocarbons yield 

can be recommended easily.  

 

Fig. 3. Comparison of targeted (experimental) and predicted (calculated) CH4 conversion of 
the ANN model (R2=0.9975) (* : test set data) 

 

Fig. 4. Comparison of targeted (experimental) and predicted (calculated) C2 hydrocarbons 
yield of the ANN model (R2=0.9968) (* : test set data) 
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Fig. 5. Pareto optimal solutions with respect to multi-objectives optimization of CH4 
conversion (Y1) and C2hydrocarbons yield (Y2).  

3.3 Effect of hybrid catalytic-plasma DBD reactor for CH4 and CO2 conversions 

When a gas phase consisting electrically neutral species, electrons, ions and other excited 

species flow through the catalyst bed, the catalyst particles become electrically charged. 

The charge on the catalyst surface, together with other effects of excited species in the gas 

discharge leads to the variations of electrostatic potential of the catalyst surface. The 

chemisorption and desorption performances of the catalyst therefore may be modified in 

the catalyst surface (Jung et al., 2004; Kraus et al., 2001). Effects of these modifications on 

methane conversion are dependent on the amount and concentration of surface charge 

and the species present at the catalyst surface (Kim et al., 2004). The combining DBD 

plasma and a heterogeneous catalyst are possible to activate the reactants in the discharge 

prior to the catalytic reaction, which should have positive influences on the reaction 

conditions.  

Comparison of the application of DBD plasma technology in CH4 and CO2 conversion with 

catalyst is studied in this research. Since most of the energetic electrons are required to 

activate the CH4 and CO2 gases in a discharge gap, special consideration must be taken in 

the designing a reactor that maximizes the contact time between the energetic electrons and 

the neutral feed gas species. The catalyst located in the discharge gap is an alternative way 

to increase the time and area of contact between gas molecules and energetic electrons in 

addition to other modification of electronic properties. The energetic electrons determine the 

chemistry of the conversions of both gases (Eliasson et al., 2000; Yao et al., 2000; Zhou et al., 

1998). The nature of dielectric and electrode surfaces is also an important factor for products 

distribution of CH4 and CO2 conversions using the DBD.  
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In the catalytic DBD plasma reactor system, the catalyst acts as a dielectric material. Most of 
the discharge energy is used to produce and to accelerate the electrons generating highly 
active species (metastable, radicals and ions). The combined action of catalysts and a non-
equilibrium gas discharge leads to an alternative method for production of syngas and 
hydrocarbons from CH4 and CO2. When an electric field is applied across the packed 
dielectric layer, the catalyst is polarized and the charge is accumulated on the dielectric 
surface. An intense electric field is generated around each catalyst pellet contact point 
resulting in microdischarges between the pellets. The microdischarges in the packed-bed of 
catalyst produced energetic electrons rather than ions. The microdischarges induced a 
significant enrichment of electrons that were essential for the sustainability of plasmas. 
Methane and carbon dioxide were chemically activated by electron collisions. Liu et al. 
(1997) concluded that the electronic properties of catalysts have an important role in 
oxidative coupling of methane using DBD plasma reactor. The electronic properties and 
catalytic properties can be expected to be changed if the catalyst is electrically charged. 

From the non-catalytic DBD plasma reactor, it is shown that the plasma process seems to be 
less selective than conventional catalytic processes, but it has high conversion. The 
conventional catalytic reactions on the other hand can give high selectivity, but they require 
a certain gas composition, an active catalyst, and high temperature condition (endothermic 
reaction). In the hybrid catalysis-plasma, the catalyst has important roles such as increasing 
the reaction surface area, maintaining and probably increasing the non-equilibrium 
properties of gas discharge, acting as a dielectric-barrier material, and improving the 
selectivity and efficiency of plasma processes by surface reactions. The catalyst placed in the 
plasma zone can influence the plasma properties due to the presence of conductive surfaces 
in the case of metallic catalysts (Heintze & Pietruszka, 2004; Kizling & Järås, 1996). The 
catalyst can also change the reaction products due to surface reactions. The heating and 
electronic properties of the catalyst by the plasma induce chemisorption of surface species. 
A synergy between the catalyst and the plasma is important so that the interactions lead to 
improved reactant conversions and higher selectivity to the desired products. However 
until now, the exact role of the catalyst in the DBD plasma reactor is still not clear from the 
chemistry point of view. Even the kind of plasma reactor determines the product selectivity 
(Gordon et al., 2001). The most significant influence of the plasma was observed at low 
temperatures (Liu et al., 2001b) at which the catalysts were not active. At higher 
temperatures the catalysts became active; nonetheless, the plasma catalytic effect was still 
observed (Huang et al., 2000). 

3.4. Simulation of DBD plasma - Catalytic reactor performances  

This section demonstrates ANN simulation for the effect of operating parameters (X1, X2, X3, 
X4) in catalytic DBD plasma reactor on CH4 conversion (y1) and C2 hydrocarbons yield (y4). 
The simulation results were presented in three dimensional surface graphics (Figures 6 to 
13). From the results, the CH4 conversion and C2 hydrocarbons yield are affected by 
CH4/CO2 feed ratio, discharge voltage, total feed flow rate, and reactor wall temperature 
from the ANN-based model simulation.  

Figures 6, 7, 8, and 9 simulates the effect of discharge voltage, CH4/CO2 feed ratio, total feed 
flow rate, and reactor temperature on the methane conversion. Increasing the discharge 
voltage improves methane conversion significantly. That is true because energy of energetic  
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Fig. 6. Effect of discharge voltage (X2) and CH4/CO2 ratio (X1) toward methane conversion (y1) 

 

Fig. 7. Effect of total flow rate (X3) and CH4/CO2 ratio (X1) toward methane conversion (y1) 

electrons is dependent on the discharge voltage. Higher the discharge voltage, higher the 
energy of electrons flows from high voltage electrode to ground electrode. Increasing the 
CH4 concentration in the feed favors the selectivity of C2 hydrocarbons and hydrogen 
significantly, but the C2 hydrocarbons yield is slightly affected due to the decrease of CH4 
conversion. It is suggested that the CH4 concentration in the feed is an important factor for 
the total amount of hydrocarbons produced. However, increasing CH4/CO2 ratio to 4 
reduces the methane conversion considerably and leads to enhanced C2 hydrocarbons 
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selectivity and H2/CO ratio. It is confirmed that CO2 as co-feed has an important role in 
improving CH4 conversion by contributing some oxygen active species from the CO2. This 
phenomenon is corroborated with the results of Zhang et al. (2001).  

Effect of total feed flow rate on methane conversion is displayed in Figures 7 and 8. From 
the figures, total feed flow rate has significant effect on methane conversion. Higher the total 
feed flow rate, lower methane conversion. This is due to primarily from short collision of 
energetic electrons with feed gas during flow through the plasma reactor. Therefore, only a 
few reactant molecules that has been cracked by the energetic electrons.  

 

Fig. 8. Effect of total flow rate (X3) and discharge voltage (X2) toward methane conversion (y1) 

 

Fig. 9. Effect of reactor temperature (X4) and discharge voltage (X2) toward methane 
conversion (y1) 
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Figures 10, 11, 12, and 13presents the effect of discharge voltage, CH4/CO2 feed ratio, total 
feed flow rate, and reactor temperature on the C2 hydrocarbons yield. The yield of gaseous 
hydrocarbons (C2) increases with the CH4/CO2 feed ratio as exhibited in Figure. It is 
possible to control the composition of C2 hydrocarbons and hydrogen products by adjusting 
the CH4/CO2 feed ratio. Increasing CH4/CO2 ratio above 2.5 exhibits dramatic enhancement 
of C2hydrocarbons yield and lowers CH4 conversion slightly. In this work, the composition 
of the feed gas is an essential factor to influence the product distribution. Obviously, more 
methane in the feed will produce more light hydrocarbons.  

In comparison with non-catalytic DBD plasma reactor, the enhancement of reactor 
performance is obtained when using the hybrid catalytic-DBD plasma reactor (Istadi, 2006). 
The CH4 conversion, C2 hydrocarbons selectivity, C2 hydrocarbons yield and H2 selectivity 
of catalytic DBD plasma reactor is higher than that without catalyst (Istadi, 2006). The 
catalyst located in the discharge gap can increase the time and area of contact in addition to 
other modification of electronic properties. Therefore, collision among the energetic 
electrons and the gas molecules is intensive. Through the hybrid system, the chemisorption 
and desorption performances of the catalyst may be modified in the catalyst surface (Jung et 
al., 2004; Kraus et al., 2001) which is dependent on the amount and concentration of surface 
charge and the species on the catalyst surface (Kim et al., 2004). The results enhancement 
was also reported by Eliasson et al. (2000) over DBD plasma reactor with high input power 
500 W (20 kV and 30 kHz) that the zeolite catalyst introduction significantly increased the 
selectivity of light hydrocarbons compared to that in the absence of zeolite.  

Varying the discharge power/voltage affects predominantly on methane conversion and 
higher hydrocarbons (C2) yield and selectivity. At high discharge voltage the CH4 
conversion becomes higher than that of CO2 as presented in Table 2, since the dissociation 
energy of CO2 (5.5 eV) is higher than that of CH4 (4.5 eV) as reported by Liu et al. (1999a). 
More plasma species may be generated at higher discharge voltage. Previous researchers 
suggested that the conversions of CH4 and CO2 were enhanced with discharge power in a 
catalytic DBD plasma reactor (Caldwell et al., 2001; Eliasson et al., 2000; Zhang et al., 2001) 
and non-catalytic DBD plasma reactor (Liu et al., 2001b). From Figures10 and 12, the yield of 
C2 hydrocarbons decreases slightly with the discharge voltage which is corroborated with 
the results of Liu et al. (2001b). This means that increasing discharge power may destroy the 
light hydrocarbons (C2-C3). In this research, the lower range of discharge power (discharge 
voltage 12 - 17 kV and frequency 2 kHz) does not improve the H2 selectivity over DBD 
plasma reactor although the catalyst and the heating was introduced in the discharge space 
as exhibited in Figures 9 and 13. Eliasson et al. (2000) reported that higher discharge power 
is necessary for generating higher selectivity to higher hydrocarbons (C5+) over DBD plasma 
reactor with the presence of zeolite catalysts. Higher discharge power is suggested to be 
efficient for methane conversion. As the discharge power increases, the bulk gas 
temperature in the reaction zone may also increase. 

The total feed flow rate also affects predominantly on residence time of gases within the 

discharge zone in the catalytic DBD plasma reactor. Therefore, the residence time influences 

collisions among the gas molecules and the energetic electrons. Increasing the total feed 

flow rate reduces the residence time of gases and therefore decreases the C2 hydrocarbons 

yield dramatically as demonstrated in Figures 11 and 12. A lower feed flow rate is beneficial 

for producing high yields light hydrocarbons (C2+) and synthesis gases with higher H2/CO 
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ratio as reported by Li et al. (2004c). The hydrogen selectivity is also affected slightly by the 

total feed flow rate within the range of operating conditions. Indeed, the total feed flow rate 

affects significantly on the methane conversion rather than yield of C2 hydrocarbons. 

Actually, the low total feed flow rate (high residence time) leads to high intimate collision 

among the gas molecules, the catalyst and high energetic electrons. The high intensive 

collisions favor the methane and carbon dioxide conversions to C2+ hydrocarbons. 

From Figures 9 and 13, it is evident that the current range of reactor temperature only affects 
the catalytic - DBD plasma reactor slightly. The methane conversion and C2 hydrocarbons 
yield is only affected slightly by reactor wall temperature over the CaO-MnO/CeO2 catalyst. 
This may be due to the altering of the catalyst surface phenomena and the temperature of 
energetic electrons is quite higher than that of reactor temperature. The adsorption-
desorption, heterogeneous catalytic and electronic properties of the catalysts may change 
the surface reaction activity when electrically charged. However, the chemistry and physical 
phenomena at the catalyst surface cannot be determined in the sense of traditional catalyst. 
Some previous researchers implied that the synergistic effect of catalysis-plasma only 
occurred at high temperature where the catalyst was active. Huang et al. (2000) and Heintze 
& Pietruszka (2004) pointed out that the product selectivity significantly improved only if 
the temperature was high enough for the catalytic material to become itself active. Zhang et 
al. (2001) also claimed that the reactor wall temperature did not significantly affect the 
reaction activity (selectivity) over zeolite NaY catalyst under DBD plasma conditions at the 
temperature range tested (323-423 K). Particularly, increasing the wall temperature at the 
low temperature range tested did not affect the reaction activity under plasma conditions. In 
contrast, some other researchers suggested that the synergistic effect of catalysis – plasma 
may occur at low temperature. Based on the ANN-based model simulation, it can be 
suggested that low total feed flow rate, high CH4/CO2 feed ratio, high discharge voltage 
and proper reactor temperature are suitable for producing C2+ hydrocarbons and synthesis 
gas over catalytic DBD plasma reactor.  

 

Fig. 10. Effect of discharge voltage (X2) and CH4/CO2 ratio (X1) toward C2 hydrocarbons 
yield (y4) 
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Fig. 11. Effect of total feed flowrate (X3) and CH4/CO2 ratio (X1) toward C2 hydrocarbons 
yield (y4) 

 

 

 

Fig. 12. Effect of total feed flowrate (X3) and discharge voltage (X2) toward C2 hydrocarbons 
yield (y4) 
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Fig. 13. Effect of reactor temperature (X4) and discharge voltage (X2) toward C2 
hydrocarbons yield (y4) 

4. Conclusions 

A hybrid ANN-GA was successfully developed to model, to simulate and to optimize 
simultaneously a catalytic–DBD plasma reactor. The integrated ANN-GA method facilitates 
powerful modeling and multi-objective optimization for co-generation of synthesis gas, C2 
and higher hydrocarbons from methane and carbon dioxide in a DBD plasma reactor. The 
hybrid approach simplified the complexity in process modeling of the DBD plasma reactor. 
In the ANN model, the four parameters and four targeted responses (CH4 conversion (yo1), 
C2 hydrocarbons selectivity (yo2), hydrogen selectivity (yo3), and C2 hydrocarbons yield (yo4) 
were developed and simulated. In the multi-objectives optimization, two responses or 
objectives were optimized simultaneously for optimum process parameters, i.e. CH4 
conversion (yo1) and C2 hydrocarbons yield (yo4). Pareto optimal solutions pertaining to 
simultaneous CH4 conversion and C2 hydrocarbons yield and the corresponding process 
parameters were attained. It was found that if CH4 conversion improved, C2 hydrocarbons 
yield deteriorated, or vice versa. Theoretically, all sets of non-inferior/Pareto optimal 
solutions were acceptable. From the Pareto optimal solutions and the corresponding optimal 
operating parameters, the suitable operating condition range for DBD plasma reactor for 
simultaneous maximization of CH4 conversion and C2 hydrocarbons yield could be 
recommended easily. The maximum CH4 conversion and C2 hydrocarbons yield of 48 % and 
15 %, respectively were recommended at corresponding optimum process parameters of 
CH4/CO2 feed ratio 3.6, discharge voltage 15 kV, total feed flow rate 20 cm3/min, and 
reactor temperature of 147 oC. 

5. Abbreviations 

ANN  : artificial neural network 
GA  : genetic algorithm 
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ANN-GA : artificial neural network – genetic algorithm 
DBD  : dielectric-barrier discharge 
NSGA  : non-dominated sorting genetic algorithm 
CO2 OCM : carbon dioxide oxidative coupling of methane 
O2 OCM  : oxygen oxidative coupling of methane 
CCD  : central composite design 
MSE  : mean square error 
MLP  : multi-layered perceptron 
WSSOF  : weighted sum of square objective function 
MIMO  : multi input multi output 
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