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1. Introduction 

One of the critical and chronic complications of preterm birth is bronchopulmonary 
dysplasia (BPD). The incidence of BPD is high, ranging from 40% to 70% of infants born 
before 28 completed weeks’ gestation (Stoll et al., 2010). The disease is characterized by 
impaired alveolar and vascular maturation, with long-term consequences on a number of 
systems including neurodevelopment. Risk factors for BPD include gestational age at birth, 
sex, inflammation and/or infection, oxygen supplementation, mechanical ventilation, and 
parenteral nutrition. Although the etiology of BPD is not well understood, risk factors are all 
associated with oxidative stress. A modulation of the redox environment is believed to play 
a major role in the pathogenesis of BPD.  
This chapter will start by describing BPD, and then focus on the molecules involved in 
oxidative stress, the aim being that a better understanding favours more effective clinical 
intervention. Each of the risk factors in turn will be discussed according to the implied redox 
modifications occurring during BPD development.  

2. Description of BPD 

2.1 Historical perspective  

Prior to the era of mechanical ventilation, few infants of very low birth weight (less than 
1500 g) survived, and neonatal mortality for extremely low birth weight infants (less than 
1000 g) exceeded 90% (Behrman et al., 1971). Most survivors required little or no oxygen 
supplementation initially but later deteriorated to requirements of up to 40% in order to 
prevent cyanosis. On radiography, findings included microcystic changes as well as varying 
degrees of hyperinflation and flattening of the diaphragm. Some infants recovered 
spontaneously over weeks to months but others died, with postmortem examination 
revealing hyperaeration and reduced alveolar septa. Wilson and Mikity in 1960 were the 
first to describe this chronic pulmonary syndrome, in a case report of five very small 
preterm survivors (Wilson & Mikity, 1960). At that time, assisted ventilation was not used in 
preterm infants. An additional 29 babies with Wilson–Mikity syndrome (WMS) were 
identified at the same medical institution in 1969 (Hodgman et al., 1969), and many other 
cases worldwide. 
After the introduction of mechanical ventilation to manage respiratory distress syndrome in 
the mid-1960s, reports began to appear of radiographic and pathological abnormalities that 
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seemed to result from exposure to high concentrations of oxygen and mechanical 
ventilation. In 1967, Northway et al. coined the term “bronchopulmonary dysplasia” to 
describe findings of pulmonary complications following respiratory therapy for hyaline 
membrane disease (Northway et al., 1967). Northway et al. believed the critical factor to be 
exposure to an inspired oxygen concentration > 80% for longer than 150 hours. 
The 1990s saw major changes in both obstetric and neonatal care for preterm labour, with 
surfactant administration and assisted ventilation. The outcome of most preterm infants 
improved in the first half of the decade, particularly for infants with very low birth weight, 
who benefitted from decreased mortality and morbidity (Horbar et al., 2002). Following 
these changes, classical BPD, which occurred as a result of injury to the immature lung, 
became less common. Chronic lung disease in preterm infants became increasingly 
attributable to the response of the immature lung to early air breathing rather than to 
damage from barotrauma or oxygen toxicity. In 1999, Jobe described the “new” BPD as 
occurring in immature infants who did not have extensive lung disease soon after birth 
(Jobe, 1999). Jobe attributed the “new” BPD to pulmonary anomalies resulting from an 
inhibition of alveolar and vascular development (Jobe, 1999). 

2.2 Clinical definitions 

With the change in clinical presentation over time, a variety of definitions of BPD have been 
used in the literature. 
i. Original criteria for BPD: A U.S. National Institutes of Health (NIH) workshop held in 

1979 proposed to define BPD as a “continued oxygen dependency during the first 28 
days plus compatible clinical and radiographic changes” (Natl Inst Health Consens Dev 
Conf Summ, 1979). 

ii. Traditional definition: Instead of the original definition, Shennan et al. (1988) 
suggested a more accurate predictor of BPD to be, “the requirement for additional 
oxygen at a corrected postnatal gestational age of 36 weeks in infants born with a birth 
weight of less than 1,500 g”.  This definition appears to also predict pulmonary outcome 
among infants with the “new” BPD (Davis et al., 2002).  

iii. Severity definition: Participants at a joint U.S. National Institute of Child Health & 

Human Development (NICHD)-National Heart, Lung, and Blood Institute (NHLBI) 

workshop defined mild, moderate and severe BPD according to both 28 days’ and 36 

weeks’ criteria (Jobe & Bancalari, 2001). Mild BPD was defined as the need for 

supplemental oxygen at 28 days after birth but not at 36 weeks’ postmenstrual age 

(PMA); moderate BPD, the need for supplemental oxygen at 28 days and at a fraction of 

inspired oxygen (FiO2) < 0.30 at 36 weeks’ PMA; and severe BPD, the need for 

supplemental oxygen at 28 days and, at 36 weeks’ PMA, the need for mechanical 

ventilation and/or FiO2 > 0.30. In a validation study, the NICHD–NHLBI workshop 

definitions accurately predicted pulmonary outcomes including percent of patients 

needing treatment with pulmonary medications and rehospitalization for pulmonary 

causes (Ehrenkranz et al., 2005). 

iv. Physiological definition: An inherent limitation of all previous definitions is that the 
need for oxygen is determined by individual physicians rather than on the basis of a 
physiologic assessment. The assumption that the criteria on which the decision to 
administer oxygen is uniform and applied similarly across institutions is erroneous 
because there is no consensus in the literature, neonatologists have widely divergent 
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practices regarding oxygen-saturation targets. Indeed, published literature cites 
acceptable saturation ranges from 84% to 98% (Garg et al., 1988; Moyer-Mileur et al., 
1996; Sekar & Duke, 1991; Walsh, 2003; Zanardo et al., 1995). Accordingly, the 
physiological definition determined BPD at 36 weeks of correct age as follows: 1) In all 
infants treated with mechanical ventilation, continuous positive airway pressure, or 
supplemental oxygen at FiO2 > 0.30, without additional testing; 2) If the FiO2 < 0.30, 
infants are to be gradually weaned to room air, in a timed stepwise fashion; those who 
cannot maintain an SaO2 ≥ 88% are diagnosed with BPD, unless they pass a timed, 
continuously monitored oxygen reduction test. An oxygen saturation 80% to 87% for 5 
minutes, or < 80% for 1 minute, indicates BPD. If all SaO2 measurements over 15 
minutes ≥ 96%, or if instead, all SaO2 measurements in a 60-minute period > 88%, the 
infant is deemed not to have BPD (Walsh et al., 2003).  

To evaluate the impact of the physiological definition on BPD rates, 1598 consecutively born 
preterm infants (birth weight 501–1249 g) in hospital at 36 weeks’ PMA were prospectively 
assessed and assigned an outcome using both the clinical and physiological definitions of 
BPD. The NICHD neonatal network centers demonstrated that many babies who, according 
to the nursing staff, required oxygen were able to maintain an SaO2 > 90% on room air. 
Though 560 (35%) had clinical BPD (oxygen use at 36 weeks), only 398 (25%) had 
physiological BPD (as defined above) (Walsh et al., 2004). 

2.3 Structural lung changes 

As described by Northway et al. (1967), the histological features of classical BPD included 

prominent interstitial fibrosis, alveolar overdistention alternating with regions of atelectasis, 

and airway abnormalities such as squamous metaplasia and excessive muscularization.  On 

the other hand, the “new” BPD shows histological features consistent with developmental 

arrest and impaired alveolar development (Husain et al., 1998): alveoli are fewer in number 

and larger in diameter than normal; the fibrosis, squamous metaplasia and excessive airway 

muscularization seen in classical BPD are conspicuously absent; airway and microvascular 

growth are affected. A short comparative study by Bhatt et al. (2001) found decreased levels 

of vascular endothelial growth factor (VEGF) and angiogenic receptors Flt-1 and Tie-2 in 

infants who died from BPD vs. from other causes. The authors concluded that the lungs 

from infants with BPD showed abnormal development of alveolar microvessels (abnormal 

placement in the alveolar septa) and that the capillaries were frequently dilated, changes 

attributable to low VEGF and associated receptors (Bhatt et al., 2000, 2001). Controls were 

five children born at term who died at a mean of 3.4  1.3 days, whereas the five BPD 

subjects were born at 27  2 weeks’ gestation, received FiO2 > 0.5 during 37  33 days, and 

died at 65  34 days. 

2.4 Epidemiology 

BPD remains the most prevalent and one of the most serious long-term sequelae of preterm 
birth (Fanaroff et al., 2007). There is considerable variation in reported rates, however, 
depending upon the centre. Among 4213 infants born in 2003 at 24–31 weeks’ gestation in 10 
different European regions, the rate of BPD (oxygen requirement at 36 weeks’ PMA) was 
anywhere from 10.5% to 21.5% (Zeitlin et al., 2008). 
A 2010 NICHD Neonatal Research Network report on neonatal outcomes of extremely 
preterm infants assessed 9575 infants born at extremely low gestational ages (22–28 weeks) 
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and very low birth weights (401–1500 g) at network centers between January 1, 2003 and 
December 31, 2007.  Including babies with mild BPD (oxygen therapy for 28 days but use of 
room air at 36 weeks), the incidence of BPD as determined by the severity-based definition 
was 68%; traditional definition, 42%; physiologic definition, 40% (Stoll et al., 2010). 

2.5 Demographic factors 

Factors linked to BPD include: 1) low gestational age at birth (Kraybill et al., 1989; Darlow 
& Horwood, 1992; Antonucci et al., 2004; Ambalavanan & Novak, 2003), 2) low birth 
weight (Darlow & Horwood, 1992; Hakulinenet al., 1988; Avery et al., 1987; Ambalavanan 
et al., 2008), 3) growth restriction (small for gestational age) (Durrmeyer X et al., 2011; Lal 
Mk et al., 2003; Zeitlin J et al., 2010), 4) male sex (Kraybill et al., 1989; Darlow & Horwood, 
1992; Ambalavanan & Novak, 2003; Avery et al., 1987), and 5) white race  (Avery et al., 
1987; Palta et al., 1991).  In a recent cohort, BPD affected 85% of infants born at 22 weeks’ 
gestation vs. 23% of those born at 28 weeks’ (Stoll et al., 2010). Furthermore, of the infants 
affected by BPD in a large American study which included over 9.5 million very low birth 
weight infants between 1993 and 2006, 59.3% were male while 40.7% were female (male : 
female ratio = 1.46 : 1) (Stroustrup & Trasande, 2010). 

2.6 Impact of perinatal lung injury later in life  

Preterm infants with BPD commonly develop impaired health, neurodevelopment, and 
quality of life later on in childhood. Often noted are:  1) increased risk of postneonatal 
mortality (Van Marter, 2009), 2) higher rates of rehospitalization (Jeng et al., 2008), 3) long-
term pulmonary impairments (Broström et al., 2010) such as asthma (Baraldi et al., 2009) and 
emphysema (Wong et al., 2008), 4) failure to thrive (Theile et al., 2011), and 5) cognitive 
impairment (Anderson & Doyle, 2006), cerebral palsy (Koo KY et al 2010; Majnemer et al., 
2000), and global neurodevelopmental deficits (Short EJ et al, 2003). 

3. The preterm lung: Set-up for injury 

Human lung development proceeds in five regulated stages: embryonic (3–7 weeks’ 
gestation), pseudoglandular (7–17 weeks’), canalicular (17–27 weeks’), saccular (28–36 
weeks’) and alveolar and microvascular maturation (36 weeks’ gestation to at least 2 years 
after birth). The lungs of preterm infants born at 24–28 weeks’ gestation are in the late 
canalicular or early saccular stages and therefore cannot support efficient gas exchange. 
Branching and expansion of air spaces to form saccules and thinning of mesenchyme occur 
later in gestation, as do the formation of alveoli and the synthesis of surfactant by type II 
alveolar cells which only commence in late gestation. Any injury to the lung at the early 
stages of development can potentially alter the developmental process, leading to long-term 
pulmonary sequelae (Chakraborty et al., 2010). 
Whereas fetal development is predicated on a hypoxic environment, at birth the oxidative 
load is sharply increased. At the same time, oxygen demands increase abruptly. The baby 
born at term easily adapts to this transition in most cases but for the preterm infant, the 
intra- to extra-uterine transition is not without risks. Among the reasons why the preterm 
infant is more likely to experience oxidative injury than more mature newborns and older 
children are the following: 1) intracellular defences against oxidative stress are still poorly 
developed; 2) the preterm infant is often, for various reasons, exposed to high 
concentrations of supplemental oxygen; and 3) the fetus and premature infant are also 
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susceptible to inflammation and infection that may lead to increased oxidative stress 
(Saugstad, 2010).  
It may therefore be instructive to look at some of the molecules implicated in oxidative stress, 
while drawing parallels with the corresponding processes in BPD. This added insight will 
contribute to delimiting specific sources of oxidant molecules that may contribute to the 
development of BPD, a topic we will explore later in the chapter in relation to BPD risk factors. 

4. Oxidative stress  

In utero, the arterial pressure of oxygen (PaO2) is close to 30 mm Hg. After birth, with the 
baby breathing in ambient air, the PaO2 rises to 75 mm Hg. This greater oxygen load 
increases the concentration of dissolved oxygen available for oxidative phosphorylation in 
the mitochondria, organelles that release 1-3% of oxygen in the form of reactive oxygen 
species (ROS).  
Inspired oxygen (O2) is a diatomic molecule with two free electrons (O-O). This molecule 
has the highest half-cell reduction potential (Ehc) in vivo (Ehc for the ½O2/H2O couple = 0.816 
V). Consequently, dissolved O2 readily accepts an electron () from donors such as 
polyunsaturated fatty acids or ascorbic acid, generating the free radical superoxide anion 
(O-O or O2−). This transformation of O2 into O2− is spontaneous, generating the 
oxidized form of vitamin C (dehydroascorbate, DHA) and/or the by-products of fatty acid 
oxidation (lipid peroxides, aldehydes such as malondialdehyde or 4-hydroxy-2-nonenal 
(HNE), or isoprostanes). The reaction may also be catalyzed by nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase.  Thus, the inspiration of diatomic oxygen leads 
to an increase in the cellular concentration of free radicals (O2−) as well as free O2, which 
will contribute to metabolic regulation by hydroxylation of several biologically active 

molecules. For instance, O2 is essential for the degradation of hypoxia-inducible factor-1 

(HIF-1; HIF-1 activates transcription of the gene encoding VEGF, an important growth 
factor for angiogenesis. This process is impaired in BPD (Husain et al., 1998; Bhatt et al., 
2000, 2001). Figure 1 shows a number of oxidative-reduction (redox) reactions of interest.  

4.1 Superoxide anion 

The dismutation of the superoxide anion (O2−) into O2 and H2O2 (2 O-O + 2H+ O-O 
+ HO-OH) may be either spontaneous or catalyzed by a superoxide dismutase (SOD). In 
preterm infants, the pulmonary activity of SOD is suspected to be immature. As reported by 
Lee Frank in several animal species (mice, hamster, rat, guinea pig), the pulmonary activity 
of SOD, catalase, and glutathione peroxidase are only 10-15% of that in term babies, in 
preterm newborns < 32 weeks of human-equivalent gestation (Frank & Sosenko, 1987a, 
1987b; Frank, 1991). As a result, the levels of O2− may be higher in preterm than term 
neonates. Furthermore, the oxidant property of O2− is not related to the attraction of an 
electron from a common antioxidant such as ascorbate, but to the donation of an electron to 
a free transition metal such as ferric iron (Fe3+) in a Haber-Weiss reaction (O2− + Fe3+   O2 
+ Fe2+).  The resulting ferrous ion (Fe2+) from this reaction reacts rapidly with hydrogen 
peroxide (H2O2) in a Fenton reaction to generate Fe3+, OH− and OH. This hydroxyl radical 
(OH) is among the most reactive of molecules, leading to the oxidation of proteins, lipids 
and DNAs. Therefore, high oxygen supplementation coupled with low SOD activity add to 
oxidative stress, and this may be evidenced by an increase in the by-products of lipid 
peroxidation (lipid peroxides, malondialdehyde, HNE, alkanes such as ethane and pentane, 
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and isoprostanes) and/or of protein oxidation (carbonyl compounds, o-dityrosine). 
Newborn infants receiving O2 supplementation have demonstrably elevated levels of 
markers of oxidative stress such as exhaled ethane and pentane (Nycyk et al., 1998; Pitkanen 
et al., 1990), serum HNE (Ogihara et al., 1999), F2a-isoprostanes in tracheal aspirate (Cotton 
et al., 1996) or in plasma (Ahola et al., 2004), protein-carbonyl in bronchoalveolar fluid 
(Gladstone & Levine et al., 1994) or o-dityrosine in urine (Kelly & Lubec, 1995; Lubec et al., 
1997). It has been suggested that some of these markers may be higher in the first few days 
of life in preterm infants who will develop BPD as compared to those who will not 
(Gladstone & Levine et al., 1994; Hodgman et al., 1969). Hence, reducing the O2− levels in 
preterm neonates has been a seductive approach to BPD prevention. Indeed, a randomized 
study of human recombinant SOD administered intratracheally in the first 24 hours to 
preterm infants at high risk (birth weight 600-1200g) has been associated with a lower 
incidence of respiratory illnesses such as wheezing, asthma and pulmonary infections 
(Davis et al., 1993; Davis et al., 2003).  

4.2 Hydrogen peroxide 

As noted in Figure 1, H2O2 is generated following high oxygen supplementation. Chemically, 
H2O2 is a relatively stable molecule that can diffuse passively through cell membranes. Its 
oxidation reactions occur in two ways, one by accepting an electron from ferrous iron (Fe2+) to 
generate the free radical hydroxyl (OH), the other by oxidizing sulfhydryl or thiol groups (R-
SH) on protein. By its high affinity for thiol, H2O2 is considered an important player in the 
regulation of several metabolic pathways (Winterbourn & Hampton, 2008). Of interest to BPD, 
H2O2 can activate nuclear factor kappa B (NF-kB) (Flohé et al., 1997; Haddad, 2002; Haddad & 
Land, 2000; Takada et al., 2003), upregulating the transcription of genes encoding pro-
inflammatory cytokines (Randell et al., 1990). H2O2 also contributes to the stability of HIF-1 
(Bonello et al., 2007; Chen Y Shi, 2008; Haddad, 2002; López-Lázaro, 2006; Simon, 2006), a 
transcription factor involved in angiogenesis. It is therefore important that the intracellular 
level of H2O2 be tightly regulated. 
The intracellular concentration of H2O2 depends on the balance between production from 
the dismutation of superoxide anions catalyzed by manganese superoxide dismutase 
(MnSOD) (Buettner et al., 2006), and detoxification by catalase and/or glutathione 
peroxidase. Catalase has a high catalytic activity but relative low affinity for H2O2 (Km of 1.1 
M) (Jones & Suggett, 1968), whereas glutathione peroxidase has a Km close to 1 M (Flohéa 
& Branda, 1969). With the exception of erythrocytes (Gaetani et al., 1996), catalase is present 
in peroxisomes and mitochondria. Glutathione peroxidase, however, is present in the 
cytosol, where it is an efficient regulator of the intracellular level of H2O2. Reduction of H2O2 
by glutathione peroxidase implies a conversion of glutathione (GSH) to its disulfide form 
(GSSG). The cell exerts tight control over the intracellular concentrations of GSH and GSSG 
in order to maintain the appropriate redox environment for the various cellular processes to 
occur efficiently. Indeed, the redox potential is a component of the Gibbs free energy 
equation that predicts the feasibility of a chemical reaction. Several biochemical pathways 

are dependent on the intracellular redox potential, including NF-B activation and HIF-1 
levels as discussed earlier (Bonello et al., 2007; Chen & Shi, 2008; Haddad et al., 2000; 
Haddad & Land, 2000; Land & Wilson, 2005; López-Lázaro, 2006; Roy et al., 2008). In the 
presence of a large peroxide load or sustained generation of peroxides, the formation of 
GSSG can exceed the capacity of glutathione reductase to recycle it into GSH, and the redox 
potential will change to a more oxidized state.  
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Fig. 1. Relationship between oxidant molecules and endogenous antioxidant defences. 

Oxygen (O2) supplementation as well as hydrogen peroxide (H2O2) from parenteral 
nutrition can lead to modulation of: 1) transcription factors such as hypoxia-inducible 

factor-1 (HIF-1) and nuclear factor kappa B (NF-B), important players in the 
pathogenesis of BPD; 2) levels of oxidative stress markers (isoprostanes, peroxides, lipid 
aldehydes, alkanes); 3) activity of thiol-sensitive proteins (R-SH); and 4) redox potential of 
glutathione (GSH), as influenced by glutathione peroxidase (GPx) and the intracellular 
concentrations of reduced (GSH) and oxidized (GSSG) glutathione. 
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4.3 Redox potential of glutathione 

The redox potential is dependent of the concentration of GSH and GSSG according to the 
Nernst equation: ∆E =∆E°· (RT/nF)· log ([GSH]2/[GSSG]) (Schafer & Buettner, 2001). In cells 
extracted from the endotracheal aspirate of intubated newborns, the level of glutathione 
increases with gestational age and female sex, being lower in preterm and male infants 
(Lavoie & Chessex, 1997). The sex is a significant risk factor for BPD, as BPD affects more 
boys than girls (Ambalavanan et al., 2008; Ambalavanan & Novak, 2003; Darlow & 
Horwood, 1992; Kraybill et al., 1989; Stroustrup & Trasande, 2010). The low glutathione 
concentration measured in preterm newborns (Lavoie & Chessex, 1997) is associated with an 
oxidized redox potential. Low blood level of glutathione were also reported in preterm 
neonates with chronic lung disease (White et al., 1994). Recently, Chessex et al. (2010) 
demonstrated a correlation between BPD severity in preterm infants (26  1 weeks’ 
gestation) and blood redox potential measured one week after birth: the more oxidized the 
redox potential, more severe the disease. 
As previously reported (Schafer & Buettner, 2001), the redox potential acts as a switch for a 
number of metabolic pathways, inducing cellular proliferation, differentiation or death 
(apoptosis) (Figure 2). During organ development, cells must pass through the various cell 
cycle stages in order to allow for continued remodelling. This process is essential to proper 
lung development (Bruce et al., 1999; Luyet et al., 2000). Consequently, the redox potential 
must also cycle continuously (Figure 3). The proliferation phase is accompanied by a higher 
metabolic rate leading to increased generation of ROS. These ROS in turn favour a shift of the 
redox potential toward a more oxidized status, inducing the differentiation phase. 
Alternatively, the oxidized status may 1) induce apoptosis, which favours tissue remodelling, 
and 2) activate redox-sensitive factors inducing the transcription of genes that encode enzymes 
involved in glutathione synthesis and GSSG recycling (glutathione reductase). This last event 
will shift the redox potential toward a more reduced state, beginning a new cell cycle. 

 

Fig. 2. The redox environment influences metabolic processes. 
By modulation from a more reduced to a more oxidized state, the redox environment allows 
activation and inactivation of various metabolic processes controlling the cell cycle. A 
reduced state favours cellular proliferation whereas an oxidized state favours 
differentiation. A more oxidized state will also induce cell death by apoptosis.  
(Adapted from Schafer FQ et al., 2001) 
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The link between redox potential and BPD can be explained by an exacerbated apoptosis 
rate caused by an abnormally elevated redox potential (Luyet et al., 2000). Lung samples 
from premature baboons with BPD (Das et al., 2004) showed a large number of apoptotic 
events. In newborn guinea pigs given parenteral nutrition for 4 days, the alveolar count was 
20% lower when the nutritive solution was infused without light protection, peroxide 
concentration being higher in light-exposed solutions (Section 5.2 below) (Lavoie et al., 2004, 
2005, 2008). On histology, 30% of alveolar cells were in an apoptotic state (Lavoie et al., 
2004). During normal alveolar development, however, about 10% of cells die by apoptosis 
(Luyet et al., 2000), in order to thin the septa between alveoli for more efficient gas exchange 
(Bruce et al., 1999; Luyet et al., 2000).   
Various factors may contribute to a shift in redox potential to a more oxidized state (Figure 
3, dashed line). An induced or sustained oxidized status favours the apoptosis process, 
leading to a loss of tissue such as observed in BPD (Das et al., 2004; Lavoie et al., 2004, 2005, 
2008). In preterm infants, these factors are oxygen supplementation, parenteral nutrition 
(containing peroxides), and inflammation.  

 

Fig. 3. The redox environment as a function of time. 

A normal oscillation of the redox environment occurs over time, between a more reduced 
and a more oxidized state. As the environmental redox potential changes, pulmonary 
development is supported by cell proliferation, differentiation, and controlled apoptotic 
events. An excessively oxidized redox environment, such as that caused by oxidative stress, 
will favour an apoptotic phase, leading to loss of cells and impaired development. 
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5. Sources of oxidant molecules in BPD  

Oxygen supplementation and parenteral nutrition are exogenous sources of oxidant 
molecules affecting the preterm neonate. Inflammation, however, is an endogenous source 
of oxidants and its role is complex. Indeed, inflammation can either be a source or 
consequence of oxidative stress. In this section, we will analyze each of these sources for 
their potential role in BPD. 

5.1 Oxygen supplementation   

Oxygen supplementation increases ROS generation in the lungs. For this reason, and 
because of the potential effect of oxidative stress on the development of BPD, it has been 
hypothesized that high O2 concentration in inspired air is linked to the development of BPD 
in preterm neonates (Northway et al., 1967). This hypothesis is supported by animal studies. 
In rats, exposure to 95% O2 during the first week of life resulted in a 13% reduction in 
pulmonary alveolar surface area at 40 days (Randell et al., 1990). However, the impact of 
oxygen has recently been questioned. Although major clinical advances such as the use of 
surfactant and continuous positive airway pressure (CPAP) have led to a reduction in 
oxygen supplementation, their impact on lessening the incidence of BPD has been only 
about 3% per year between 1993 and 2006, for a global  reduction of 30% in 13 years 
(Stroustrup & Trasande, 2010).  This relatively weak contribution was confirmed by studies 
in newborn preterm baboons, where a reduction in the fraction of inspired oxygen (FiO2) 
from 80-100% to 21-50% had no significant impact on the levels of fibrosis and alveolar 
hypoplasia (Coalson et al., 1995, 1999). Similarly, a 2010 study of 1316 human infants born at 
less than 28 weeks’ gestation reported a non-significant effect of ventilation strategy leading 
to a lower oxygen saturation (85-89% versus 91-95%) on the incidence of BPD (SUPPORT 
Study Group, 2010). Furthermore, The use of high-dose antioxidants scavenging free 
radicals (vitamins C and E) did not have any protective effect against alveolar hypoplasia 
(Berger et al., 1998). Free radicals were therefore not the major player in BPD.  
If higher O2 in inspired air could lead to a greater cellular concentration of H2O2 that is not 
quenched by vitamins C or E, the apparently weak effect of oxygen supplementation on 
BPD development must be explainable by another source of oxidant molecules masking the 
impact of O2. It is noteworthy that the major risk factor for BPD is gestational age; the lower 
the age, the greater the incidence of BPD. Coincidentally, the more premature the infant, the 
greater is his dependence on parenteral nutrition. A 2011 study showed that preterm infants 
developing BPD received more parenteral than enteral nutrition (Wemhöner et al., 2011). In 
the various studies on BPD, including those in baboons, the gestation ages of the subjects 
were such that the infants likely required parenteral nutritive support, a major source of 
ROS and particularly of H2O2 (Laborie et al., 1998; Lavoie et al., 1997). In itself, parenteral 
nutrition may be sufficient to induce the development of BPD. In fact, however, it is highly 
probable that both parenteral nutrition and oxygen supplementation induce oxidative stress, 
by both increasing the intracellular concentration of H2O2 and modifying the redox potential 
of glutathione (Chessex et al., 2010).  

5.2 Parenteral nutrition   

Parenteral nutrition consists of the intravenous administration of a solution containing 
amino acids, dextrose, electrolytes, vitamins and lipids. Parenteral nutrition is essential for 
the nutritional support of the preterm infant, bypassing a gastrointestinal system whose 
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immaturity severely limits the natural feeding process. Although parenteral nutrition is 
sufficient to support growth in the child, the instability of the nutrients in solution favours 
the generation of undesirable molecules. The admixture of redox-sensitive elements such as 
amino acids (tryptophan, tyrosine and others), polyunsaturated fatty acids, and vitamin C, 
in the presence of a strong oxidizing molecule such as dissolved oxygen, will induce 
oxidation of the nutrients and the formation of their consequent derivatives. For instance, 
peroxidation of omega-6 polyunsaturated fatty acids will yield lipid hydroperoxides and 
HNE (Massarenti et al., 2004; Silvers et al., 2001), while vitamin C and dissolved oxygen will 
produce H2O2 (Laborie et al., 1998; Lavoie et al., 1997). As vitamin C is the most powerful 
antioxidant found in parenteral nutrition, the main source of peroxides in parenteral 
nutrition would appear to be the multivitamin preparation (Laborie et al., 1998; Lavoie et al., 
1997). Furthermore, this solution contains riboflavin, a photosensitive molecule. In the 
presence of light, photoexcited riboflavin catalyzes a peroxide-producing reaction (Laborie 
et al., 1998). The simple act of adequately shielding parenteral nutrition solutions from 
ambient light halved the concentration of peroxides in the infused solution (Chessex et al., 
2001; Laborie et al., 1998, 1999, 2000; Lavoie et al., 1997, 2007) as well as in the urine of 
preterm infants (Bassiouny et al., 2009; Chessex et al., 2001). Adequate photoprotection of 
parenteral nutrition has also been reported to reduce the incidence of chronic lung disease 
(Bassiouny et al., 2009) or BPD (Chessex et al., 2007) in premature infants.  
As administered in neonatal units, without adequate photoprotection, parenteral nutritive 

solutions are contaminated with several molecules having the potential to perturb the redox 

status of the lung, i.e. lipid hydroperoxides (Silvers et al., 2001), HNE (personal 

communication of Lavoie JC, 2011), ascorbylperoxide (Lavoie et al., 2004; Maghdessian et 

al., 2010), and H2O2 (Laborie et al., 1998; Lavoie et al., 1997; Silvers et al., 2001). All these 

molecules are detoxified by the glutathione system. Since glutathione levels are low in 

preterm infants (Lavoie & Chessex, 1997), these molecules can conceivably overwhelm the 

glutathione system, allowing the redox potential to shift toward an oxidized state. Infusion 

of parenteral nutrition without light protection for 4 days in newborn guinea pigs was 

associated with: 1) a loss of glutathione (Lavoie et al., 2000), 2) a more oxidized glutathione 

redox potential (Lavoie et al., 2008), and 3) a lower alveolar count (Lavoie et al., 2004, 2005, 

2008), as compared to animals infused with a fully photoprotected solution. A recent study 

demonstrated that the blood glutathione redox potential measured in 7-day-old preterm 

infants (26  1 weeks’ gestation) was correlated with the severity of BPD; a more oxidized 

status was measured in the most severe cases (Chessex et al., 2010). Therefore, current 

knowledge suggests that each oxidant molecule affecting the glutathione system, whether 

from oxygen supplementation or from parenteral nutrition, may contribute to the 

development of BPD.  

5.3 Inflammation 

The third major risk factor for BPD is inflammation, a significant source of ROS (Federico et 

al., 2007; Pereda et al., 2006). Several pro-inflammatory cytokines have been detected in 

aspirated fluids from infants with BPD, the concentration increasing as a function of assisted 

ventilation duration and level of oxygen supplementation (Bose et al., 2008). As previously 

demonstrated, exposure to high amounts of O2 favours the production of H2O2, a known 

activator of transcription factor NF-B (Flohé et al., 1997; Haddad, 2002; Haddad & Land, 

2000; Takada et al., 2003), which in turn upregulates the expression of several pro-
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inflammatory cytokine genes (Federico et al., 2007; Pereda et al., 2006). The oxygen-cytokine 

connection was further supported by research showing that oxygen supplementation 

induced an inflammatory response in preterm infants (Lavoie et al., 2010). The association 

between BPD and inflammation may therefore be explained by an initial oxidative stress 

followed by a local increase in H2O2 concentration. However, other researchers have argued 

that an inflammatory process independent of the variation in inspired oxygen concentration 

could also induce BPD, for example chorioamnionitis (Gien & Kinsella, 2011). Paananen R et 

al (2009) reported that elevated plasma concentrations of IL-6, a pro-inflammatory cytokine, 

and IL-10, an anti-inflammatory cytokine, on the first day of life were indicative of greater 

BPD risk, independently of previous exposure to chorioamnionitis (39% of the 128 preterm 

neonates in the cohort had had chorioamnionitis; incidence of BPD in cohort, 25%). The lack 

of correlation between an initial inflammatory process and BPD development was 

confirmed in 2010 in a study investigating the association between chorioamnionitis and 

BPD (Prendergast, et al., 2010). From the 71 preterm infants developing BPD, 41 had been 

exposed to chorioamnionitis and/or funisitis. Their results, however, showed a significant 

correlation between the severity of BPD and gestational age or birth weight. Thus, 

endogenous infection does not seem to be connected to the development of BPD while 

cytokines are, underlining a possible implication of oxidative stress early in life.  

6. Strategies for prevention/treatment 

Under the hypothesis that glutathione, by its very involvement in the cellular redox 
environment, could be a key player in BPD development, one strategy to prevent BPD 
development or reduce its severity would be to preserve or increase the intracellular 
concentration of glutathione. It is noteworthy that the low levels of glutathione observed in 
preterm infants (Lavoie & Chessex, 1997) are not due to a defective enzymatic process. 
Indeed, GSH synthesis is very active, even in newborns of 26 weeks’ gestation (Lavoie & 
Chessex, 1998). The defect comes rather from the immaturity of the cellular transport system 
of cysteine (Lavoie et al., 2002), an amino acid whose low intracellular availability limits the 
synthesis of glutathione (Deneke & Fanburg, 1989). This fact may explain the failure of 
intravenous administration of N-acetylcysteine to prevent the development of BPD in 
extremely low birth weight newborns (Ahola et al., 2003).  
If it is difficult to increase the intracellular concentration of glutathione, one must at least 
prevent its consumption by reducing oxidative stress. This can be partly achieved by 
monitoring blood oxygen saturation levels to prevent excessive oxygen supplementation. 
Prevention of inflammation will help as well. However, limiting peroxide contamination in 
parenteral nutrition is essential. Though photoprotection of the solution may be difficult to 
institute in the clinical setting, the process must be initiated in the pharmacy department at 
the time of compounding and continued until bedside. New nutritive strategies leading to 
improvements in the nutritive quality of parenteral products, reducing the oxidation of 
nutrients and preventing the generation of oxidant molecules, will have a positive impact on 
the incidence of BPD.    

7. Conclusions/perspectives 

Presently, no therapy exists for BPD (Gien & Kinsella, 2011) and its prevention is difficult. 
The etiology is multifactorial. This chapter focused on the part played by oxidative stress, in 
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particular the glutathione redox potential. While a number of oxidant sources can contribute 
to the shift in redox potential toward a more oxidized state, several BPD-related factors were 
found to have an impact, among them oxygen supplementation, parenteral nutrition, and 
inflammation. Modification of even one of these factors may decrease the incidence of BPD, 
but the best practice remains to administer a combination of new measures, as suggested by 
Geary C et al. (2008), including early use of surfactant and nasal continuous positive airway 
pressure for ventilatory support, as well as lowered oxygen saturation targets and better 
nutritive support. It is remarkable that all associations between biochemical markers and 
BPD have been observed with parameters measured in the first days of life (Ahola et al., 
2004; Geary et al., 2008; Gladstone & Levine, 1994; Lavoie et al., 2008; Ogihara et al., 1999; 
Pitkanen et al., 1990; Welty, 2001). The first week of life, in both infants and animal models, 
seems be a critical window during which all efforts to reduce oxidative stress must be 
pursued.  

8. Acknowledgements 

The authors are grateful to Danielle Buch, medical writer/editor at the Applied Clinical 
Research Unit of the Sainte-Justine Research Centre, for editing of this chapter. 

9. References  

Ahola T, Lapatto R, Raivio KO, Selander B, Stigson L, Jonsson B, Jonsbo F, Esberg G, 
Stôvring S, Kjartansson S, Stiris T, Lossius K, Virkola K, Fellman V. 2003. N-
acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: 
a randomized controlled trial. J Pediatr 143:713-719. 

Ahola T, Fellman V, Kjellemer I, Raivio KO, Lapatto R. 2004. Plasma 8-Isoprostane Is 
Increased in Preterm Infants Who Develop Bronchopulmonary Dysplasia or 
Periventricular Leukomalacia. Pediatr Res 56: 88–93. 

Ambalavanan N, Novak ZE. 2003. Peptide Growth Factors in Tracheal Aspirates of 
Mechanically Ventilated Preterm Neonates. Pediatr Res 53: 240–244. 

Ambalavanan N, Van Meurs KP, Perritt R, Carlo WA, Ehrenkranz RA, Stevenson DK, 
Lemons JA, Poole WK, Higgins RD; NICHD Neonatal Research Network, 
Bethesda, MD. 2008. Predictors of death or bronchopulmonary dysplasia in 
preterm infants with respiratory failure. J Perinatol 28:420-426. 

Anderson PJ,  Doyle LW. 2006. Neurodevelopmental outcome of bronchopulmonary 
dysplasia. Semin Perinatol 30:227-232.  

Antonucci R, Contu P, Porcella A, Atzeni C, Chiappe S. 2004. Intrauterine smoke exposure: a 
new risk factor for bronchopulmonary dysplasia? J Perinat Med 32:272-277. 

Avery ME, Tooley WH, Keller JB, Hurd SS, Bryan MH, Cotton RB, Epstein MF, Fitzhardinge 
PM, Hansen CB, Hansen TN, et al. 1987. Is chronic lung disease in low birth weight 
infants preventable? A survey of eight centers. Pediatrics 79:26-30.  

Baraldi E, Carraro S, Filippone M. 2009. Bronchopulmonary dysplasia: definitions and long-
term respiratory outcome. Early Hum Dev 85:S1-S3. 

Bassiouny MR, Almarsafawy H, bdel-Hady H, Nasef N, Hammad TA, Aly H. 2009. A 
randomized controlled trial on parenteral nutrition, oxidative stress, and chronic 
lung diseases in preterm infants. J Pediatr Gastroenterol Nutr 48:363-369. 

www.intechopen.com



 
Lung Diseases – Selected State of the Art Reviews 

 

498 

Behrman RE, Babson GS, Lessel R. 1971. Fetal and neonatal mortality in white middle class 
infants. Mortality risks by gestational age and weight. Am J Dis Child 121:486-489.  

Berger TM, Frei B, Rifai N, Avery ME, Suh J, Yoder BA, et al. 1998. Early high dose 
antioxidant vitamins do not prevent bronchopulmonary dysplasia in premature 
baboons exposed to prolonged hyperoxia: a pilot study. Pediatr Res 43:719-726.  

Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. 2001. Disrupted 
Pulmonary Vasculature and Decreased Vascular Endothelial Growth Factor, Flt-1, 
and TIE-2 in Human Infants Dying with Bronchopulmonary Dysplasia. Am J respir 
Crit Care Med 164:1971-1980. 

Bhatt AJ, Amin SB, Chess PR, Watkins RH, Maniscalco WM. 2000. Expression of Vascular 
Endothelial Growth Factor and Flk-1 in Developing and Glucocorticoid-Treated 
Mouse Lung. Pediatr Res 47 :606-613. 

Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, KietzmannT , Görlach 

A. 2007. Reactive Oxygen Species Activate the HIF-1 Promoter Via a Functional 

NFB Site. Arterioscler Thromb Vasc Biol 27:755-761. 
Bose CL, Dammann CEL, Laughon MM. 2008. Bronchopulmonary dysplasia and 

inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal 
Ed 93:F455-F461.  

Broström EB, Thunqvist P, Adenfelt G, Borling E, Katz-Salamon M. 2010. Obstructive lung 
disease in children with mild to severe BPD. Respir Med 104:362-370. 

Bruce MC, Honaker CE and Cross RJ. 1999. Lung fibroblasts undergo apoptosis following 
alveolarization.  Am J Respir Cell Mol Biol 20:228-236. 

Buettner GR, Ng CF, Wang M, Rodgers VG, Schafer FQ. 2006. A new paradigm: manganese 
superoxide dismutase influences the production of H2O2 in cells and thereby their 
biological state. Free Radic Biol Med 41:1338-1350.  

Chakraborty M, McGreal EP, Kotecha S. 2010. Acute lung injury in preterm newborn 
infants: mechanisms and management. Paediatr Respir Rev 11:162-170. 

Chen H, Shi H. 2008. A reducing environment stabilizes HIF-2α in SH-SY5Y cells under 
hypoxic conditions. FEBS Lett 582:3899–3902.  

Chessex P, Laborie S, Lavoie JC, Rouleau T. 2001. Photoprotection of solutions of parenteral 
nutrition decreases the infused load as well as the urinary excretion of peroxides in 
premature infants. Semin Perinatol 25:55-59. 

Chessex P, Harrison A, Khashu M, Lavoie JC. 2007. In preterm neonates, is the risk of 
developing bronchopulmonary dysplasia influenced by the failure to protect total 
parenteral nutrition from exposure to ambient light? J Pediatr 151:213-214.  

Chessex P, Watson C, Kaczala G, Rouleau T, Lavoie ME,  Friel J, Lavoie JC. 2010. 
Determinants of oxidant stress in extremely low birth weight premature infants. 
Free Radic Biol Med 49:1380-6.  

Coalson JJ, Winter V, DeLemos RA. 1995. Decreased alveolarization in baboon survivors 
with bronchopulmonary dysplasia. Am J Respir Crit Care Med 152:640-646.  

Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. 1999. Neonatal chronic lung disease in 
extremely immature baboons. Am J Respir Crit Care Med 160:1333-1346. 

Cotton RB, Morrow JD, Hazinski TA, Roberts LJ, Law AB, Steele S. 1996. F2-isoprostanes 
(F2-I) in tracheobronchial aspirate fluid (TBAF) indicate association between 
increased Fi02 and lipid peroxidation in the lungs of premature infants. Pediatr Res 
39: 329A.  

www.intechopen.com



 
Bronchopulmonary Dysplasia:  The Role of Oxidative Stress 

 

499 

Darlow BA, Horwood LJ. 1992. Chronic lung disease in very low birthweight infants: a 
prospective population-based study. J Paediatr Child Health 28:301-305. 

Das KC, Ravi D, Holland W. 2004. Increased apoptosis and expression of p21 and p53 in 
premature infant baboon model of bronchopulmonary dysplasia. Antioxid Redox 
Signal 6:109-116. 

Davis JM, Rosenfeld WN, Sanders RJ, et al. 1993. Prophylactic effects of recombinant human 
superoxide dismutase in neonatal lung injury. J Appl Physiol 74:2234–2241.  

Davis PG, Thorpe K, Roberts R, Schmidt B, Doyle LW, Kirpalani H, Trial of Indomethacin 
Prophylaxis in Preterms (TIPP) Investigators. 2002. Evaluating “old” definitions for 
the “new” bronchopulmonary dysplasia. J Pediatr 140:555-560. 

Davis JM, Parad RB, Michele T, et al. 2003. Pulmonary outcome at one year corrected age in 
premature infants treated at birth with recombinant CuZn superoxide dismutase. 
Pediatrics 111:469–476. 

Deneke SM, Fanburg BL. 1989. Regulation of cellular glutathione. Am J Physiol 257:L163-
L173.  

Durrmeyer X, Kayem G, Sinico M, Dassieu G, Danan C, Decobert F. 2011. Perinatal Risk 
Factors for Bronchopulmonary Dysplasia in Extremely Low Gestational Age 
Infants: A Pregnancy Disorder-Based Approach. J Pediatr Oct 31. [Epub ahead of 
print] 

Egreteau L, Pauchard JY, Semama DS, Matis J, Liska A, Romeo B, Cneude F, Hamon I, 
Truffert P. 2001. Chronic oxygen dependency in infants born at less than 32 weeks' 
gestation: incidence and risk factors. Pediatrics 108:E26.  

Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, Wrage LA, Poole 
K. 2005. Validation of the National Institutes of Health Consensus Definition of 
Bronchopulmonary Dysplasia. Pediatrics 116:1353–1360. 

Fanaroff AA, Stoll BJ, Wright LL, et al; NICHD Neonatal Research Network. 2007. Trends in 
neonatal morbidity and mortality for very low birthweight infants. Am J Obstet 
Gynecol 196: 147.e1-8. 

Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. 2007. Chronic inflammation 
and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386.  

Flohéa L, Branda I. 1969. Kinetics of glutathione peroxidase. Biochim Biophys Acta (BBA) – 
Enzymology 191:541-549.  

Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L. 1997. Redox regulation of NF-
kappa B activation. Free Radic Biol Med 22:1115-1126.  

Frank L, Sosenko IR. 1987a. Prenatal development of lung antioxidant enzymes in four 
species. J Pediatr 110:106-110. 

Frank L, Sosenko IR. 1987b. Development of lung antioxidant enzyme system in late 
gestation: possible implications for the prematurely born infant. J Pediatr 110:9-14.  

Frank L. 1991. Developmental aspects of experimental pulmonary oxygen toxicity. Free 
Radic Biol Med  11:463-494.  

Gaetani GF, Ferraris AM, Rolfo M, Mangerini R, Arena S, Kirkman HN. 1996. Predominant 
role of catalase in the disposal of hydrogen peroxide within human érythrocytes. 
Blood 87:1595-1599. 

Garg M, Kurzner SI, Bautista DB, Keens TG. 1988. Clinically unsuspected hypoxia during 
sleep and feeding in infants with bronchopulmonary dysplasia. Pediatrics 81:635-
642.  

www.intechopen.com



 
Lung Diseases – Selected State of the Art Reviews 

 

500 

Geary C, Caskey M, Fonseca R, Malloy M. 2008. Decreased incidence of bronchopulmonary 
dysplasia after early management changes, including surfactant and nasal 
continuous positive airway pressure treatment at delivery, lowered oxygen 
saturation goals, and early amino acid administration: a historical cohort study. 
Pediatrics 121:89-96.  

Gien J, Kinsella JP. 2011. Pathogenesis and treatment of bronchopulmonary dysplasia. 
Current Opinion in Pediatrics 23:305–313.  

Gladstone IM, Levine RL. 1994. Oxidation of proteins in neonatal lungs. Pediatrics 93:764-
768. 

Haddad JJ. 2002. Oxygen-sensing mechanisms and the regulation of redox-responsive 
transcription factors in development and pathophysiology. Respir Res 3:26.  

Haddad JJE, Land SC. 2000. O2-evoked regulation of HIF-1a and NF-kB in périnatal lung 
epithelium requires glutathione biosynthesis. Am J Physiol Lung Cell Mol Physiol 
278:L492-L503. 

Haddad JJE, Olver RE, Land SC. 2000. Antioxidant/Pro-oxidant Equilibrium Regulates HIF-

1 and NF-B Redox Sensitivity. Evidence For Inhibition By Glutathione Oxidation 
In Alveolar Epithelial Cells J Biol Chem 275:21130-21139. 

Hakulinen A, Heinonen K, Jokela V, Kiekara O. 1988. Occurrence, predictive factors and 
associated morbidity of bronchopulmonary dysplasia in a preterm birth cohort. J 
Perinat Med 16:437-446. 

Hodgman JE, Mikity VG, Tatter D, Cleland RS. 1969. Chronic respiratory distress in the 
premature infant. Wilson-Mikity syndrome. Pediatrics 44:179-195.  

Horbar JD, Badger GJ, Carpenter JH, Fanaroff AA, Kilpatrick S, LaCorte M, Phibbs R, Soll 
RF; Members of the Vermont Oxford Network. 2002. Trends in mortality and 
morbidity for very low birth weight infants, 1991-1999. Pediatrics 110:143-151. 

Husain AN, Siddiqui NH, Stocker JT. 1998. Pathology of arrested acinar development in 
postsurfactant bronchopulmonary dysplasia. Hum Pathol 29:710-717.  

Jeng SF, Hsu CH, Tsao PN, Chou HC, Lee WT, Kao HA, Hung HY, Chang JH, Chiu NC, 
Hsieh WS. 2008. Bronchopulmonary dysplasia predicts adverse developmental and 
clinical outcomes in very-low-birthweight infants. Dev Med Child Neurol 50:51-57.   

Jobe AH. 1999. The New BPD: An Arrest of Lung Development. Pediatr Res 46:641-643.   
Jobe AH, Bancalari E. 2001. Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 

163:1723–1729. 
Jones P, Suggett A. 1968. The Catalase-Hydrogen Peroxide System. Kinetics Of Catalatic 

Action At High Substrate Concentrations. Biochem J 110 :617-620. 
Kelly FJ, Lubec G. 1995. Hyperoxic injury of immature guinea pig lung is mediated via 

hydroxyl radicals. Pediatr Res 38: 786-791. 
Kraybill EN, Runyan DK, Bose CL, Khan JH. 1989. Risk factors for chronic lung disease in 

infants with birth weights of 751 to 1000 grams. J Pediatr 115:115-120. 
Koo KY, Kim JE, Lee SM, Namgung R, Park MS, Park KI, Lee C. 2010. Effect of severe 

neonatal morbidities on long term outcome in extremely low birth weight infants. 
Korean J Pediatr 53:694-700. 

Laborie S, Lavoie JC, Chessex P. 1998. Paradoxical role of ascorbic acid and riboflavin in 
solutions of total parenteral nutrition: implication in photoinduced peroxide 
generation. Pediatr Res 43:601-606. 

www.intechopen.com



 
Bronchopulmonary Dysplasia:  The Role of Oxidative Stress 

 

501 

Laborie S, Lavoie JC, Pineault M, Chessex P. 1999. Protecting solutions of parenteral 
nutrition from peroxidation. JPEN J Parenter Enteral Nutr 23:104-108.  

Laborie S, Lavoie JC, Pineault M, Chessex P. 2000. Contribution of multivitamins, air, and 
light in the generation of peroxides in adult and neonatal parenteral nutrition 
solutions. Ann Pharmacother 34:440-445. 

Lal MK, Manktelow BN, Draper ES and Field DJ. 2003. Chronic lung disease of prematurity 
and intrauterine growth retardation: a population-based study. Pediatrics 111:483–
487. 

Land SC, Wilson SM. 2005. Redox Regulation of Lung Development and Perinatal Lung 
Epithelial Function. Antioxidants & Redox Signaling 7:92-107.  

Lavoie JC, Belanger S, Spalinger M, Chessex P. 1997. Admixture of a multivitamin 
preparation to parenteral nutrition: the major contributor to in vitro generation of 
peroxides. Pediatrics 99:E6. 

Lavoie JC, Chessex P. 1997. Gender and maturation affect glutathione status in human 
neonatal tissues. Free Radic Biol Med 23:648-657. 

Lavoie JC, Chessex P. 1998. Development of glutathione synthesis and gamma-
glutamyltranspeptidase activities in tissues from newborn infants. Free Radic Biol 
Med 24:994-1001. 

Lavoie JC, Laborie S, Rouleau T, Spalinger M, Chessex P. 2000. Peroxide-like oxidant 
response in lungs of newborn guinea pigs following the parenteral infusion of a 
multivitamin preparation. Biochem Pharmacol 60 :1297-1303. 

Lavoie JC, Rouleau T, Truttmann AC, Chessex P. 2002. Postnatal gender-dependent 
maturation of cellular cysteine uptake. Free Radic Res 36:811-817. 

Lavoie JC, Chessex P, Rouleau T, Migneault D, Comte B. 2004. Light-induced byproducts of 
vitamin C in multivitamin solutions.  Clin Chem 50:135-140. 

Lavoie JC, Rouleau T, Chessex P.  2004. Interaction between ascorbate and light-exposed 
riboflavin induces lung remodelling.  J Pharm Exp Ther 311: 634-639.  

Lavoie JC, Rouleau T, Chessex P. 2005. Effect of coadministration of parenteral 
multivitamins with the lipid emulsion on lung remodeling in an animal model of 
TPN. Pediatr Pulmonol 40:53-56. 

Lavoie JC, Rouleau T, Tsopmo A, Friel J, Chessex P. 2007. Influence of lung oxidant and 
antioxidant status on alveolarization: role of light-exposed TPN. Free Radic Biol 
Med 45:572-577. 

Lavoie JC, Rouleau T, Tsopmo A, Friel J, Chessex P. 2008. Influence of lung oxidant and 
antioxidant status on alveolarization: role of light-exposed total parenteral 
nutrition.  Free Radic Biol Med 45:572-577. 

Lavoie P, Lavoie JC, Watson C, Rouleau T, Chang BA, Chessex P. 2010. Inflammatory 
response in preterm infants is induced early in life by oxygen and modulated by 
TPN. Pediatr Res 68:248-51. 

López-Lázaro M. 2006. HIF-1: hypoxia-inducible factor or dysoxia-inducible factor? FASEB J 
20:828–832. 

Lubec G, Widness JA, Hayde M, Menzel D, Pollack A. 1997. Hydroxyl radical generation in 
oxygen treated infants. Pediatrics 100: 200-204. 

Luyet C, Burri PH and Schittny JC. 2000. Pre- and postnatal lung development, maturation, 
and plasticity.  Suppression of cell proliferation and programmed cell death by 

www.intechopen.com



 
Lung Diseases – Selected State of the Art Reviews 

 

502 

dexamethasone during postnatal lung development.  Am. J Physiol Lung Cell Mol 
Physiol 282:L477-L483. 

Maghdessian R, Cote F, Rouleau T, Ouadda AB, Levy E, Lavoie JC. 2010. Ascorbylperoxide 
contaminating parenteral nutrition perturbs the lipid metabolism in newborn 
guinea pig. J Pharmacol Exp Ther 334:278-284. 

Majnemer A, Riley P, Shevell M, Birnbaum R, Greenstone H, Coates AL. 2000. Severe 
bronchopulmonary dysplasia increases risk for later neurological and motor 
sequelae in preterm survivors. Dev Med Child Neurol. 42:53-60. 

Massarenti P, Biasi F, de FA, Pauletto D, Rocca G, Silli B, et al. 2004. 4-Hydroxynonenal is 
markedly higher in patients on a standard long-term home parenteral nutrition. 
Free Radic Res 38:73-80. 

Moyer-Mileur LJ, Nielson DW, Pfeffer KD, Witte MK, Chapman DL. 1996. Eliminating 
sleep-associated hypoxemia improves growth in infants with bronchopulmonary 
dysplasia. Pediatrics 98:779-783. 

Natl Inst Health Consens Dev Conf Summ. 1979. Antenatal diagnosis. Sponsored by the 
National Institute of Child Health and Human Development 2:11-15. 

Northway WH Jr, Rosan RC, Porter DY. 1967. Pulmonary disease following respirator 
therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 
276:357-368. 

Nycyk JA, Drury JA, Cooke RWI. 1998. Breath pentane as a marker for lipid peroxidation 
and adverse outcome in preterm infants. Arch Dis Child Fetal Neonatal Ed 79: F67–
F69. 

Ogihara T, Hirano K, Morinobu T, Kim HS, Hiroi M, Ogihara H, Tamai H. 1999. Raised 
concentration of aldehyde lipid peroxidation products in premature infants with 
chronic lung disease. Arch Dis Child Fetal Neonatal Ed 80: F21–F25. 

Paananen R, Husa AK, Vuolteenaho R, et al. 2009. Blood cytokines during the perinatal 
period in very preterm infants: relationship of inflammatory response and 
bronchopulmonary dysplasia. J Pediatr 154:39–43.  

Palta M, Gabbert D, Weinstein MR, Peters ME. 1991. Multivariate assessment of traditional 
risk factors for chronic lung disease in very low birth weight neonates. The 
Newborn Lung Project. J Pediatr. 119:285-292. 

Pereda J, Sabater L, Aparisi L, Escobar J, Sandoval J, Viña J, López-Rodas G, Sastre J. 2006. 
Interaction between cytokines and oxidative stress in acute pancreatitis. Curr Med 
Chem 13:2775-2787. 

Pitkanen OM, Hallman M, Andersson SM. 1990. Correlation of free oxygen radical-induced 
lipid peroxidation with outcome in very low birthweight infants. J Pediatr 116: 760-
764. 

Prendergast M, May C, Broughton S, Pollina E, Milner AD, Rafferty GF, Greenough A. 2010. 
Chorioamnionitis, lung function and bronchopulmonary dysplasia in prematurely 
born infants. Arch Dis Child Fetal Neonatal Ed 96:F270-F274.  

Randell SH, Mercer RR, Young SL. 1990. Neonatal hyperoxia alters the pulmonary alveolar 
and capillary structure of 40-day-old rats. Am J Pathol 136:1259-1266. 

Roy S, Khanna S, Sen CK. 2008. Redox regulation of the VEGF signaling path and tissue 
vascularization: Hydrogen peroxide, the common link between physical exercise 
and cutaneous wound Healing. Free Radic Biol Med 44:180-192. 

www.intechopen.com



 
Bronchopulmonary Dysplasia:  The Role of Oxidative Stress 

 

503 

Saugstad OD. 2010. Oxygen and oxidative stress in bronchopulmonary dysplasia. J Perinat 
Med 38:571-577. 

Schafer FQ, Buettner GR. 2001. Redox environment of the cell as viewed through the redox 
state of the glutathione disulfide/glutathionne couple. Free Radic Biol Med 30:1191–
1212  

Sekar KC, Duke JC. 1991. Sleep apnea and hypoxemia in recently weaned premature infants 
with and without bronchopulmonary dysplasia. Pediatr Pulmonol 10:112-116. 

Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hoskins EM. 1988. Abnormal pulmonary 
outcomes in premature infants: prediction from oxygen requirement in the 
neonatal period. Pediatrics 82:527-523. 

Short EJ, Klein NK, Lewis BA, Fulton S, Eisengart S, Kercsmar C, Baley J, Singer LT. 2003. 
Cognitive and academic consequences of bronchopulmonary dysplasia and very 
low birth weight: 8-year-old outcomes. Pediatrics 112:e359. 

Silvers KM, Darlow BA, Winterbourn CC. 2001. Lipid peroxide and hydrogen peroxide 
formation in parenteral nutrition solutions containing multivitamins. JPEN J 
Parenter Enteral Nutr 25, 14-17. 

Simon MC. 2006. Mitochondrial reactive oxygen species are required for hypoxic HIF 
alphastabilization. Adv Exp Med Biol 588:165-170. 

Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, hale EC, Newman NS, 
Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, 
Duara S, Sanchez PJ, O’Shea M, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, 
Freantz ID, Watterberg KL, Saha S, Das A, Higgins RD, Eunice Kennedy Shriver 
National Institute of Child Health and Human Development Neonatal Research 
Network. 2010. Neonatal Outcomes of Extremely Preterm Infants From the NICHD 
NeonatalResearch Network. Pediatrics 126;443-456. 

Stroustrup A, Trasande L. 2010. Epidemiological Characteristics and Resource Use in 
Neonates With Bronchopulmonary Dysplasia: 1993 -2006. Pediatrics 126:e291–e297. 

SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research 
Network, Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, et al. 2010. Early 
CPAP versus surfactant in extremely preterm infants. N Engl J Med 362:1970-1979. 

Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB. 2003. 
Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I 
kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I 
kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278:24233-
24241.  

Theile AR, Radmacher PG, Anschutz TW, Davis DW, Adamkin DH. 2011. Nutritional 
strategies and growth in extremely low birth weight infants with 
bronchopulmonary dysplasia over the past 10 years. J Perinatol May 26 [Epub 
ahead of print]. 

Van Marter LJ. 2009. Epidemiology of bronchopulmonary dysplasia. Semin Fetal Neonatal 
Med. 14:358-366. 

Walsh MC, Wilson-Costello D, Zadell A, Newman N, Fanaroff A. 2003. Safety, Reliability, 
and Validity of a Physiologic Definition of Bronchopulmonary Dysplasia. J 
Perinatology 23, 451–456. 

Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A, Everette R, Peters N, Miller N, 
Muran G, Auten K, Newman N, Rowan G, Grisby C, Arnell K, Miller L, Ball B, 

www.intechopen.com



 
Lung Diseases – Selected State of the Art Reviews 

 

504 

McDavid G; National Institute of Child Health and Human Development Neonatal 
Research Network, 2004. Impact of a Physiologic Definition on Bronchopulmonary 
Dysplasia Rates. Pediatrics 114:1305–1311. 

Welty SE. 2001. Is There a Role for Antioxidant Therapy in Bronchopulmonary Dysplasia? J. 
Nutr 131: 947S–950S. 

Wemhöner A, Ortner D, Tschirch E, Strasak A, Rüdiger M. 2011. Nutrition of preterm 
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