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1. Introduction 

Lung cancer arises from neoplastic changes of the epithelial cells in the lung. However, it is 
not known whether all or only a subset of these lung epithelial cells is susceptible to 
malignant transformation. Specifically, a major question is whether the changes need to take 
place in lung epithelial cells involving stem-cell–like properties. Lung cancer is a clinically, 
biologically, histologically, molecularly, and genetically heterogeneous disease. The 
underlying causes of this heterogeneity are unknown and could reflect changes occurring in 
cells with various potential for differentiation or represent different molecular changes 
occurring in the same lung epithelial target cells. Transformation from a normal to 
malignant lung cancer phenotype is thought to arise in a multistep fashion, through a series 
of genetic versus epigenetic alterations, ultimately evolving into an invasive cancer by clonal 
expansion. These progressive pathological changes in the bronchial epithelium occur 
primarily as one of three distinct morphological forms: squamous dysplasia, atypical 
adenomatous hyperplasia, and diffuse idiopathic pulmonary neuroendocrine cell 
hyperplasia. Bronchial squamous dysplasia and carcinoma in situ (CIS) are the recognised 
preneoplastic lesions for squamous cell carcinoma (SCC); atypical adenomatous hyperplasia 
(AAH), a putative preneoplastic lesion, for a subset of adenocarcinomas (ADC); and diffuse 
idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) for neuroendocrine lung 
carcinomas. Pulmonary neuroendocrine tumours comprise approximately 2% of all lung 
malignancies. According to the most recent World Health Organization classification, 
pulmonary neuroendocrine tumours are histologically divided into a three-tier, four-
category system including low-grade (typical carcinoid), intermediate-grade (atypical 
carcinoid), and high-grade (small cell carcinoma and large cell neuroendocrine carcinoma) 
tumours. Nearly all lung cancers exhibit the morphological and molecular features of 
epithelial cells and are accordingly classified as carcinomas. The cells of origin of virtually 
all lung cancers reside in the epithelial lining of the airways. As more is learned about the 
origin of neuroendocrine lung tumours, it is also increasingly clear that the biology of 
neuroendocrine lung tumours arising in the central airways (i.e., SCLC) is distinct from that 
of peripheral airway lesions. The purpose of this chapter is not so much to recapitulate the 
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details of the neuroendocrine lung tumour classification but rather to provide an 
understanding of the main categories of lung carcinoma, to highlight potential pitfalls in the 
histopathological diagnosis of lung cancer, to summarise current information on molecular 
properties and cellular origins of individual neuroendocrine lung tumour subtypes, and to 
relate pathologies to biological behaviours. 

2. Neuroendocrine system of the lung 

The endocrine cells within the gut epithelium (foregut, midgut, and hindgut) constitute the 
largest population of hormone producing cells in the body. So far, approximately 10 
different neuroendocrine lineages have been identified, and most of them show a specific 
rostro-caudal distribution. Pulmonary neuroendocrine cells (PNECs) are part of the diffuse 
neuroendocrine system (DNES) distributed throughout the body. The PNEC system 
(solitary PNECs and neuroepithelial bodies, or NEBs) consists of a distinct population of 
airway epithelial cells displaying endocrine and paracrine secretory mechanisms. 
Pulmonary neuroendocrine cells were readily demonstrated and uniformly distributed in 
normal adult human lungs. Overall, as identified by neurone specific enolase 
immunoreactivity, there were 10.5 neuroendocrine cells per 10 cm of epithelial length and 4 
per 10,000 epithelial cells; they extended from the trachea to the alveolar ducts but none was 
seen in the alveoli (72% were in bronchi, 24% in bronchioles, and 4% in alveolar ducts). Of 
the cells identified by gastrin-releasing peptide immunoreactivity, there were 6.9 
neuroendocrine cells per 10 cm of epithelial length and 2.4 per 10,000 epithelial cells. Of the 
cells identified by calcitonin immunoreactivity, there were 3.5 neuroendocrine cells per 10 
cm of epithelial length and 1.3 per 10,000 epithelial cells. Minor cells contained serotonin (all 
in the terminal bronchioles), and in a small minority no peptide or amine was detected. It is 
currently thought that PNECs, like their counterparts in the gastrointestinal tract, are 
derived from multipotent epithelial progenitors, and that all epithelial cells arise from a 
single stem cell. All pulmonary epithelial cells including PNECs and non-NE airway 
epithelial cells are likely to be derived from a single stem cell. Epithelial lung stem cells, as 
in many organs, are often confined to discretely localised niches that are protected from 
environmental insults. In the lung, PNECs are associated with the stem cell niches in both 
the proximal and distal airways. One of the lung stem-cell niches is located in the trachea 
that reveals two stem-cell niches: gland ducts in the proximal compartment and select foci 
near the cartilage-intercartilage junction in the distal trachea. Other intrapulmonary stem 
cell niches include NEBs located at the airway bifurcation. Another stem cell niche is at the 
bronchoalveolar junctions, although PNECs may play a diminished role at this location. 
Among many functions assigned to them, there is a possible dual role: the regulation of lung 
maturation/growth and chemoreception. First, during the early stages of lung 
organogenesis, PNECs acting via their amine and peptide products may function as local 
modulators of lung growth and differentiation. Second, later in foetal life and in postnatal 
stages, PNECs and in particular innervated NEBs could play a role as airway 
chemoreceptors. The diffuse neuroendocrine system (DNES) of the lung involves 
neuroendocrine cells that have been shown to express a functional oxygen sensing 
mechanism. Aggregates of neuroendocrine cells, called neuroepithelial bodies (NEBs), are 
diffusely spread in the epithelium at all levels of the intrapulmonary airways, preferentially 
located at the airway bifurcation of the lungs. Neuroendocrine cells are selectively contacted 
by different nerve fibres. NEBs are contacted by at least three different nerve-fibre 
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populations: vagal sensory calbidin D28k, calcitonin gene related peptide (CGRP)/substance P 
(SP) innervation, and intrinsic pulmonary nitrergic neurons. 

2.1 Neuroendocrine epithelial cells  

Neuroendocrine epithelial cells (NEC) of the respiratory system tend to occur either as 
single cells that are sparsely distributed throughout the epithelium of the tracheobronchial 
tract or in small, well-defined clusters that are supported by nonciliated bronchiolar (Clara) 
cells. The latter are referred to as neuroepithelial bodies (NEBs) and are located only in the 
epithelium of the intrapulmonary airways, often at or near a bronchiolar bifurcation. The 
solitary pulmonary NEC cells of most of the investigated species are fusiform or flask-
shaped, resting on the basement membrane with an apical process pointing toward the 
airway lumen. Adult human NEC cells generally lack luminal contact. Although there are 
some differences between solitary NEC cells and NEBs, a large body of evidence points to 
their being a member of the amine precursor uptake and decarboxylation (APUD) cell series 
or of the paraneuron family. The endocrine system of the lung consists of at least two 
different cell categories. These categories exhibit similar main characteristics. They contain a 
biogenic amine and neuropeptide mediators, and their cytoplasm harbours neurosecretory-
like granules. Regarding morphological features and location, these cells presumably have a 
receptor secretory function. Consequently, these classes of endocrine cells can be designated 
as paraneurons. Solitary NEC cells were found to be distributed over almost the entire 
respiratory system, while NEBs seemed to be restricted to the epithelium of the 
intrapulmonary airways. Neuroepithelial bodies generally consist of nonciliated, cylindrical 
cells with a palisade-like arrangement between the airway surface and the underlying 
connective tissue, although they may also appear as stratified cells. Most of the luminal side 
of the NEBs is covered by the supporting Clara cells. The NEBs are strategically located on 
the surface of the airway bifurcations. They, in fact, contain the serotonin-bioactive amine 
and neuropeptides, leading to the speculation of these cells as a homogeneous or 
heterogeneous class. They also exert control on pulmonary vessels and airway tone. The 
NEC cell may function as the transducer of the stimulus or the sensory nerve ending, the 
activity of the latter being modulated by the release of bioactive substances from NEC cells. 
Investigations have indicated the influence of NEC cells on epithelial cell differentiation, 
mucous secretion, and proliferation of local endoderm in developing airways. 

2.2 Pulmonary neuroendocrine cells 

Pulmonary neuroendocrine cells (PNECs) are commonly organised into innervated clusters, 
called NEBs, which have been proposed to serve various functions, including the regulation 
of embryonic lung growth and maturation through the elaboration of a variety of potent 
neuropeptides. Several studies have suggested that PNECs are quiescent cells with limited 
self-renewal capacity. However, it was recently demonstrated that PNECs have a self-
renewal capacity and can be activated to undergo multiple rounds of proliferation after TA 
(Clara) cell depletion. It has been suggested that PNEC-derived paracrine factors might play 
a role in the regulation of epithelial cell differentiation and proliferation during foetal lung 
development and possibly in the normal or injured adult lung. Cell proliferation has also 
been shown to contribute to the maintenance of PNE cells in the normal lung as well as in 
hyperplasia of this population in various disease states. PNE cells are known to act as a 
progenitor cell for the establishment of NEB hyperplasia and represent one of two 
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proliferative populations within hyperplastic NEBs of the naphthalene-injured lung. 
Participation of non-PNE progenitor cells in this process has also been demonstrated and 
may contribute to the intermediate phase of NEB hyperplasia. These data suggest that 
multiple cell types contribute to the maintenance and expansion of the NEB-associated PNE 
population and that progenitor selection may be a dynamic feature of NEB hyperplasia. 
Findings from various studies have established PNE cells as a progenitor population that is 
sufficient for the development of both NEB hypertrophy and hyperplasia. Although NEB 
dysplasia is correlated with preneoplastic conditions and PNE cells are thought to serve as a 
precursor for the development of small cell lung carcinoma, mechanisms regulating the 
expansion of the PNE cell population are not well understood. Based on studies performed 
in animal models, it has been suggested that NEB-associated progenitor cells that are 
phenotypically distinct from PNE cells contribute to PNE cell hyperplasia. However, when 
considering mechanisms that may account for PNE cell hyperplasia, the finding that 
multiple cell types proliferate in the NEB microenvironment raises the possibility that a non-
PNE cell progenitor may yield progeny cells with the capacity to undergo PNE cell 
differentiation. 

2.3 Neuroepithelial bodies 

Neuroendocrine bodies were illustrated in 1949 in the description of neuroendocrine cells in 
the bronchiolar mucosa. Neuroendocrine bodies consist of a cluster of 4 to 10 
neuroendocrine cells. On well-oriented sections, they can extend from the subepithelial 
basement membrane to the airway lumens. They are found not only in the epithelium of 
bronchi and bronchioles, but also in alveoli. The neuroepithelial body (NEB) is a highly 
dynamic structure that responds to chronic airway injury through hyperplasia of the 
associated PNEC. NEB-associated epithelial cells share many morphological and 
biochemical characteristics with cells that are distributed throughout the airway. Pulmonary 
NEBs are prime candidates to serve as sensory end organs in the lung. NEBs consist of 
highly organised clusters of specialised cells with neuroendocrine characteristics, arranged 
into organoids that are dispersed throughout the epithelium at all levels of the 
intrapulmonary airways. Structurally, NEB cells harbour cytoplasmic neurosecretory 
granules that are known to contain monoamine, peptide, and purine transmitters. 
Neuroendocrine cells are able to synthesise and release ATP, monoamine, and peptide 
transmitters, resulting in autocrine, paracrine, or endocrine effects. Morphologically, NEBs 
resemble other known chemoreceptors, such as taste buds and carotid bodies, and are 
thought to represent “chemosensors” among other possible functions. Hypoxic conditions 
appear to depolarise NEB cells via a potassium channel-mediated mechanism. In particular, 
the extensively innervated aggregates of the neuroendocrine cells, called neuroepithelial 
bodies (NEBs), are diffusely spread in the epithelium at all levels of the intrapulmonary 
airways but are preferentially located at the airway bifurcation points in the lungs. 
Proportionally, most NEBs are found in the bronchioles and in the terminal respiratory 
bronchioles. The NEB microenvironment may represent an analogous structure within the 
conducting airway epithelium for maintenance of an airway stem-cell pool. It may 
influence the phenotype of the CE cells, blocking the differentiation from Clara to ciliated 
cells and preserving a population of regenerative cells that can contribute to epithelial 
renewal after exposure to Clara cell toxicants. Regeneration of the chronically injured 
airway epithelium is associated with alterations in the number and cellularity of the NEBs 
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as well as the enrichment of nascent epithelial cell populations of epithelial cells that are 
candidate stem cells. The NEB microenvironment is multifunctional, serving to maintain 
slow-cycling epithelial cells in the steady state epithelium and to stimulate the 
proliferation of TA cells either after airway injury or during airway development. Many 
studies have presented extensive evidence that NEBs in the lungs may be selectively 
contacted by at least 5 distinct nerve-fibre populations that are both sensory and motor in 
nature. In addition, they have different origins, indicating that NEBs should be regarded 
as very complex airway receptors that may be capable of accommodating various chemo- 
and mechano-sensory modalities.  

2.3.1 Functions 

It has been estimated that NEBs represent <1% of the epithelial cells in human lungs. 
Some of the supposed functions of NEB in mammalian lungs include the following: 1) the 
ability of NEB to function as transducers (hypoxia); 2) modulation of bronchomotor tone via 
targeting bronchial smooth muscle and the associated nerves located directly beneath NEB; 
3) promotion and regulation of the growth of developing airways by stimulating the 
proliferation of local endoderm; 4) release of amine and peptide modulators; and 5) neonatal 
respiratory adaptation. The lung bud epithelium grows into the adjacent mesenchyme and 
stars branching to form the future bronchial tree. The various stages are divided into the 
embryonic, pseudoglandular, canalicular, saccullar and alveolar/microvascular periods. 
Pulmonary neuroendocrine cells are the first specialised epithelial cell type to appear in 
lung development. In humans, ultrastructurally distinct primitive PNECs (pre-NE cells), 
which contain serotonin and neuro-specific enolase (NSE), can be detected in the beginning 
of the pseudoglandular period. Solitary and clustered PNECs contain bombesin, the major 
neuropeptide in human lungs, which appears in the early weeks of gestation. As the distal 
segments of the developing airways elongate, a process referred to as the canalicular period, 
PNECs differentiate first, followed by ciliated and secretory (Clara) cells. Parallel with the 
increasing number of peripheral airways, the number of PNECs also increases. In the 
developing bronchioles, small NEBs composed of 3-5 bombesin and serotonin-
immunoreactive cells appear at the airway branching points, and rare nerve endings have 
been demonstrated to be in contact with NEBs already in the human foetal lung. Proposed 
roles for PNECs in foetal and newborn lung development include the regulation of 
branching morphogenesis as well as cellular growth and maturation.  

2.3.2 Airway oxygen sensors 

Since 1930, evidence has accumulated to suggest that NEBs may function as hypoxia-
sensitive airway sensors. NEB cells express membrane-bound O2 sensors and are the 
transducers of the hypoxic stimulus. NEB cells respond to acute hypoxia, but apparently not 
to hypercapnia with the degranulation of dense core vesicles and release of 5-
hydroxytryptamine (5-HT). Morphologic and experimental studies to support NEB 
functions as hypoxia-sensitive airway chemoreceptors modulated by the central nervous 
system include the following: a) preferential location of NEB at airway branching points; b) 
apical microvilli in contact with the airway lumen; c) cytoplasmic neurosecretory granules 
containing monoamine and neuropeptides; d) afferent sensory innervation derived from the 
vagus nerve; and e) proximity to blood capillaries. NEBs are predominantly innervated by 
sensory nerve fibres derived from cell bodies in the nodose ganglion of the vagus nerve. 
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Morphological data support the role of NEBs as hypoxia-sensitive airway sensor systems. 
Studies on the effects of chronic hypoxia have shown induced cellular hyperplasia and 
hypertrophy in the peripheral chemoreceptors; chronic normobaric hypoxia showed a 
significant increase in the number of solitary pulmonary neuroendocrine cells (PNECs) as 
well as the enlargement of NEBs. NEB cells possess an oxygen-binding protein, cytochrome 
b, an NADPH oxidase located in the cellular membranes that acts as the O2 receptor both 
during normoxia and hypoxia.  

3. Pathology of neuroendocrine tumours of the lung 

The neuroendocrine cell system is divided into cell types that form glands and diffusely 
distributed cells. This second group is collectively known as the diffuse neuroendocrine 
system (DNES), and its representatives are found in the lung, gastrointestinal tract, or 
urogenital tract. Neuroendocrine tumours of the lung arise from bronchial mucosal cells 
known as Kulchitsky cells, which are part of the DNES. The classification of lung 
neuroendocrine malignancies has been an evolving process (Table 1). 
 

WHO/IASLC histological classification 
Preinvasive Lesions 
   Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) 
Large Cells carcinoma (Variants) 
   Large cell neuroendocrine carcinoma (LCNEC) 
   Combined large cell neuroendocrine carcinoma (C-LCNEC) 
Carcinoid tumour 
   Typical carcinoid (TC) 
   Atypical carcinoid (AC) 
Small cell carcinoma 
   Combined small cell carcinoma 
Non-small Cell Lung Carcinoma with Neuroendocrine Differentiation (NSCLC-NED) 

WHO: World Health Organization; IASLC: International Association for the Study of Lung Cancer 
*From Travis WD, Colby TV, Corrin B, et al in collaboration with pathologists from 14 countries.  
Histological typing of lung and pleural tumors. 3rd ed. Berlin: Springer Verlag, 1999, with permission. 

Table 1. Lung tumours with neuroendocrine morphology include the low-grade typical 
carcinoid (TC), intermediate-grade atypical carcinoid (AC), and the high-grade LCNEC and 
SCLC. 

These classifications date back to 1972, when atypical carcinoids were initially defined 
according to histological criteria, including the number of mitoses per high-power field 
(hpf), the presence of necrosis, increased cellularity with disorganisation, nuclear 
pleomorphism, hyperchromatism, and an abnormal nuclear to cytoplasmic ratio (Table 2). 
In 1991, a new classification proposed 4 categories of neuroendocrine lung tumours that 
included the following: typical carcinoid (TC), which is a low-grade malignancy; atypical 
carcinoid (AC), which is a medium-grade malignancy; large-cell neuroendocrine carcinoma 
(LCNEC), which is a high-grade malignancy; and small-cell lung cancer (SCLC), which is 
also a high-grade malignancy. The 2004 WHO categorisation of tumours with 
neuroendocrine features included the classic carcinoid low-grade TC and intermediate-
grade AC, as well as the high-grade malignancies LCNEC and SCLC. 
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Tumor Mitoses 
Nuclear 

chromatin 
N/C ratio Nucleoli Necrosis Shape 

TC <2/10 HPF Finely granular Moderate Occasional None Round, oval 
AC 2-10/10 

HPF 
Finely granular, 
occasional 
atypia 

Moderate Common +(focal) Round,oval 

SCLC ≥11/10 HPF 
Median 
80/10 

Finely granular High Absent or 
inconspicuo
us 

+(large 
zones) 

Round, 
oval,spindle 

LCNEC >11/10 HPF 
Median 
70/10 

Vesicular or 
coarsely 
granular 

Low Very 
common 

+(large 
zones) 

Round, oval 
polygonal 

N/C: nuclear/cytoplasmic; HPF: high power fields; LCNEC: large cell neuroendocrine carcinoma; 
SCLC: small cell lung carcinoma 

Table 2. Histopathological Classification of Neuroendocrine Tumours of Lung 

3.1 Tumourlets 

Carcinoid tumours that grow in the peripheral lung and are smaller than 5 mm are referred 
to as tumourlets. By definition, tumourlets are comprised of increased numbers of 
individual cells, small group cells, or nodular aggregates of cells that are confined to the 
bronchial/bronchiolar epithelium (with larger lesions bulging into the lumen but not 
breaking the subepithelial basement membrane). 

3.2 Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia 

Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) is a rare 
condition in which neuroendocrine cells proliferate throughout the peripheral airways in 
the form of neuroendocrine cell hyperplasia, tumourlets, and sometimes carcinoid tumours. 
In DIPNECH, neuroendocrine cell hyperplasia and tumourlets are thought to be a primary 
proliferation in contrast to the much more common situation where these lesions are seen as 
a reactive secondary lesion in the setting of airway inflammation and/or fibrosis. This 
condition is regarded as a precursor to carcinoid tumours because a subset of these patients 
experience one or more carcinoid tumours. More aggressive forms of lung carcinoma, 
including SCLC, have not been associated with DIPNECH. 

3.3 Carcinoid tumours 

Pulmonary or bronchial carcinoid tumours account for over 25% of all carcinoid tumours 
and for 1%-2% of all pulmonary neoplasms. Approximately 10%-20% of pulmonary 
carcinoids are typical carcinoids; the remaining 80%-90% are atypical carcinoids. Most of 
these tumours occur centrally and involve the main, lobar, or segmental airways. Sometimes 
they are located distal to the segmental bronchi; such tumours are the so-called peripheral 
carcinoids. Atypical carcinoids have been reported to be larger than typical carcinoids, with 
mean diameters of 3.6 cm and 2.3 cm, respectively. Moreover, atypical carcinoids are more 
likely to occur in the periphery of the lung than are typical carcinoids. It was generally 
accepted that a carcinoid tumour was a very slow-growing and benign neoplasm with no 
potential for invasiveness and no tendency to give rise to metastases. Carcinoid tumours 
have subsequently been reported in a wide range of organs, but they most commonly 
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involve the lungs and the gastrointestinal tract. The histopathologic features that distinguish 
atypical carcinoids from typical carcinoids are as follows: increased mitotic activity; greater 
cytological pleomorphism and higher nuclear to cytoplasmic ratios; increased cellularity 
and architectural irregularities, and more areas of tumour necrosis. In terms of histological 
features, typical carcinoids show no evidence of necrosis and fewer than 2 mitoses per 10 
high-power fields (or 2 mm2) of viable tumour, whereas atypical carcinoids do have areas of 
necrosis and 2-10 mitoses per 10 high-power fields. 

3.4 Large-Cell Neuroendocrine Carcinoma  

Large-cell neuroendocrine carcinoma (LCNEC) was proposed as the fourth category of 
pulmonary neuroendocrine tumours due to its distinct clinical and pathologic findings 
versus the typical carcinoid, atypical carcinoid, and SCLC. LCNEC is defined as a poorly 
differentiated and high-grade neuroendocrine tumour that morphologically is between an 
atypical carcinoid and SCLC. According to the WHO suggestions, the morphologic features 
of LCNEC represent a spectrum between those of atypical carcinoid and those of SCLC. In 
70%-80% of cases, LCNEC appears as a peripheral mass or nodule, whereas 25% manifests 
as a central mass. Histopathologic diagnosis criteria for LCNEC are as follows: 
neuroendocrine morphologic features; a high mitotic rate (>10 per 10 high-power fields); 
necrosis (often large zones); cytologic features different from those of SCLC; and positive 
immunohistochemical staining for one or more neuroendocrine markers including 
chromogranin A, synaptophysin , and neural cell adhesion molecular (NCAM/CD56). 

3.5 Small-cell lung carcinoma  

SCLC accounts for approximately 20% of all bronchogenic carcinomas. Approximately 90%-
95% of SCLCs occur centrally, apparently arising in a lobar or main bronchus. In 5%-10% of 
cases, SCLC manifests as a peripheral nodule. These tumour cells are usually small with a 
round or fusiform shape and have high cellularity with a very high mitotic rate. SCLCs are 
highly proliferative and rarely are the mitotic rates less than 10 mitoses per 10 high-power 
fields. As such, virtually every high-power field contains one or more mitoses. The 
architecture of the tumour clusters is poorly preserved, with large areas of necrosis 
separating small islands of viable tumour. A distinguishing feature of SCLC is its expression 
of neuroendocrine markers including neuron specific enolase (NSE), synaptophysin, neural 
cell adhesion molecule (NCAM/CD56), and Leu-7 (CD57). 

4. The neuroendocrine differentiation in lung tumours 

4.1 Non-small cell lung cancer (NSCLC) 

The hypothesis that tumours with neuroendocrine properties should be grouped into a 
single category is not universally accepted for several reasons. First, a large proportion of 
lung carcinomas have mixed non-neuroendocrine and neuroendocrine properties. This is 
particularly evident in molecular profiling studies where otherwise unremarkable 
adenocarcinomas have been shown to express clusters of genes that are thought to reflect 
neuroendocrine differentiation. Second, many of the markers that are regarded as 
neuroendocrine markers are expressed in a variety of cells in addition to neuroendocrine 
cells. Third, neuroendocrine markers are expressed during the embryonic development of 
the lung. 
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4.1.1 Adenocarcinoma (ACA) 

Pathology reports frequently mention the presence of NE immunophenotype or NE 
differentiation in NSCLC. Travis et al. have provided a new classification of the pulmonary 
NE proliferations and neoplasms of the lung, as part of the WHO classification of lung 
cancers. In this classification, NSCLC with NE differentiation (NSCLC-ND) detected only by 
immunostaining via electron microscopy is presented as a distinct entity in which no 
histological features of NE differentiation are appreciated on routine hematoxylin and eosin 
(HE). NSCLC represents a histologically heterogeneous group of tumours with variable 
clinical behaviours. Evidence for NE differentiation in non-small cell lung carcinomas 
(NSCLCs) is, at present, based on histochemical, ultrastructural, and immunohistochemical 
data. The existence of nonsmall cell lung carcinoma with neuroendocrine differentiation as a 
distinct entity, as well as its relevance for prognostic and treatment purpose, is 
controversial. A minority of NSCLCs (10-30%) show NE differentiation, and in contrast to 
large cell NE carcinoma, they show no evidence of this differentiation on routine light 
microscopic examination. Previous studies have identified NE differentiation in NSCLC in 
10 to 70% of cases. Positivity for all 3 NE (Ch, SNP, and CD56) markers was not seen. The 
co-expression of SNP and Ch, the two most commonly used NE markers, accounted for only 
0.2% (ACA) of the NSCLC. SNP staining was observed in a significant minority of NSCLC 
(7.5%), whereas Ch, the most specific NE marker, was very uncommon (0.4%) (Table3).  
 

NSCLC Cell Type Chromogranin (Ch) Synaptophysin (SNP) N-CAM (CD56) 
Adenocarcinoma 0.4% 11.2% 5.1% 
Squamous cell 
carcinoma 

0.4% 4.3% 12.4% 

Non-small cell 
carcinoma 

0% 12% 7.4% 

Large cell carcinoma 0% 9.3% 6.2% 
Others 0% 0% 0% 

Table 3. Immunoreactivity for Neuroendocrine Markers in Different Subtypes of NSCLC 

As has been suggested, the derivation of all lung tumours from a common endodermal stem 
cell, along with the adoption of amine precursor uptake and decarboxylation properties by 
this endodermal stem cell, explains divergent differentiation in NE lung tumours and the 
occurrence of NE subsets in NSCLC. 

4.1.2 Large cell carcinoma (LCC) 

Large cell carcinomas of the lung are classified into four types based on light microscopic 
evidence of neuroendocrine morphology. Immunohistochemical or electron microscopic 
assessments of neuroendocrine differentiation are categorised as follows: (1) large cell 
neuroendocrine carcinoma exhibits both neuroendocrine morphology and evidence of 
neuroendocrine differentiation; (2) large cell carcinoma with neuroendocrine differentiation 
exhibits neuroendocrine markers but lacks neuroendocrine morphology; (3) large cell 
carcinoma with neuroendocrine morphology exhibits neuroendocrine markers; and (4) 
classic large cell carcinoma exhibits neither neuroendocrine morphology nor differentiation. 
Neuroendocrine markers in NSCLC are expressed not only in large cell carcinoma but also 
in adenocarcinomas. 
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4.2 NETs of the lung with NE differentiation 

Lung tumours with neuroendocrine morphology include the low-grade typical carcinoid 
(TC), intermediate-grade atypical carcinoid (AC), and the high-grade LCNEC and SCLC. 
Neuroendocrine differentiation may be detected by immunohistochemical or ultrastructural 
studies in 10% to 20% of histologically ordinary NSCLCs such as squamous cell carcinomas, 
adenocarcinomas, or large cell carcinomas.  

4.2.1 Small cell lung carcinoma (SCLC)  

SCLC tumors are considered poorly differentiated NE cancers in contrast to typical and 
atypical bronchial carcinoid tumors. In addition to SCLC, approximately 20-30% of NSCLC 
tumors express some degree of NE differentiation, predominatly in adenocarcinomas and 
large cell cancers. SCLC exhibits characteristic molecular abnormalities which partially 
overlap with those of NSCLC including frequent inactivation of the Rb-p16INK4A-related 
G1 checkpoint pathway, loss of p53, and frequent abnormalities in chromosome  
 

 
Fig. 1. Hypothetical carcinogenetic pathway in lung cancer: The specification of distinct cell 
fates is often achieved through the activation of specific intercellular signaling pathways by 
growth factors whose expression must be spatially and temporally controlled to ensure 
accurate response. Typically, a target cell expresses an excess of receptors such that the 
availability of its ligands is rate-limiting for pathway activation. Overall, for a signal to elicit 
the desired response, the intensity and duration of ligand expression must be sufficient to 
meet its threshold concentration, and yet the signal response must be restricted to prevent 
excessive signaling. Excessive activation of a signaling pathway can have broad deleterious 
effects, thus prompting a requirement for antagonistic regulation. Abbreviations: AAA 
(Atypical Adenomatous Hyperplasia), ADC (Adenocarcinoma), BAC (Bronchioalveolar 
Carcinoma), BSD (Basal Squamous Dysplasia), DIPNECH (Diffuse Idiopathic Pulmonary 
Neuroendocrine Cell Hyperplasia), LCC (Large Cell Carcinoma), LCNEC (Large Cell 
Neuroendocrine Carcinoma), NEBs (Neuroepithelial Bodies), PNCs (Pulmonary 
Neuroendocrine Cells), SCC (Squamous Cell Carcinoma), SCLC (Small Cell Lung 
Carcinoma). 
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3p-assocaited tumor suppressor activity. In addition to these changes, SCLCs frequently 
overexpress myc genes, especially c-Myc, often via gene amplification events. Of all the 
genetic changes in SCLC, Rb gene mutations are utterly characteristic. Functioning RB 
protein is lacking in greater than 90% of SCLC and NSCLC with NE features. 

4.2.2 Large cell neuroendocrine carcinoma (LCNEC) 

The term combined LCNEC is used for those tumours associated with other histologic types 
of NSCLC. Most often this represents a component of adenocarcinoma. LCNEC must be 
distinguished from adenocarcinoma, SCLC, large cell carcinoma, and large cell carcinoma 
with neuroendocrine differentiation (LCC-ND). 

5. Embryological pathways in lung tumours 

5.1 Notch  

The three main functions of Notch signalling in self-renewing tissues include stem-cell 
maintenance, binary cell-fate decisions, and induction of differentiation. A critical aspect of 
Notch function in both development and post-natal life is the maintenance of stem cell 
viability and asymmetric cell division. Intrinsic to this process is an unequal distribution of 
Notch signals in the daughter cells, with the Notch-active cell maintaining its stem cell  
 

 
Fig. 2. Heat map for Notch1-4 expression in a serie of 64 carcinoids studied by tissue array 
technology in our lab gave the next information: The mean of expression for Notch1 is 2.33 
and the mode 0. 76.6% of the samples showed no expression for this marker, 4.7% showed 
weak expression, 1.6% moderate expression; 4.7% of the samples showed strong reactivity 
for Notch1 in more than 75 % of tumour cells in the core biopsy arrayed, 12.5% of the 
samples did not show enough tissue for testing. The average expression for Notch2 is 8.56 
and the mode 12. 7. 8% of the samples showed no expression for this marker, 4.7% showed 
weak expression, 17.2% moderate expression, 54.7% of the samples showed intense staining 
for Notch2 in almost all tumour cells present in the sample, 15.6% of the samples did not 
show enough tissue for testing. The average Notch3 expression is 6.3, and mode of 8. 10.9% 
of the samples showed no expression for this marker, and 25% showed weak expression, 
14% moderate expression, 31.3% of the samples showed intense staining for Notch3 in 
almost all tumour cells present in the sample 18.8% of the samples did not show enough 
tissue for testing. Finally, for Notch4 we did not find reactivity in any of the 87, 5% samples 
with enough tissue for its evaluation.  
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Fig. 3. Immunohistochemical findings for Notch1-4 in carcinoids tumors. 

character and with transit-amplifying cells typically losing Notch activity. Interestingly, 
Notch function in lung cancer exhibits properties suggesting both tumour promotion and 
inhibition, depending on the tumour cell type. A prominent function of Notch signalling is 
to inhibit the transcriptional activities of the widely expressed E2A proteins. Notch 
signalling rapidly induces degradation and inactivation of E proteins and tissue-specific 
bHLH proteins such as hASH1. This inhibition may occur as a consequence of forming 
inhibitory complexes of E2A proteins with the Hes/HERP/HEY proteins, as well as the 
promotion of E2A protein ubiquitinylation and degradation by Notch. Notch1 and Notch2 
proteins are frequently expressed in non-small-cell lung cancer (NSCLC), while Notch3 
mRNA expression was detected in one-third of all NSCLC cell lines. NSCLC, which includes 
adenocarcinoma, squamous cell carcinoma, large cell undifferentiated carcinoma, and 
bronchoalveolar cell carcinoma, was initially shown to express significant levels of the Hes1 
protein. In addition, there is an inverse correlation in these cell lines between the 
expressions of hASH1/ASCL1 and of the Hes1 protein. In contrast to NSCLC, where Notch 
is suspected to have a growth promoting function, SCLC appears to be growth inhibited, at 
least by the high level over-expression of activated Notch1 and Notch2. Notch1 is rarely 
detectable or inactive in SCLC, whereas a subset of SCLC exhibit Notch2. Notch3 mRNA 
expression was not detected in the SCLC cell lines. Expression of Notch3 has been reported 
to be common in NSCLC but not in SCLC. Significantly, Notch signaling has recently been 
shown to be induced by the ras pathway, which is active in a large fraction of NSCLC, but 
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only rarely in SCLC. Notch in the SCLC cells lead to a significant increase in Hes1 and a 
marked down-regulation of the neurally related transcription factors hASH1 and Hes6. The 
loss of hASH1 may be critical in mediating the growth inhibitory effect of Notch1 in SCLC, 
although a role for other as yet unidentified targets cannot be excluded Activated Notch1 
and Notch2, but not Hes1, caused a potent G1 arrest in the SCLC cells, accompanied by the 
marked up-regulation of p21wasl/cip1, overall abundance of p53, and a Rb mutant typifying 
the majority of SCLC 

5.2 Hedgehog signalling in lung cancer 

The hedgehog (Hh) signalling network functions in cell-cell communication and regulates 
pattern formation, proliferation, cell fate, and the stem/progenitor cell maintenance and self-
renewal in many organs. A greatly simplified version of “canonical” hedgehog signalling in 
mammals typically involves two types of cells, a signalling cell expressing a member of the 
Hedgehog family of secreted ligands (Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), or Desert 
Hedgehog (Dhh)) and a responding cell expressing one or more Patched family hedgehog 
receptors (Patched-1 (PTCH2)). In the Hh pathway, increased signalling results in activation of 
the GLI oncogenes (GLI1, GLI2, and GLI3) that can regulate gene transcription. The Hh 
signalling pathway was originally shown to have persistent activation in SCLC with high 
expression of Shh, PTCK, and GLI1, but an important role in NSCLC, was also demonstrated. 

5.3 BMPs and BMPRs 

The BMPs comprise a branch of the TGF- superfamily that also plays a key role in 
development. Several BMP ligands and BMPRs including BMP3, 4 and 7 as well as type I 
BMPR are expressed during embryonic lung development. BMP4 mRNA is localized at high 
levels in the epithelium of distal tips of terminal buds, with lower levels in the adjacent 
mesenchyme. These loci of BMP expression overlap with the expression domains of some 
other important morphogenetic signaling molecules including HNF-3, Wnt-2, Shh and 
FGF-10. Also, since BMPs and Shh are co-expressed in the same domains, and since 
Decapentaplegic, the Drosophila BMP homologue, is regulated by the Hedgehog signaling 
pathway, it seems possible that BMP-Shh interactions may prove to play key roles in lung 
morphogenesis. Recently published data on fibroblast growth factor interactions suggest 
that Shh, TGF-1 and BMP4 all counteract the bud-promoting effects of FGF-10. 

5.4 Wnt pathway in lung cancer 

Wnt signaling has many functions in animal development including its development role in 
empbryogenesis and in the adult lung. More specifically, studies of knockout mice 
demonstrated the importance of Wnt-2, Wnt-5a, and Wnt-7b in lung maturation. In addition 
to its role in stem cell self-renewal, tissue regeneration, and lung development, Wnt 
signaling is also intimately involved in tumorigenesis and cancer progression. For example, 
the organs where Wnt signaling influences stem cell self-renewal are the same organs where 
those Wnt-pathway-dependent cancers originate. Numerous reportes have demonstrated 
aberrant Wnt activation in lung cancer. Overexpression of Wnt-1 has been demonstrated in 
NSCLC cell lines and primary cancer tissues. This activation can be caused by mutations 
and/or deregulation of many different Wnt signaling components. Mutations in Wnt 
pathway components are rarely found in lung cancer. Also overexpression of Wnt-2 in 
NSCLC has been demonstrated. The human Wnt-2 gene, located on chromosome 7q31.3, is 
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highly expressed in fetal lung. The link between Wnt-2 and tumorigenesis was first 
proposed after data indicated that Wnt-2 was amplified in human cancers. Indeed, in 
patients with NSCLC found that Wnt-5a expression is squamous cell carcinoma was 
significantly higher than that in adenocarcinoma. Recently there has been a suggested role 
for Wnt-7 in lung cancer. It has been reported that expression of Wnt-7a is downregulated in 
most lung cancer cell lines and tumor samples. 

5.5 bHLH 

Helix-loop-helix proteins are a diverse family of transcriptional regulators involved in fetal 
development and cancer. The 125 recognized human HLH proteins can be subdivided into 45 
families, almost all of which have Drosophila representatives as well. These families include 
achaete-scute homologs, E proteins, Atonal, NeuroD, neurogenin, ID proteins, HES, and Hes-
related proteins, and others. bHLH genes control cell differentiation in various tissues and are 
categorised into two distinct groups, activator genes and repressor genes. In mammals, bHLH 
genes such as mammalian achaete-scute complex homolog-1 (MASH1) and mammalian atonal 
homolog (MATH)-1 are expressed in neural precursor cells, and they up-regulate late-
expressing bHLH genes such as NeuroD to direct terminal differentiation. On the other hand, 
HES1, one of the hairy and enhancer of split (HES) homologues, represses neuronal 
differentiation by the suppression of proneural bHLH factors. Repressive bHLH factors such 
as HES1 are regulated by the Notch pathway. The Notch ligands activate the Notch receptors, 
and the activated intracellular domain of the Notch receptors interacts with the DNA-binding 
protein RBP-Jk to activate the expression of repressive bHLHs such as HES1 and HES5, which, 
in turn, suppress the expression of activator bHLHs such as MASH1 and NeuroD. 
Immunohistochemical studies have revealed that Notch1, Notch3, Jagged1, and Jagged2 were 
expressed in neuroendocrine cells of the airway epithelium, while Dll1 was detected in the 
pulmonary neuroendocrine cells. Thus, the differentiation of the lung epithelial cells depends 
on a bHLH factor network, and the Notch pathway may be involved in determining the cell 
differentiation fate in the airway epithelium. 

5.5.1 Achaete-scute homolog (ASH-1) 

Mash1 (termed Hash1 in humans) plays a critical role in development of the central and 
autonomic nervous systems and in tissues of the so-called diffuse NE system including the 
adrenal medullary chromaffin cells, thyroid parafollicular C-cells, and pulmonary NE cells. 
MASH1 is important in the development of the diffuse neuroendocrine system, including 
pulmonary neuroendocrine cells. During neurogenesis, MASH1 expression is confined to 
mitotically active precursors where it is involved in the early stages of lineage commitment; 
in more mature neurons the expression is extinguished. MASH1 and mammalian atonal 
homolog-1 (Math1) up-regulate NeuroD in neural precursor cells to direct terminal 
differentiation, whereas HES1 represses neuronal differentiation by the suppression of pro-
neural factors such as MASH1. In the developing mouse lung, Mash1 first becomes 
detectable at approximately E13.5 in neuroepitelial bodies (NEB´S), clusters of NE cells 
frequently located at branchpoints of large and medium-sized airways. Mash 1 expression in 
mouse lung peaks near birth and the declines in adulthood, following the peak and decline 
of lung NE cells. One target of achaete-scute proteins is the cell surface ligand delta, which 
leads to activation of the Notch pathway in adjoining cells and repression of the neuronal 
fate. In human lung tumours, the expression of hASH1 mRNA was significantly higher in 
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SCLC (75%) than in LCNEC (50%); conversely, HES1 mRNA was lower in SCLC (59%) than 
in LCNEC (87%). These findings reveal that SCLC more strongly expresses the 
neuroendocrine phenotype, while LCNEC shows characteristics that are more similar to the 
epithelium phenotype, suggesting that the biological characteristics of these two tumours 
are different.  On the contrary, non-neuroendocrine carcinoma cells do not express hASH1 
but show high HES1 expression. In NSCLC (squamous cell carcinoma vs. adenocarcinoma), 
the expression of hASH1 mRNA was lower, (0% vs. 15%, respectively), whereas HES1 
mRNA was higher (10% vs. 100%, respectively). Neuroendocrine pulmonary carcinomas 
express MASH1 but not HES1, whereas adenocarcinoma and squamous cell carcinoma 
express HES1. Surprisingly, Merkel cell carcinoma, the cutaneous counterpart of small cell 
carcinoma MASH1, was completely negative in 100% of the cases. 

5.5.2 Hairy and Enhancer-of-split (HES) 

Hes1, a key effector of the Notch signalling pathway, is expressed broadly in non-
neuroendocrine cells in the airway epithelium. In the developing lung, Notch1 and HES1 
are strongly expressed in the non-neuroendocrine airway epithelial cells, whereas MASH1 is 
restricted to the clustered pulmonary neuroendocrine cells. HES1 directly represses hASH1 
expression by binding to a class C site in the ASH1 promoter. Today, the published results 
suggest that the differentiation of neuroendocrine cells in normal lungs is affected by the 
absence of the MASH1 gene. Elements of the Notch signalling pathway, especially that of 
HES1, appear to be critical negative regulators of achaete-scute homolog 1 expression in 
normal lungs and in lung cancer. For example, HES1 transgenic knockout mice exhibit 
substantial hyperplasia and premature differentiation of lung NE cells associated with an 
increase in MASH1-expressing pulmonary epithelium. It has been shown that the over-
expression of HES1 in SCLC cells leads to the repression of hASH1 expression via a 
transcriptional mechanism. 

5.5.3 Retinoblastoma (Rb) 

The RB gene is a prototypical tumour suppressor gene, and the loss of RB function is 
believed to be a key event in the initiation or progression of several human malignancies. 
Most RB gene alterations result in the loss of RB protein expression or in a truncated RB 
protein, which does not enter the nucleus. Thus, heterogeneous positive nuclear RB 
immunostaining is, in general, indicative of normal RB function, whereas negative 
intranuclear RB immunostaining in all tumour cells reflects aberrant RB protein expression. 
Typical and atypical carcinoids manifest a heterogeneous RB-positive staining pattern. 
Atypical carcinoids in general show an increase in the number of tumour cells with nuclear 
staining compared to typical carcinoids. In contrast, small-cell and large-cell neuroendocrine 
carcinomas fail to show RB staining in any tumour nuclei, indicating the loss of RB function. 
From these results, it can be concluded that a progressively higher degree of malignancy 
from typical carcinoids to atypical carcinoids to small-cell carcinomas is paralleled by the 
loss of neuroendocrine markers, increased proliferative markers, increased frequency of p53 
immunostaining, and decreased frequency of RB immunostaining. 

5.5.4 p53 

Although p53 alterations have been previously studied in pulmonary neuroendocrine 
tumours, either these studies have used immunochemistry alone rather than genotypic 
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analysis or they have examined a limited spectrum of pulmonary neuroendocrine 
neoplasias. The distribution of p53 immunohistochemical staining has 4 patterns: negative 
in typical carcinoids (TCs), 50% of ACs, 20% LCNECs, and 12% SCLCs; less than 10% but 
more than 5-10 HPF (focal) in a subset (30%) of aggressive adenocarcinomas; and 50-100% of 
tumour cells (diffuse), exclusively seen in LCNECs and SCLCs. Three patterns of 
immunohistochemical staining intensities of the p53 protein were seen: negative; weak or 
mild; and moderate to marked staining. Similar to other cancers, multiple genetic events 
contribute to the development of neuroendocrine lung tumours. This has already been 
demonstrated in SCLCs, which are known to exhibit alterations in their oncogenes such as c-

myc and in tumour suppressor genes such as p53 and Rb. In addition, it has been shown that 
alterations in oncogenes such as H-ras, c-myc, and c-raf-1 can modulate the expression of 
neuroendocrine antigens in lung cancer cell lines. Thus, evidence is accumulating that the 
expression of neuroendocrine differentiation in pulmonary neuroendocrine tumours is 
fundamentally controlled by multiple genetic determinants. 

6. Conclusions 

Although incidence of newly diagnosed patients with carcinoid tumors of the lung is low, 
the long survival for those with low and intermediate differentiation grade, and the deeper 
knowledge we now have on molecular processes that governs tumors growth make these 
tumors a challenging field in Oncology. Systemic treatment for metastatic carcinoid tumors 
of the lung has not change significantly in the last two decades, and this fact leads to a poor 
improvement in overall survival, contrary to what has happened in other solid tumors. 
Nowadays, most of researchers in neuroendocrine field consider that every single 
neuroendocrine tumors has its own features depending on the organ where it seats, the 
capacity to produce and secrete active hormones to blood stream, and the proliferation rate. 
Novel agents like antiangiogenic tyroisine kinase inhibitors, mTOR inhibitors or oral 
chemotherapeutic agents like temozolomide and capecitabine have been used to treat 
metastatic neuroendocrine tumors of the lung without a clear activity. Unfortunately, these 
clinical trials with new agents were not driven to lung tumors but to other neuroendocrine 
tumors of the gastrointestinal tract. Therefore, other pathways are needed to be investigated. 
A non insignificant number of recent publications are correlating embryological pathways 
with carcinoid tumors of the lung development. In this sense, some elements of the Notch 
signalling pathway, especially HES1, appear to be critical negative regulators of hASH-1 
expression in normal lungs and in lung cancer. This fact may influence in carcinoid tumor 
development at this place. New compounds under clinical development targeting 
embryological pathways like Notch, Hedgehog or Wnt pathways may have a future impact 
in the treatment of disseminated carcinoids of the lung. The more we are able to select 
patients molecularly the greater the chance of success in future clinical trials conducted in 
this setting. However, none of this would be meaningless if the histological diagnosis is not 
accurate. There is a need to leverage the knowledge in the scientific community of the 
variety of neuroendocrine-derived tumors that may arise in the lung. The teamwork 
between pulmonologists, thoracic surgeons, pathologists, molecular biologists, oncologists, 
and radiotherapists is mandatory to offer to our patients the best treatment approach at the 
right time for their diseases. 
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