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1. Introduction 

The centrosome, which functions as a major microtubule-organizing center (MTOC), is 
composed of a pair of centrioles and surrounding protein aggregates called pericentriolar 
material (PCM); at any given time during the cell cycle, each cell contains one or two 
centrosomes (Fukasawa, 2007). Centrosomes play a crucial role in the formation of bipolar 
mitotic spindles, which are essential for accurate chromosome segregation (Zyss & Gergely, 
2009). Numerical and functional abnormalities of centrosomes result in an increase in 
aberrant mitotic spindle formation, merotelic kinetochore-microtubule attachment errors, 
lagging chromosome formation, and chromosome segregation errors, all of which are 
thought to be possible causes of chromosome instability (Ganem et al., 2009; Nigg & Raff, 
2009). Centrosome abnormalities and chromosome instability are characteristics of human 
lung cancer (Masuda and Takahashi, 2002; Koutsami et al., 2006; Jung et al., 2007; Shinmura 
et al., 2008), and abnormalities in genes responsible for centrosome regulation have been 
reported in lung cancer (Fukasawa, 2007; Lee et al., 2010). In this Review, the status of 
centrosome abnormalities in lung cancer, the mechanisms responsible for inducing 
centrosome abnormalities, and the relationship between centrosome abnormalities and 
chromosome instability are summarized. 

2. Centrosome abnormalities in human lung cancer: Mechanisms causing 
centrosome abnormalities and chromosome instability 

The presence of two centrosomes at mitosis is an important factor in the formation of bipolar 
mitotic spindles. Therefore, the numerical integrity of centrosomes is carefully controlled in 
human cells, and abrogation of this control results in centrosome amplification. First, we 
describe the normal centrosome duplication cycle, followed by three reports on centrosome 
abnormalities in lung cancer. Next, we describe investigations of the mechanism responsible 
for inducing centrosome amplification. Finally, we summarize the possible reasons why 
centrosome abnormalities cause chromosome instability. 

2.1 Centrosome duplication cycle in human cells 

Centrioles are cylindrical structures (-0.2 m in diameter and 0.2-0.5 m in length) and are 
composed of nine triplet microtubule arrays organized around a central cartwheel. 
Centrioles contain several tubulin isoforms and non-tubulin proteins such as CETN2, CP110, 
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SAS-6, and SAS-4 (Bettencourt-Dias & Glover, 2009). In animal cells, a pair of centrioles is 
embedded in a cloud of electron dense material known as PCM, and both structures 
constitute a larger structure named the centrosome, which serves as the main MTOC during 
both interphase and mitotic phase (Vorobjev & Nadezhdina, 1987). Centrosome duplication 
occurs once per cell cycle and is subject to strict control within cells. To organize a bipolar 
mitotic spindle, a centrosome is duplicated in S phase, additional PCM proteins are 
recruited during centrosome maturation in G2, and the two centrosomes separate at mitotic 
entry (Figure 1). The primary function of PCM is microtubule nucleation. The assembly of 

microtubules is initiated on a -tubulin ring complex (TuRC), composed by -tubulin and 

additional subunits known as -tubulin complex proteins (Teixidó-Travesa et al., 2010). 
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Fig. 1. Centrosome duplication cycle. 

The centrioles duplicate once per cell cycle. The formation of the daughter centriole on each 

mother centriole occurs during the late G1 and S phases of the cell cycle. The daughter and 

mother centrioles are tightly associated in an orthogonal manner until the end of mitosis, 

and centriole disengagement occurs during mitotic exit. The initiation of centriole 

duplication requires the activity of several proteins, such as Cdk2-cyclin E and PLK4 

kinases. The procentriole starts to assemble, and elongation depends on several proteins 

including centrin, CEP135, and -tubulin. During G2 phase, additional PCM proteins are 

recruited, and centrosome maturation requires the activity of Aurora A and PLK1 kinases. 

During late G2, the daughter centriole of the parental pair acquires subdistal appendages. 

Then, the two duplicated centrosomes separate and move to opposite end of the cell 

(centrosome separation). Finally, the two centrosomes form the poles of the bipolar mitotic 

spindle. 
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2.2 Centrosome abnormalities in lung cancer 

Centrosome amplification has been reported in a variety of human primary cancers (e.g., 
breast cancer, lung cancer, bladder cancer, pancreatic cancer, and prostatic cancer) (Pihan et 
al., 1998; Sato et al., 1999; Pihan et al., 2001; Kawamura et al., 2004; Zyss & Gergely, 2009). 
With regard to primary lung cancer, Koutsami et al. (2006) examined 68 primary non-small 
cell lung carcinomas (NSCLCs) for the presence or absence of centrosome amplification 

using an immunofluorescence analysis with a monoclonal antibody for -tubulin, a 
centrosome marker; they showed that 36 (53%) of the 68 NSCLCs exhibited centrosome 
amplification. Centrosome amplification was not associated with clinicopathological 
markers such as stage, tumor grade, and histological subtype, but was associated with 
aneuploidy. Jung et al. (2007) examined 175 NSCLCs for centrosome abnormalities using an 

immunofluorescence analysis with an anti--tubulin antibody; they showed that 50 (29%) of 
the 175 NSCLCs exhibited a centrosome abnormality. Aneuploidy, p16 expression, and the 
loss of pRB expression were significantly associated with centrosome abnormalities. 
Shinmura et al. (2008) examined 182 primary lung carcinomas for the presence or absence of 

centrosome amplification using an immunohistochemical analysis with an anti--tubulin 
antibody and showed that 67 (37%) of the 182 cancers exhibited centrosome amplification. 
Thus, centrosome amplification is a common abnormality seen in human primary lung 
cancers. 

2.3 Mechanisms inducing centrosome abnormalities 

An immunofluorescence analysis using an antibody for centrosome or centriole markers in 

cultured cell lines can be used to determine the status of the centrosome number in the cells. 

The involvement of many kinds of agents and genes in centrosome regulation has been 

examined using such analyses. Here, these analyses are divided into those using lung cells 

and those using cells derived from other organs. 

2.3.1 Mechanisms identified by using the lung cells 

Holmes et al. (2006) showed that chronic exposure to lead chromate causes centrosome 

abnormalities and aneuploidy using WTHBF-6 cells, a cell line derived from normal human 

bronchial fibroblasts. Hexavalent chromium compounds [Cr(VI)] are human lung 

carcinogens (Le´onard & Lauwerys, 1980), and “particulate” Cr(VI) compounds are one of 

the most potent forms. They reported centrosome amplification in interphase and mitotic 

cells in response to treatment with lead chromate as a model particulate Cr(VI) compound. 

They suggested that one possible mechanism for lead chromate–induced carcinogenesis is 

through centrosome dysfunction, leading to the induction of aneuploidy. The same group 

(Holmes et al., 2010) also showed that chronic exposure to zinc chromate, another 

particulate Cr(VI) compound, induces centrosome amplification and spindle checkpoint 

bypass using human lung fibroblasts. 

Arsenic is another environmental toxicant, and the biological effects of arsenic have been 
studied. Liao et al. (2007) showed that arsenic promotes centrosome abnormalities and cell 
colony formation in p53 compromised human lung cells. They used H1355 (a lung 
adenocarcinoma cell line with a p53 mutation), BEAS-2B (immortalized lung epithelial cells 

with functional p53) and pifithrin--treated BEAS-2B (p53-inhibited cells) and reported an 
increase in centrosome abnormalities in both arsenite-treated p53 compromised cell lines, 
compared with that in arsenite-treated BEAS-2B cells. Their findings provided evidence of 
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the carcinogenic promotional role of arsenic, especially in the presence of p53 abnormalities. 
The group also showed that arsenite promoted centrosome abnormalities in the presence of 
a p53-compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(nicotine-derived nitrosamine ketone, NNK) using BEAS-2B cells (Liao et al., 2010). Their 
findings provided evidence of an interaction between arsenite and cigarette smoking. 
Benzo[a]pyrene diol epoxide (B[a]PDE), the ultimate carcinogenic metabolite of 

benzo[a]pyrene, has been implicated in the mutagenesis of the p53 gene, which is involved 

in smoking-associated lung cancer. Shinmura et al. (2008) showed that the exposure of p53-

deficient H1299 lung cancer cells to B[a]PDE resulted in S-phase arrest, leading to abnormal 

centrosome amplification. They also revealed that the centrosome amplification could be 

primarily attributed to excessive centrosome duplication, rather than to centriole splitting, 

and the forced expression of POLK DNA polymerase, which has the ability to bypass 

B[a]PDE–guanine lesions in an error-free manner, suppressing B[a]PDE-induced centrosome 

amplification. The B[a]PDE exposure also led to chromosome instability, which was likely to 

have resulted from centrosome amplification. Thus, they concluded that B[a]PDE 

contributes to neoplasia by inducing centrosome amplification and consequent chromosome 

destabilization in addition to its mutagenic activity. 

 

B[a]PDE

untreated

Mitotic phaseInterphase

 

Fig. 2. Induction of centrosome amplification in p53-deficient H1299 lung cancer cells by 
exposure to benzo[a]pyrene diol epoxide (B[a]PDE). 

H1299 cells were exposed to 0.6 M B[a]PDE for 72 hr and then immunostained with mouse 

anti--tubulin monoclonal antibody (GTU-88; Sigma-Aldrich, St. Louis, MO, USA). Alexa 

Fluor 546 (red)-conjugated anti-IgG antibody (Molecular Probes, Eugene, OR, USA) was 

used to detect the antibody–antigen complexes. The nuclei were stained with 4',6-

diamidino-2-phenylindol (DAPI, blue). An increase in the number of centrosomes, i.e., 

centrosome amplification, was observed in both interphase cells and mitotic phase cells. The 

arrows indicate the positions of centrosomes. 
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The lung is easily subjected to many kinds of environmental agents, some of which may be 
derived from cigarette smoking or occupational exposure. As described in the above three 
paragraphs, some environmental carcinogens induce centrosome amplification. Other 
environmental carcinogens attacking DNA may also induce centrosome amplification, since 
cell cycle arrest has been shown to occur during centrosome amplification. Further precise 
analyses of environmental agent-related centrosome amplification are needed to understand 
the relationship between environmental carcinogens and lung cancer more clearly. 
The S-phase kinase-interacting protein-2 (SKP2) plays a key role in the progression of cells 
from a quiescent to proliferative state, and the SKP2 protein is overexpressed in lung cancer. 
Jiang et al. (2005) showed that the RNA silencing of SKP2 inhibits proliferation and 
centrosome amplification using the lung cancer cell lines A549 and H1792. Their results 
suggest that SKP2 plays an oncogenic role in lung cancer and has a centrosome regulating 
function. 
NORE1 (RASSF5) is a member of the RASSF gene family, and NORE1A is the longest and 
major splice isoform of the NORE1 gene (Nakamura et al., 2005). Its product, NORE1A, is a 
nucleocytoplasmic shuttling protein and has a growth-suppressive function (Moshnikova et 
al., 2006). Shinmura et al. (2011) showed that NORE1A suppresses the centrosome 
amplification induced by hydroxyurea using a p53-deficient H1299 lung cancer cell line, and 
NORE1A expression was down-regulated in NSCLC. Both of these findings imply that 
NORE1A has a key preventative role against the carcinogenesis of NSCLC. 

2.3.2 Mechanisms identified using cells derived from other organs 

CDK2–cyclin E, a known inducer of S-phase entry (Heichman, 1994), has an important role 

in the regulation of centrosome duplication (Hinchcliffe et al., 1999; Matsumoto et al., 1999). 

The activation of CDK2–cyclin E during late-G1 phase coordinates the initiation of 

centrosome and DNA duplication. Several CDK2–cyclin E targets, including nucleophosmin 

(NPM) (Okuda et al., 2000), have been identified. NPM binds and modulates the activities of 

multiple proteins including tumor suppressor proteins (e.g., p53) and some oncogenic 

proteins (e.g., ROCK2) (Colombo et al., 2002; Ma et al., 2006b). The reduced as well as 

increased expression of NPM can lead to the oncogenic transformation of cells. Actually, 

NPM is frequently mutated, lost or overexpressed in cancers (Grisendi et al., 2006), and both 

the overexpression and the depletion of NPM in cultured cells can lead to neoplastic 

transformation (Kondo et al., 1997; Grisendi et al., 2005). NPM localizes between the paired 

centrioles of the unduplicated centrosome, probably functioning in centriole pairing 

(Shinmura et al., 2005). When NPM is phosphorylated by CDK2–cyclin E, most of the NPM 

dissociates from the centrosomes, leading to the centrosome duplication. In this context, 

NPM negatively controls centrosome duplication; indeed, the depletion of NPM leads to 

centrosome amplification (Grisendi et al., 2005; Wang et al., 2005). NPM was reported to 

have the ability to control centrosome duplication in association with ROCK2 (Ma et al., 

2006b), a member of the Rho-associated, coiled-coil containing protein kinase family that is 

frequently overexpressed in cancer (Nishimura et al., 2003). After NPM phosphorylation by 

CDK2–cyclin E, the binding between NPM and ROCK2 increases and ROCK2 is activated at 

centrosomes, leading to centrosome duplication (Ma et al., 2006b). In ROCK2 activation, the 

binding of Rho small GTPase to the auto-inhibitory region is also required (Kanai et al., 

2010). Among three isoforms of Rho, both RhoA and RhoC, but not RhoB, promoted 

centrosome duplication and centrosome amplification. 
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Another target of CDK2–cyclin E in centrosome regulation is MPS1, a spindle checkpoint 
kinase that is localized at the centrosome (Fisk et al., 2003). MPS1 is stabilized and activated 
by CDK2–cyclin E phosphorylation and involved in centrosome duplication. Mortalin, a 
member of the heat-shock protein 70 molecular chaperone family, is localized at the 
centrosome and physically interacts with and is phosphorylated by MPS1. The 
phosphorylation of mortalin activates MPS1 in a positive-feedback manner, and this 
phenomenon is important for MPS1-related centrosome duplication (Kanai et al., 2007). 
Mortalin is frequently upregulated in cancers (Wadhwa et al., 2006). 
CDK2 forms a complex with cyclin A in addition to cyclin E, and CDK2–cyclin A has been 
implicated in the regulation of centrosome duplication (Meraldi et al., 1999). CDK2–cyclin A 
and CDK2–cyclin E share some substrates (Tokuyama et al., 2001). The CDK2–cyclin A 
complex is active in S and G2 phases during the cell cycle, and CDK2–cyclin A may have a 
crucial role in centrosome over-duplication and/or amplification (Hanashiro et al., 2008). As 
another type of CDK-cyclin complex, the overactivation of CDK4/6–cyclin D has been 
shown to induce centrosome amplification (Nelsen et al., 2005). The major target of 
CDK4/6–cyclin D is the RB tumor-suppressor protein (Duensing et al., 2000). The 
conditional loss of Rb in mice results in centrosome amplification (Balsitis et al., 2003; Iovino 
et al., 2006). 
CDK2 activity is also negatively controlled by the CDK inhibitor p21, one of the major 

transactivation targets of the p53 tumor-suppressor protein (Bálint & Vousden, 2001). p53 is 

involved in the regulation of centrosome duplication, which was first demonstrated in cells 

and tissues from p53-deficient mice (Fukasawa et al., 1996; Fukasawa et al., 1997). When 

cells are exposed to DNA-synthesis inhibitors such as hydroxyurea, centrosomes undergo 

reduplication without DNA synthesis, resulting in centrosome amplification (Balczon et al., 

1995). Centrosome reduplication occurs efficiently when p53 is mutated or lost (Tarapore et 

al., 2001a). In normal cells, p53 is stabilized under cellular stresses by the inhibition of 

MDM2, leading to the upregulation of p21, which blocks the initiation of centrosome 

reduplication through the inhibition of cyclin–CDK2 complexes (Bálint & Vousden, 2001). 

On the other hand, p21 is not upregulated in cells lacking p53, allowing the activation of 

CDK2, which in turn triggers centrosome reduplication. 

Besides the p53–p21 pathway, p53 has the ability to control centrosome duplication. p53 is 

localized at centrosomes (Blair Zajdel & Blair, 1988; Brown et al., 1994; Tarapore et al., 2001b; 

Tritarelli et al., 2004; Ma et al., 2006a; Shinmura et al., 2007) and appears to control 

centrosome duplication independently of its transactivation function. Even if p53 is a 

mutant without transactivation function, p53 retains the ability to localize to centrosomes 

and partially suppresses centrosome duplication (Shinmura et al., 2007). However, the 

mechanism underlying this role of p53 is currently unknown. 

The proteins that control p53 stability are also involved in the regulation of centrosome 

duplication. The ectopic expression of human papilloma virus (HPV) E6 protein, which 

promotes the degradation of p53, induces centrosome amplification (Duensing et al., 2000). 

MDM2 is an E3 ubiquitin ligase that promotes the degradation of p53 and is often 

overexpressed in cancers (Manfredi, 2010). The forced expression of MDM2 in cells 

containing wild-type p53 efficiently leads to centrosome amplification (Carroll et al., 1999). 

Aurora A kinase (AURKA) phosphorylates p53 at Ser315, resulting in MDM2-mediated p53 

destabilization (Katayama et al., 2004), and the forced expression of Aurora A induces 

centrosome amplification (Zhou et al., 1998). 
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Polo-like kinase 1 (PLK1) is a key regulator of centrosome maturation (Barr et al., 2004; 
Bettencourt-Dias and Glover, 2007). Its deregulation is linked to centrosome abnormalities 
and oncogenesis (Zyss and Gergely, 2009). PLK1 belongs to the mammalian PLK family, 
which is comprised of five members (PLK1 - PLK4 and PLK5P) (Lens et al., 2010). PLK1 is 
involved in a variety of mitotic events, including centrosome maturation and separation, 
G2/M transition, mitotic spindle formation, chromosome segregation, and cytokinesis, and 
several kinds of PLK1 substrates are known (Barr et al., 2004; Petronczki et al., 2008). PLK1 

targets multiple centrosomal proteins (e.g., -tubulin) to fulfill the mitotic function of 

centrosomes. Ninein-like protein (NLP) interacts with TuRC during interphase, and 
participates in the establishment of the cytoplasmic microtubule network (Casenghi et al., 
2003; Rapley et al., 2005). At the onset of mitosis, the cooperation of PLK1 and NLP 

promotes the centrosomal localization of -tubulin and other mitosis specific PCM 
components, resulting in a higher microtubule nucleation capacity of the mitotic centrosome 
(Casenghi et al., 2003; Rapley et al., 2005). The phosphorylation of NEDD1 by PLK1 is 

required for the targeting of TuRC to the centrosome (Zhang et al., 2009). In mitosis, 
centrosomes must withstand the pulling forces exerted by chromosome-attached 
microtubules. To withstand such forces, PLK1 also plays a role in maintaining the structural 
integrity of the centrosome during mitosis (Oshimori et al., 2006). Kizuna is localized at the 
centrosomes and is phosphorylated by PLK1 during mitosis. The reduced expression of 
kizuna results in centrosome fragmentation and the dispersion of PCM, leading to the 
formation of aberrant mitotic spindles and chromosome segregation errors. 
Another PLK, PLK4, is involved in recruiting the structural components required for the 

formation of procentrioles at the proximal side of the older centriole, in cooperation with 

CDK2-cyclin E (Habedanck et al., 2004). The upregulation of PLK4 expression is a strong 

stimulus for centriole multiplication (Kleylein-Sohn et al., 2007). The timely degradation of 

PLK4 by the SCF slimb ubiquitin ligase is important for the restriction of procentriole 

formation (Cunha-Ferreira et al., 2009). The SCF component CUL1 also functions as a 

centrosomal suppressor of centriole multiplication by regulating the PLK4 protein level 

(Korzeniewski et al., 2009). PLK4 kinase activity also regulates its own stability (Holland et 

al., 2010; Guderian et al., 2010). CEP152 interacts with PLK4 and CPAP and controls 

centrosome duplication in human cells (Dzhindzhev et al., 2010). PLK4 is transcriptionally 

regulated by p53 (Li et al., 2005). Clinically, the expression of PLK4 is upregulated in colon 

cancer (Macmillan et al., 2001), while the expression of PLK4 is downregulated in 

hepatocellular carcinoma because of promoter hypermethylation and the loss of 

heterozygosity (LOH) (Pellegrino et al., 2010; Rosario et al., 2010). 

The role of the morgana/chp-1 in centrosome regulation has been reported by Ferretti et al. 

(2010). Mutations in morgana result in centrosome amplification. Morgana forms a complex 

with Hsp90, ROCK1 and ROCK2, and directly binds to ROCK2. Morgana downregulation 

promotes the interaction between ROCK2 and NPM, leading to an increase in ROCK2 

activity, which in turn results in centrosome amplification. Morgana is downregulated in a 

large fraction of lung and breast cancers. They suggested that morgana plays a role in 

preventing centrosome amplification and tumorigenesis. 

NLP, a previously described substrate of PLK1 (Casenghi et al., 2003), is a BRCA1-associated 

centrosomal protein that is involved in microtubule nucleation and spindle formation (Jin et 

al., 2009). NLP is overexpressed as a result of NLP gene amplification in lung cancer, and 

NLP overexpression causes centrosome amplification (Shao et al., 2010). 
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The BRCA1 gene is responsible for susceptibility to familial breast/ovarian cancer and 
participates in diverse cellular functions (Venkitaraman, 2002). The BRCA1 is localized at 
the centrosomes (Hsu & White, 1998; Okada & Ouchi, 2003) and is involved in the 
regulation of centrosome duplication (Xu et al., 1999). BRCA1 is associated with BARD1, 

and this association mediates the ubiquitylation of -tubulin, which is important for 
maintaining the numeral integrity of centrosomes. The BRCA2 gene is another causative 
gene of familial breast/ovarian cancer and its protein product functions in homologous 
recombination (HR) repair (Venkitaraman, 2002). The loss of BRCA2 results in centrosome 
amplification (Tutt et al., 1999), implying a relationship between a defect in DNA repair and 
the abnormal amplification of the centrosomes. HR repair is mediated by several proteins 
including RAD51, and the downregulation of RAD51 leads to centrosome amplification 
(Bertrand et al., 2003). The reduced expression or loss of XRCC2, XRCC3, and RAD51B-D, 
which are other HR components, induces centrosome amplification and chromosome 
instability (Griffin et al., 2000; Smiraldo et al., 2005; Date et al., 2006; Renglin Lindh et al., 
2007; Cappelli et al., 2011). 
Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase 
(Dodson et al., 2004). A centrosome-autonomous signal that involves centriole disengagement 
causes centrosome amplification in G2 phase after DNA damage (Inanç et al., 2010), 
suggesting that genotoxic stress can decouple the centrosome cycle and chromosome cycle. 
The active nucleocytoplasmic transport of proteins is mediated by the nuclear localization 

signal (NLS) and nuclear export signal (NES) (Turner & Sullivan, 2008). NLS-containing 

proteins are transported from the cytoplasm to the nucleus, whereas NES-containing 

proteins are exported from the nucleus to the cytoplasm by XPO1, the human homolog of 

yeast Crm1. The inhibition of XPO1 causes centrosome amplification via the disruption of 

the nucleocytoplasmic transport of NPM (Forgues et al., 2003; Shinmura et al., 2005; Wang et 

al., 2005). XPO1 is involved in the centrosomal localization of various proteins (Han et al., 

2008). Importin  and RANBP1 are other proteins involved in nucleocytoplasmic transport, 

and these proteins also have the ability to regulate centrosomes (Di Fiore et al., 2003; 

Ciciarello et al., 2004). 

SGOL1 interacts with protein phosphatase 2A, is localized in the centromere, and prevents 

the cohesin complex from precocious cleavage at the centromere via the dephosphorylation 

of SA2, one of the cohesin subunits (Kitajima et al., 2006; Riedel et al., 2006). Clinically, 

SGOL1 expression is downregulated in colorectal cancer, and SGOL1-knockdown leads to 

centrosome amplification and chromosome instability in a colon cancer cell line (Iwaizumi 

et al., 2009; Dai et al., 2009). A SGOL1-P1 transcript containing an exon-skip of exon 3, 

resulting in the formation of a premature stop codon, is expressed in colorectal cancer, and 

the overexpression of SGOL1-P1 in a colon cancer cell line resulted in an increased number 

of cells with aberrant chromosome alignment, precociously separated chromatids, delayed 

mitotic progression, and centrosome amplification (Kahyo et al., 2011). Furthermore, the 

overexpression of SGOL1-P1 inhibited the localization of endogenous SGOL1 and cohesin 

subunit RAD21/SCC1 to the centromere, suggesting that SGOL1-P1 may function as a 

negative factor to native SGOL1 (Kahyo et al., 2011). 

2.4 Relationship between centrosome abnormalities and chromosome instability 

Chromosome instability is defined as a persistently high rate of the gain and loss of whole 
chromosomes (Thompson et al., 2010). Chromosome instability is a major source of 
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aneuploidy (Lengauer et al., 1997; Rajagopalan and Lengauer, 2004), and chromosome 
instability is thought to be involved not only in cancer initiation, where aneuploidy may 
have a causal role, but also in cancer development, where increased rates of chromosome 
missegregation may enable the clonal expansion of cells with a greater malignant potential 
(Rajagopalan & Lengauer, 2004; Weaver et al., 2007; Gao et al., 2007; Ganem et al., 2009). 
Defects in chromosome cohesion, weakened spindle assembly checkpoint (SAC) signalling, 
impaired microtubule-kinetochore attachment, defects in cell cycle regulation, and 
centrosome abnormalities can cause chromosome instability (Lingle et al., 1998; Draviam et 
al., 2004; Thompson & Compton, 2008; Weaver & Cleveland, 2008; Thompson et al., 2010). 
Regarding centrosome abnormalities, two mechanisms underlying chromosome instability 
have been proposed. The first mechanism is that centrosome amplification generates 
chromosome instability by promoting multipolar anaphase, which is an abnormal division 
that produces more than three aneuploid daughter cells (Nigg, 2002). The other mechanism 
is that centrosome amplification generates chromosome instability by promoting merotelic 
kinetochore–microtubule attachments (Ganem et al., 2009; Silkworth et al., 2009). Merotely is 
a type of error in which single kinetochores attach to microtubules emanating from different 
poles (Salmon et al., 2005; Cimini, 2008) and is common in cells showing chromosome 
instability (Thompson & Compton, 2008). Cells with centrosome amplification often coalesce 
the extra centrosomes during mitosis to ensure that anaphase occurs with a bipolar spindle 
(Quintyne et al., 2005). The extra centrosomes induce transient multipolar spindle 
intermediates prior to the coalescence of the centrosomes into bipolar spindles; this event 
increases the incidence of merotelic kinetochore–microtubule attachments and elevates the 
chromosome missegregation rates (Ganem et al., 2009; Silkworth et al., 2009). Ganem et al. 
(2009) showed that the presence of extra centrosomes is correlated with an increase in 
lagging chromosomes (Figure 3), promoting chromosome missegregation through excessive 
merotely induced by transient multipolar spindle intermediates. Since merotelic 
attachments are poorly sensed by the SAC (Salmon et al., 2005; Cimini, 2008), the merotelic 
attachments arising from centrosome amplification are not fully repaired and give rise to 
lagging chromosomes during anaphase, possibly leading to missegregation events. 
 

CA B

 
 

Fig. 3. Lagging chromosomes in human cancer cells. 

(A, B) Lagging chromosome formation detected in a B[a]PDE-treated H1299 lung cancer cell 
line. (A) Normal segregation; (B) an anaphase cell showing lagging chromosome formation. 
The nuclei were stained with DAPI (blue). (C) Lagging chromosomes are shown in a 
hematoxylin-and-eosin-stained section of a squamous cell carcinoma of the lung. In (B) and 
(C), the arrows indicate lagging chromosomes. 
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3. Conclusion 

The progress in our understanding of the relationship between centrosome abnormalities 
and cancer during the past 15 years has been enormous. We have learned that centrosome 
abnormalities are common among diverse human cancers including lung cancer. Many 
molecules are involved in the control of the numeral and/or functional integrity of 
centrosomes, and the abrogation of these mechanisms results in centrosome abnormalities, 
which promote chromosome instability. From a therapeutic standpoint, anti-cancer drugs 
targeting the centrosome have now been developed (Mazzorana et al., 2011). Future studies 
using a genome-wide approach and new scientific technologies will further increase our 
knowledge of the role of the centrosome in human cells, and such knowledge will likely 
help to establish effective cancer therapies. 
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