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1. Introduction 

Development of new therapeutics for lung diseases requires good modeling systems in 
which to test hypotheses. Often, how lung diseases are modeled in vivo, are not at all 
initiated by the same events that cause the disease in humans. The models for interstitial 
pulmonary fibrosis or chronic obstructive lung disease for example, require the use of toxic 
reagents and models for asthma do not use the same antigenic stimuli. What this means is 
what is used to initiate disease in vivo using animal models is not necessarily totally 
responsible for the same disease in humans. Even in situations of generating genetic models 
focusing on identified genes associated with specific disease entities modeled in vivo, the 
disease in the animal model is still not the same as the disease in humans even if the gene is 
most certainly involved. The focus of this chapter is to describe a variety of the animal 
models that have been developed to study specific lung disease entities including 
understanding the strength and the weaknesses of the in vivo modeling systems. The main 
goal of animal modeling is to provide an in vivo complex scenario which allows for the 
pursuit of defining the underlying mechanisms of diseases or importantly to provide a 
format for studying new interventional therapeutics. The focus of the chapter will start with 
basic anatomy, physiological differences and immunological responses which either 
enhance the selection of the model or are used to study specific components of the disease 
process.  

Anatomy and Lung Models: For an in vivo model to provide the appropriate conditions, 
modeling the anatomy and the physiology of the lung model must first be considered. 
Whether dealing with small rodents such as mice, rats, and ferrets or larger animal such as 
pigs, sheep or monkeys, a detailed understanding of the model’s anatomy and physiology 
must be considered for the correlation to human diseases (1,2). The issues to consider 
include the anatomical patterns of the alveolar spaces, the bronchial tree, milieu differences 
including the changes in the surfactant proteins, phospholipids, and physiological 
differences including the respiratory rate and airway clearance mechanisms (3,4). Some of 
the issues of correlating with human disease have to do with how the lung structure is 
different with the human lung and how this relates to differences in lung structure and 
function. This also relates to size, oxygenation and gaseous exchange. Another important 
issue is how the lung structure relates to the physiology and whether the mechanisms for 
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homeostasis maintenance the same? This complicates things further since in most instances 
a direct cross-over between animal models and human disease is not complete. The relevant 
comparative anatomy of the lung would include all of the variables outlined in Figure 1. 

 

Fig. 1. Contributions to In vivo Lung Models. Here we show the lung and the variables 
associated with model selection regardless of the lung disease to be studied. 

Function and Lung Model: The selection of an in vivo model must take into consideration 
not just the similarities and differences between the model and the human disease but also 
the question being asked in the disease application. The more common comparisons are 
listed in Table 1, when evaluating murine and rat models. Certainly, some animal models 
provide good in vivo correlates to the clinical situation; other are not so realistic. Choosing 
the model has to do with the question being answered and the reasoning behind selecting 
the model. For examples, cats and horses have been shown to develop spontaneous airway 
hyper-responsiveness, which would be consistent with human asthma (5,6). However, given 
the size of the animals, the inability to generate congenic species makes these models 
economically unrealistic. The opposite perspective is the ability to use mice for diseases such 
as asthma and cystic fibrosis (CF). Although the specific disease can be mimicked, the 
spectrum of the pathophysiology is different. For example, the mouse model for CF does not 
develop spontaneous lung disease (4,7). The model does provide an invaluable tool to study 
infection induced inflammation and in some case cell specific contribution of disease (8). In 
the murine asthma model, a variety of antigens can be used to induce disease, but it has 
been shown that many of the pathways associated with disease in humans are not played 
out in the murine model of the disease (9,10). It is a balance between the clinical or 
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mechanistic question and the goal of the study for the selection of the appropriate model. 
Animal models afford the opportunity for investigators to experimentally manipulate a 
number of controlled variables such as strain of animal, and environment to investigate the 
molecular interactions involved in the pathogenesis of many lung diseases. The selection is 
based upon the basic pathophysiology, anatomy and the ability to induce the disease in a 
time sensitive fashion for comparative and economic consistency.  

 

Mechanism of 
Study 

Mouse Rat 

Lung Remodeling 
and Repair 

Offers the ability to study 
specific genes associated with 
repair and remodeling. 
Depends on species 
susceptibility to either the Th1 
or Th2 process. 

Enhanced susceptibility to 
develop Th2 driven cellular 
immune responses. Larger 
airways, easier to measure 
breathing dynamics. 

Inflammation Mechanisms involve similar but 
often different proteins. Careful 
experimental design for a 
focused approach on the 
similarities but remembering 
the differences. 

Functionally similar but several 
components and events which 
are different. Understanding the 
similarities and differences are 
important in the context of 
disease. 

Response to 
Infection 

Similar processes and players 
with proteins being both the 
same and different. This all 
depends on protein homology 
or even presence.  

Similar processes with players of 
proteins being often times 
similar. The issue is the 
availability of reagents for 
studying the mechanisms of 
interests. 

Response to 
Injury 

Injury response is relative to the 
total surface area at the air-
liquid interface. Mouse models 
use chemicals, which are not the 
initiators in human disease. 

Injury associated with chemicals 
of mechanical contributions can 
be used due to the size 
difference from the murine 
counterparts. Chemicals used 
are always associated with real 
human disease. 

Table 1. In Vivo Models and Studies of Lung Disease Pathophysiology 

Acute Lung Injury: Acute lung injury (ALI) and acute respiratory distress syndrome 
(ARDS) results from severe injury to the lung parenchyma (11). Animal modeling 
experiments of ALI and ARDS have been very useful in providing some directions into the 
mechanisms related to disease pathogenesis and providing opportunities to explore new 
and innovative therapeutic targets. As with most lung disease modeling systems, the design 
of the model and its manipulation is predominately dictated by the hypothesis and the focal 
point of pathology. The pathology associated with ALI and ARDS includes inflammatory 
cell recruitment, exudation with edema in the small airways potentially resulting in alveolar 
collapse (12). The recruitment of inflammatory cells, the changes in tonicity at the tissue 
interface are all pathologies which contribute to the injurious process. This occurs through 
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enhancing the production of inflammatory proteins, proteases and reactive oxygen radicals 
at the tissue interface. This gets to the mechanisms associated with the development of ALI 
and ARDS including the processes involving the injury and down-stream response to the 
injury which also contributes to tissue damage (13,14). There are three different models that 
are used for inducing different aspects of ALI and ARDS. These include the surfactant 
washout (LAV) model, oleic acid intravenous injection (OAI) model and the 
lipopolysaccharide (LPS) model (15). The LAV model utilizes a series of broncholaveolar 
lavages which requires larger animals like rats and ferrets. In the surfactant washout 
models, the focus is removing the protective anti-inflammatory molecules such as surfactant 
protein A (SP-A) potentially altering the air-liquid interface surface tension, resulting in 
changes in oxygenation efficiency. The change in surface milieu signals the production of 
pro-inflammatory cytokines with results in recruitment of inflammatory cells which 
ultimately ctonritbutes to interstitial tissue damage (15). The OAI model uses an infusion of 
oleic acid into the central vein or the right atrium (16,17), necessitating the requirement of 
larger animals. There is considerable diversity in terms of the dosing and the timing of the 
administration of OAI, making the model highly variable and not well accepted. The precise 
mechanisms by which the oleic acid induces lung edema, and the mechanisms associated 
with the recruitment of inflammatory cells and injury are not completely understood. The 
response of the animal to the oleic acid, results in a series of inflammatory events that create 
ALI/ARDS which has been theroretically associated with anhanced pro-inflammatory 
cytokine production.  

The production of the pro-inflammatory cytokines in the LPS model is the common process 
involved with ALI development, as discussed in reference to the OAI and LAV models. The 
LPS model uses the product of gram negative bacteria (LPS) to induce cytokines and the 
down-stream events which result in inefficiency in the ability to resolve infection (15,18). In 
a sense it is a process that confuses the immune system so that it is unable to perform 
efficiently. The LPS is usually extracted from Escherichia coli, but could be from other gram 
negatives such as Pseudomonas aeruginosa, a common pathogen associated with community 
acquired pneumonia and ventilator associated pneumonia (19,20). The development of 
stable lung injury is dependent on dosage, time, route of administration and size of the 
model selected. In the murine models of the ALI/ARDS the LPS is administered intra-
tracheally. The process of infection induced ALI and/or ARDS may include sepsis in the 
animal model but also in human disease. In fact, about 50% of sepsis cases ultimately 
account for ALI and ARDS ventilator support (21). The development of sepsis, results from 
a sustained and uncontrolled inflammatory response to the infectious insult contributing to 
dysfunction of at least one organ system. The sequences of events which lead to sepsis are 
unknown as well as the events that result in pulmonary failure (22,23). In the models of 
sepsis induced ALI/ARDS, LPS is administered intra-tracheally or induced by surgically 
clipping the gastrointestinal tract (11,15).  

In Vivo Models, Clinical Relevance and Limitations. Histologically, human ALI/ARDS 
can be sub-divided into an exudative and fibroproliferative phase (24). The exudative phase 
is characterized by the accumulation of inflammatory proteins containing neutrophils (25), 
followed by the accumulation of macrophages initiating the fibroproliferative phase of the 
disease (26,27). In some patients the process and side-effects of the acute inflammatory 
response completely resolves whereas others progress with chronic inflammation, fibrosis 
and neovascularization (28). Each of the different models used to develop ALI/ARDS have 
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both valid and controversial contributions to studying these diseases in vivo. How these 
models compare and provide insight into ALI/ARDS is outlined in Figure 2. In the 
surfactant washout model, it is a useful tool in studying the importance of surfactant 
maintenance in airway-interface surface tension and pathophysiology of ALI. The issue is 
that most clinical conditions do not result in clinically significant surfactant abnormalities in 
the adult population (29). In the OAI model, the ability to induce the pathophysiology of 
ALI/ARDS is dependent on using injectable oleic acid, which is obviously not similar to the 
in vivo clinical development of the disease. However, it is still a useful model for studying 
the pathology of ARDS especially with a focus on membrane injury (16,17). Since infection 
has been closely associated with the development of ALI/ARDS, the LPS model seems to be 
the most translatable. However the other two models probably represent up-stream events 
in the exposure, specificity and sensitivity of the development of infection based ALI/ARDS 
(30-32). As with most in vivo animal models it does not appear that the model is consistent 
with all of the components of the human disease. The LPS model does not appear to develop 
the fibroproliferative phase of ALI/ARDS; which limits the use of these models for studying 
the secondary issues associated with ALI/ARDS chronic inflammation and fibrosis (15,30).  

 

Fig. 2. In Vivo Models of Acute Lung Injury. Three principal models exist for studying 
ALI/ARDS. In each case the model has important contribution to the pathophysiology 
shown in blue, and potential therapies shown in green. The important caveats and 
limitations are shown in red. 

Chronic Obstructive Pulmonary Disease (COPD) and Emphysema: COPD is the fifth 
leading cause of death worldwide and is associated with pollution and smoking history (33). 
COPD is a very complex disease with four described traits: emphysema, small airway 
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remodeling, chronic bronchitis and pulmonary hypertension (34). The underlying 
pathophysiology of COPD is dependent on the structure and function of the lung along with 
the immunological processes that occur post-insult. Although patients present with 
variations and combinations of these pathologies, all patients progress into severe 
pulmonary failure. The kinetics of disease progression is dependent on the patient, patient 
compliance to therapeutic intervention and the ability to respond to current therapeutics. In 
this case the animal model of choice should require a close attention to lung anatomy and 
physiology since these play very important roles in the overall development of COPD and 
emphysema (35), especially as it relates to the overall development of new therapeutics. 
Besides the basics of understanding the similarities and differences between lung anatomy 
of the animal model and that of the human disease some consideration must also be given to 
the overall lung mechanics.  

The in vivo model most commonly used to study COPD includes cigarette smoke (36). The 
issue lies with the ability to deliver a homogenous dosing of cigarette smoke over a defined 
time range, and that these models do not completely recapitulate the human disease. 
Further, since there are genomic differences which increase susceptibility to COPD, the 
translatable ability is always in the background. Additionally, the pulmonary pathology 
produced in the context of the cigarette model produces subtle pathologies which may also 
introduce subjective interpretation in quantifying the histopathology (37). Better 
computerized-microscopic programs need to be developed that can better quantify and 
minimize subjective interpretation of the studies (26,38).  

Non-specific inflammation is another indicator of COPD, with a predominance of 
neutrophils and the inflammation approach to studying COPD focuses on apoptosis and 
elastase (39,40). The apoptosis model focuses on the failure of the COPD lung to repair itself 
post-injury focusing on dysregulated normal lung tissue turnover. The mechanism 
associated with apoptosis induced COPD has been linked to the production of vascular 
endothelial growth factor (VEGF) and/or the VEGF receptor (40). It is not clear whether this 
VEGF/VEGF receptor dysfunction is by itself critical for inducing endothelial cell apoptosis 
and the processes that result in decreased vascularization in the lung or whether it is in the 
context of a variety of other factors which ultimately contribute to COPD.  

The elastase model uses a product of the inflammatory response to initiate and perpetuate 
the inflammatory response seen in COPD. The original hypothesis for the importance of 
elastase came patients α1-anti-trypsin deficiency (41,42). Individuals with this disease 
develop emphysema and COPD. These patients are treated with exogenous α1-anti-
trypsin, the endogenous inhibitor of elastase. In COPD/emphysema, the recruitment of 
inflammatory cells and the disproportionate production of proteases without the 
appropriate anti-protease counter-part ultimately results in extracellular matrix 
degradation, inflammatory cell recruitment, matrix metalloprotease activity, cellular 
activation which all contribute to the lung damage similar to the mechanisms in α1-anti-
trypsin deficiency (43,44). The disadvantage of the elastase model, is that the function of 
elastase and cigarette smoke in COPD emphysema are potentially mediated through very 
different pathophysiological mechanisms which again brings up the issue of clinical 
translation. It is efficient to have a very specific inducer of emphysema for investigating 
specific mechanisms and therapeutic development. However, results obtained from 
specific products need to be taken into consideration as compared to the complex in vivo 
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environment post complex insult (45,46). Some investigators have used LPS to induce 
airway and parenchymal changes, although the pathophysiology is more reminiscent of 
ALI/ARDS than COPD (33,47). Table 2 lists the pros and cons of each of the COPD 
models.  

 

Model Pathology Positives of 
Model 

Negatives of Model 

Cigarette 
Induced COPD 

Dilated alveolar ducts, 
abnormal parenchyma 
and increased 
numbers of goblet 
cells. Pulmonary 
function tests show 
decrease in 
effectiveness. 

The most similar 
to the human 
disease in terms of 
inducing agent 
that produces 
emphysema. 

It is not debilitating in 
animals. Lesions do 
not progress beyond a 
certain point to mimic 
the human disease.  

Apoptosis 
Induced COPD 

Induction of air space 
enlargement. Matrix 
breakdown. 

Induces enlarged 
airspaces in short 
period of time. 

Pathophysiological 
mechanisms are not 
permanent. 

Elastase 
Induced COPD 

Increased numbers of 
neutrophils, elevated 
elastase. 

Rapid and easy 
onset, easy to 
measure 
functional changes 
and possibly 
relevant to the 
repair and 
remodeling issues 
in COPD. 

Mechanism of disease 
induction is secondary 
to the initiators of 
clinical COPD. 

Starvation-
Induced COPD 

Decreased lung 
volume, changes in 
lung structure and 
function. 

Limited variability 
and short term 
impact on disease 
development.  

Compassionate care of 
animals. The 
pathology may be due 
to decreased repair 
mechanisms. 

LPS Induced 
COPD 

Produces enlarged 
airways in chronic 
scenarios. Matrix 
metalloproteinase 
production 

Short-term model 
with parenchymal 
changes. 

Inflammatory 
differential is not the 
same as pollutant 
induced insult which 
may reflect different 
mechanisms of 
pathophysiology. 

 

Table 2. Models of COPD 

Bronchopulmonary Dysplasia: Bronchopulmonary dysplasia (BPD) remains the leading 

cause of respiratory morbidity and mortality in severely pre-term infants (48,49). The 
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treatment of prematurity itself induces BPD, which complicates matters including ventilator 

induced surfactant deficiency and inflammation (44,50). Intrinsic BPD is characterized by 

immaturity, decreased growth, and immature vascularization (51). The main model for BPD 

is hyperoxic exposure in animal models such as rats and mice (49). Hyperoxia inhibits the 

normal budding and branching of the bronchi (52) leading to arrest in lung development 

resembling pre-term infant BPD (53). In these studies, it appears that both the airways and 

capillary vessels are affected requiring ventilation which can also contribute to 

inflammation and dysplasia (48,49,51). To understand the mechanisms and outcomes in 

BPD, animal models must contain elements of the normal fetal lung and the mechanisms 

associated with development and function. For the pulmonary mechanics studies, the in vivo 

models consist of larger animal models including lamb, rabbits and guinea pigs (49). The 

change in lung mechanics and the accumulation of fluid, changes the airway surface tension 

contributing to robust inflammatory cytokine production contributing further to the 

histopathology. Using these models, studies have provided avenues for understanding the 

role of surfactant therapy, decreased tidal volumes, improved control of oxygenation on 

BPD development and translation clinically (49,54).  

Alveolar Proteinosis: The lung faces physical and environmental challenges, due to 

changing in lung volumes as well as exposure to foreign pathogens. The pulmonary 

surfactant system is integral in protecting the lung from these challenges via two different 

and distinct groups of surfactant proteins (55). Surfactant protein (SP)-B and SP-C are small 

molecular weight hydrophobic surfactant proteins that regulate air liquid interface surface 

tension. SP-A and SP-D are the larger hydrophilic surfactant proteins which aide in surface 

tension but which also have microbicidal function. Additionally, there are other non-

surfactant proteins called defensins which also aid in inflammation and host defense (56). 

Pulmonary alveolar proteinosis (PAP) is a process by which there is a surfactant 

accumulation in the lungs potentially due to the inability to catabolize surfactant (57). There 

are three forms of the disease: genetic, exposure induced and idiopathic (58). The genetic 

disease specifically impacts children, and is associated with mutations in some of the 

surfactant protein genes (59-61). Exposure induced PAP is found in scenarios of particulate 

inhalation including silica and titanium (62-65). The idiopathic form is associated with 

circulating auto-antibodies against the macrophage growth and differentiation factor 

granulocyte-macrophage colony stimulating factor (GM-CSF) (66,67). Clinical studies have 

correlated the presence of the neutralizing antibody to PAP (66,68,69). Clinical trials of GM-

CSF, plasmapheresis and whole lung lavage have shown limited successes with some 

sustainable relief, but none of the treatments are curative (70). In terms of animal models, 

most have been done with mice since the defects are most often associated with the absence 

of surfactant or GM-CSF proteins and murine GM-CSF knockout development of alveolar 

proteinosis (71-73). The surfactant protein knockouts develop diseases very reminiscent of 

pediatric interstitial proteinosis (50). The GM-CSF knockout mouse has many 

pathophysiological outcomes which are reminiscent of the human PAP adult disease (74). 

The nice part of these models is that they do not have to be induced, so there is relatively 

little variability between animal to animal. There have been some attempts to develop an 

autoimmune model of idiopathic PAP using monkeys and mice (75,76). These efforts have 

provided important insight into the potential mechanisms of development in early and late 

stages of PAP due to autoimmunity against GM-CSF. 
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Agent utilized  Pathology Advantages Disadvantages 

Bleomycin Induced lung 
damage and repair. 

Ease of 
administration. 

Requires specific 
dosing regimen. 
Toxic to 
investigators. 

Silica Chronic 
inflammatory 
response and repair 
mechanisms 
associated with 
fibrosis. 

Sustained 
inflammation since 
silica is not resolved 
by macrophages. 

Not a natural 
inducer of fibrosis. 
The mechanisms 
may not be 
translatable. 

FITC Inflammatory 
response and repair 
mechanisms. 
Natural hapten 
induced 
inflammatory 
mechanisms. 

Visualize areas of 
repair and fibrosis. 

Some characteristics 
of the lung disease 
are absent. There is 
significant variability 
depending on the 
FITC batch. 

Irradiation Induces direct cell 
death via DNA 
damage with a 
subsequent influx 
of inflammatory 
cells. The radiation 
may also directly 
induce the fibrotic 
processes.  

Ease of study, no 
chemical 
requirement. 
Mimics human 
process in terms of 
initiation and 
progress. 

Long time for the 
fibrosis to develop, 
limited to modeling 
radiation induced 
pneumonitis. 

Viral Induced 
Transgenes  

Viruses used to up-
regulate mediators 
of fibrosis. 

Specific in vivo 
molecules 
associated with IPF 
formation such as 
TNF or TGFB.  

Deal with potential 
mechanisms but is 
not realistic to 
defining disease 
process. 

Table 2. In vivo Models for Interstitial Pulmonary Fibrosis 

Interstitial Pulmonary Fibrosis: Fibrosis is an important cause of morbidity and mortality 
in a variety of lung diseases, but it has a very prominent role in idiopathic pulmonary 
fibrosis (IPF) (77). IPF presents with a homogenous phenotype with both definable 
physiologic and radiographic presentation but without identifiable etiology (78) although, 
the literature suggests that alveolar type II cell injury is an important early feature in the 
pathogenesis of pulmonary fibrosis (79). The source of injury is unknown. Different 
approaches to modeling pulmonary fibrosis have been used by investigating exposure to 
bleomycin, silica, fluorescein isothiocyannate (FITC) and irradiation (77). At the genetic 
level, some models of IPF have included over-expression of ‘hypothesized” genes in the 
pathogenesis of IPF or utilization of transgenics for cell specific contribution to IPF. 
Bleomycin is the most frequently used agent in modeling IPF (80,81). The advantage of 
bleomycin is the ease with which it can be administered and the consistency of the IPF 
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pathophysiology. Bleomycin is a chemotherapeutic agent which induces lung damage 
through direct DNA strand breakage and the generation of free radicals. The response to the 
injury is healing and fibrosis. Silica aerosolized into the lung induces pulmonary fibrosis 
through inducing chronic inflammation and frustrated phagocytosis by macrophages 
(77,82). Post-ingestion, the macrophages constitutively produce pro-fibrotic cytokines (83). 
The greatest advantage of the silica based system is that the silica particles are not easily 
cleared from the lungs creating a persistent stimulus and a non-reversible fibrotic process. 
Regardless of the model fibrosis is dependent on the strain of animals, suggesting immune 
dependent contribution to the overall susceptibility of IPF development. FITC is another 
chemical used to induce pulmonary fibrosis (77,84). Fluorescein, delivered directly into the 
airway acts as a hapten attaching to lung proteins providing a depot for continuous lung 
exposure to antigen. The advantage of the FITC model is the ability to actually image the 
processes as they occur in the lung.  

Asthma: Asthma is a very complex and heterogeneous disease affecting 300 million people 
worldwide especially in Westernized countries (85). Why developing countries seem to be 
somewhat protective has been the foundation for the hygiene hypothesis (86). Asthma is a 
complex trait caused by multiple environmental factors with the main characteristics being 
airway inflammation and airway hyper-reactivity (AHR) (87). The pathogenesis of asthma is 
associated with many environmental factors, many cell types and several molecular and 
cellular pathways. Some specific presentations of asthma are outlined in Figure 3 (88,89). 
The majority of the induced asthmas are due to exposure to an irritant such as air pollution, 
allergen or viral exposure. Even aspirin and drug induced asthma can be associated with 
changes in the pulmonary milieu upon dosing. Interestingly, some asthma phenotypes are 
not associated with identifiable exposures, such as exercise induced and metabolic 
syndrome associated asthma.  

 

Fig. 3. Asthma Phenotypes. Asthma is a heterogeneous disease with multiple factors 
associated with the development and response to therapy. Given these issues, designing 
experiments and translating into clinical significance become a challenge. 
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These different pathways and phenotypes probably suggest mechanisms that are co-existent 
but also synergistic depending on the patient, environment, compliance and documentation.  

Animal models of asthma have helped to clarify some of the underlying pathophysiological 
mechanisms contributing to the development of asthma (5,9,10). Much of the focus of these 
models is on T cell driven allergic responses contributing to understanding of the 
heterogeneity of asthma (90). The murine model of asthma using Balb/C mice has defined 
the important role of allergen-specific Th2 cells in recruiting eosinophils into the airway, 
their activation and the release of histamine associated with atopic airway reactive disease. 
The major caveat in the murine asthma studies is that the allergen sensitization process does 
not completely recapitulate the allergic response in humans complicating the ability to 
utilize these models for therapeutic development (91). This has been quite frustrating in 
asthma therapy development, even though certain biomarkers have been identified in the in 
vivo models they have ultimately not translated into efficient therapeutic care for patients 
with asthma (10). The inability to translate the observations from the animal models to 
patient care were very disappointing and increased the lack of the appreciation of the 
animal models toward mechanisms and pathogenesis of asthma. The fortunate component 
of the murine asthma model is the ability to sensitize the animals to a variety of foreign 
proteins and to use transgenic animals for studying mechanisms and response to different 
exposures. In most scenarios, the challenge results in a Th2 polarization and enhanced 
allergen-specific IgE production (92). Pathologically the lungs have eosinophilia, mucus 
secretion and goblet cell hyperplasia, airway hyper-responsiveness and remodeling with 
fibrosis (5,88). These asthmatic phenomena have suggested that cytokines and cells other 

than T-cells, such as IFN, IL-17 and/or neutrophils, may also play a significant role in the 
lung pathology (93,94). Further, Th2 targeted therapies have not been as effective as hoped 
in many clinical trials of asthma, suggesting alternative pathways to the lung inflammation 
and remodeling. These have resulted in several distinct alternatives to the traditional 
allergen challenge model. Table 3 outlines the different animal models currently available to 
study various aspects of the pathophysiology associated with asthma. 

Lung Cancer: Several in vivo models exist which provide the opportunity to study cancer 

(95). The complications in these models are their inability to completely correlate with 
histologic patterns of the malignancies, natural strain susceptibility and time frames for 
cancer induction in humans. One important difference between the animal models and the 
human disease is that these animals have higher basal metabolic rates changing metastatic 
potential (33). Failure to develop specific tumor types is probably due to the variability of 
the transgene expression early in lung development. The most common compound utilized 
for the development of tumors in animal models is urethane (96). Mouse models have been 
used to study the roll of mutant oncogenes in the genesis of lung adenocarcinomas (97-99). 
These models have also proven useful for studying potential therapeutics. The development 
of a tyrosine kinase inhibitor which blocks epidermal growth factor receptor (EGFR) was 
found to benefit some patients after testing in mouse models. The deletion of other genes 
associated with human small-cell lung cancers could also be mimicked in a murine lung 
model aiding in therapeutic development of inhibitors (33,95).  

Malignant mesothelioma is a cancer associated with environmental exposure to asbestos 
(95). The disease has a poor prognosis, with little to offer patients in terms of therapy. 
Mouse models of pleural mesothelioma have been produced by exposing mice to asbestos  
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Model Advantage Disadvantage Pathology 
Association 

Translation into the 
Clinic 

Allergen 
Challenge 

Similar to atopic 
induced asthmatic 
disease. Can be 
defined by the route, 
dosage and duration 
of the sensitization 
and challenge 
regime. 
 

The model 
does not 
recapitulate 
all of the 
components 
of the allergic 
disease. 

Airway hyper-
reactivity, 
systemic IgE, 
mucous 
production, 
goblet cell 
hyperplasia. 

Variability in 
species, 
sensitization/challe
nge regimes, and 
duration of studies. 
Has introduced 
some clinical 
failures. 

Viral 
Respiratory 
Infection 

Independent of Th2 
mechanism, Induced 
using sendai virus 
(parainfluenza) or 
respiratory syncitial 
virus (RSV).  

Maybe 
considered a 
contributor to 
the human 
disease but 
may precede 
the start of 
asthma 
symptoms in 
humans. 

Airway hyper-
reactivity, 
alternatively 
activated 
macrophages 
and natural 
killer cells. 

Evidence for viruses 
has been found in 
patients with severe 
asthma and in 
children with 
asthma with pre-
exposure to RSV.  

Air 
Pollution 

Ozone is a common 
inducer. This 
appears to be 
concentration, route 
and dosage 
dependent. 

Difficult to 
obtain 
consistency 
due to 
inhalation 
variability. 

Severe airway 
hyper-
reactivity 
associated with 
neutrophils. 
Also requires 
the presence of 
 IL-17. 

May lead to some 
understanding of 
the down-stream 
event in severe 
chronic asthma. 

Intrinsic 
AHR 

Requires strain 
specific 
manipulation and is 
associated with 
specific proteases. 

Is strain 
specific and 
appears to 
associate with 
the asthma 
susceptibility 
gene.  

Appears to 
regulate the 
control of 
airway hyper-
reactivity 
through 
smooth muscle 
cell activation 
and 
bronchospasm. 

The association of 
the proteases to 
human asthma. 

 

Table 3. In Vivo Models for the Versatility of the Asthma Phenotypes 

fibers. A wide range of natural and synthetic fibers, chemicals and metals have also been 
shown to induce pleural and peritoneal mesotheliomas (100,101). Recently the technology of 
xenographic transplantation of human malignant mesotheliomas into rats or mice has been 
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used to study new chemotherapeutic agents including immunotherapy, gene therapy and 
multimodality therapy (95). Asbestos-induced malignant mesotheliomas produced in 
rodents resemble the human disease with respect to latency and growth of the tumor cells. 
Even with these similarities, mice are not perfect models for humans.  

Cystic Fibrosis: Cystic fibrosis (CF) is the result of defects in the gene encoding the cystic 
fibrosis transmembrane regulator (CFTR) and is the most common genetic disease among 
Caucasians (102).. Even though new therapeutics including correctors and activators like 
VX-770 has shown great promise in new phases of CF therapy, the cure has been elusive 
(103). The development of the in vivo models has focused on four major points of 
pathophysiology: anatomy, physiology, airway clearance and intrinsic and/or induced 
inflammation. The mouse model been the main model in CF research for several years, 
however, the model does not develop spontaneous lung disease requiring the introduction 
of bacteria to initiate the pathophysiological events associated with CF infection and 
inflammation (104). There are several different models of CFTR deficiency ranging from the 
complete absence of CFTR (null) to the partial expression and/or function (4). There have 
also been murine models developed in which the lung mutation remains but the 
gastrointestinal phenotype is corrected or it is cell specific (105). The reason for these later 
series of animals is that the murine CFTR null mutant consistently has gastrointestinal 
blockage once the mice have been weaned, increasing mortality and expense of the animals. 
To prevent obstruction, the animals are put on a laxative. Investigators have a choice 
whether to use laxative treated animals or gut corrected animals. In either case, it is likely 
that gastrointestinal obstruction is important in the overall immunity and host response to 
infection in CF. Therefore, observations in the gut corrected mouse may ultimately have to 
be verified in the null mouse depending on the focus of the studies. Even with the 
differences in the gastrointestinal constitution, the severity of the different murine models is 
defined by CFTR protein function  related to the mRNA expressed, protein synthesis or 
folding of the complete CFTR protein (4). In addition to the gastrointestinal obstruction, 
most of the models display inflammation (106), failure to thrive (107), decreased survival 
(108,109) and hyper-responsiveness to stimulation (110). To improve the ability to look at CF 
globally, larger models of CFTR deficiency have been developed to better investigate the 
airway pathogenesis and progression of lung disease. Further, unique models have been 
developed using transgenic technology to induce CFTR deficiency in specific cell types, 
allowing for the sequential investigation of all of the contributing cellular abnormalities and 
how they contribute to the CF pathophysiology (105,107,111).  

The pig has become an exciting new direction for CF model development. The pig lungs and 
human lungs have similar comparative anatomy (112,113) and have been used to study a 
variety of aspects of lung pathophysiology including surfactant homeostasis, airway hyper-
responsiveness and lung injury (114). The first studies have shown that there were no 
differences in the newborn pig birth weight or appearance (4). Deficient CFTR in the pigs 
did not appear to alter normal birth weight, appearance and/or lung anatomy or function. 
The absence of CFTR however, did result in defective nasal transepithelial cell potential and 
all piglets developed severe gastrointestinal obstruction. Further, with piglet aging there 
appears to changes in lung physiology and function resembling that of infant with CF. 
However, the development of lung disease is still being investigated as to whether it is an 
intrinsic phenomena due to the absence of CFTR, or the result of environmental exposure 
(112). The pig is a great model for studies in CF lung pathophysiology, however husbandry 
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and cost and reproductive cycle play a major part in being able to conduct several studies 
with reasonable numbers of animals.  

The ferret has been shown to also be a good animal model for studying CFTR lung biology 
(7,115). The ferret lung shows CFTR expression in the airway epithelium and submucosal 
glands, identical to that in humans (4,7). Like the pig model, the majority of the CFTR deficient 
ferrets also developed gastrointestinal obstruction with “failure to thrive” (115,116).  

To study CF, the availability of three established in vivo model systems provides ample 
ability to study various components of CF pathophysiology. Besides CFTR deficient mice, 
pigs and ferrets, other models have also been developed or observed (117) including the 
sheep (118) and monkey models (119). These have been less studied for a variety of reasons. 
Although these models have provided invaluable insight into the development of new CF 
therapeutics, new model systems should be considered to get even closer to the overall 
mechanisms associated with CF.  

Summary: Human lung disease is a major cause of morbidity and mortality in the world. 
The pulmonary dysfunction may be primary or secondary to a variety of events. The 
pathophysiological mechanisms associated with the disease processes are different 
depending upon whether the insult is external as in the case of infection or injury or internal 
as in the case of genetic anomalies associated with important pulmonary or secretion 
functions. Studying lung disease requires models that attempt to recapitulate the human 
phenomena. There are no perfect models, and the selection for studies must be based upon 
the criteria of study and the ability of the model to meet the needs of the study. In this 
chapter we have highlighted a variety of pulmonary diseases and syndromes with a focus 
on the models used to study the various pathophysiological mechanisms associated with 
that specific disease entity. In the end, model development and usage will continue as a 
conduit with which to test mechanisms and to explore the development of new and 
innovative therapeutics. 
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