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1. Introduction 

Genetic Algorithms (GAs) can help solving a great variety of complex problems, and the 

characterization of these problems as possible subject for GA is the first step in applying this 

technique. After some years, we have used this strong tool to solve problems from 

astronomy and engineering, and both fields demand complex models and simulations. 

With the aim of improving previous models and test new ones, we have developed a 

methodology generate solutions based on GAs. From a first analysis, one must establish the 

model input and output parameters, and then workout on the inversion of the problem, 

what we called the inverted model. This concept leads to the final formalism that can be 

subject to the GA implementation. 

After a brief presentation of the main concerns and ideas, it will be described some 
applications and their results and discussions. Some details on implementation are also given 
together with the particularities of each model/solution. A special section regarding error bars 
estimates is also provided. The GA method gives a good quality of fit, but the range of input 
parameters must be chosen with caution, as unrealistic parameters can be derived. 

GAs can also be used to verify if a given model is better than another for solving a problem. 

Even considering the limitation of the derived parameters, the automatic fitting process 

provides an interesting tool for the statistical analysis large samples of data and the models 

considered. 

2. Characterization of NP-Complete problems 

In this section, the NP-Complete problems are presented as the main targets of GAs. Before 

starting to project a GA, it is of greatest importance to study and characterize the problem to 

justify the technique to use. 

The early first notion of NP-completeness was proposed by Stephen Cook (1971), in his 
famous paper The complexity of theorem proving procedures. The main ideas presented in this 
section  have their origins in the excelent works of Garey & Johnson (1979) and Papadimitriu 
(1995). 
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Deep inside any GA code there is a model of the inverted problem to be solved. This routine 

works like I don’t know what the correct answer is, but I kwon if a candidate to an answer is 

good or bad. So, the problem to be solved by a GA must have the property that any 

proposed solution to an instance must be quickly checked for correctness. For one thing, the 

solution must be concise, with length polynomially bounded by that of the instance. 

To formalize the notion of quick checking, we will say that there is a polynomial-time 

algorithm that takes as input instance and the solution and decides whether or not it is a 

solution. If a problem demands a nondeterministic polynomial time to be solved, it is said a 

NP-problem, as defined by complexity theory researchers. It means that a solution to any 

search problem can be found and verified in polynomial time by nondeterministic 

algorithm. 

2.1 Inverting the problem 

The most remarkable characteristic of a NP-complete problem is the lack known algorithms 

to find its solution. In a P-Problem, any given candidate to solution can be verified quickly 

for its accuracy or validity. On the other hand, the time required to solve a NP-problem 

using any currently known search algorithm increases exponentially with the size of the 

problem grows. As a consequence, one of the principal unsolved problems in computer 

science today is determining whether or not it is possible to solve these problems quickly, 

called the P versus NP problem. 

Then, suppose one has a problem M to be solved and asks if a GA based program could 
solve it. The steps to be followed are: 

1. To write down formally the set of parameters to be found, something like  
S={p1, p2, p3, …, pn}, where the pi set is a representation of the input parameters. Each pi 
must be a single number (float or integer), so the S set could be interpreted as a 
chromosome and each pi as a gene. 

2. To express the problem as a function of the set of parameters: M=f(S), with  
M={q1, q2, q3, …, qm}, where the qi set is the representation of the output (desired) 
parameters. 

3. Obtain the inverse problem, or the formalities need to compute S= g(M) =f-1(M). 

If the g(M) function can be translated to a writable algorithm, and this algorithm is 

computable in a finite time, then the g(M) is a P-problem. If the f(S) function cannot be 

translated to a writable algorithm, or this algorithm is computable only with by verifying all 

possibilities in the S space, then the f(S) is a NP-problem. 

With both answers: the f(S) function is a NP-problem, and its inverse, g(M) is a P-problem, 

then the problem can be solved by a GA. 

3. Applications on astrophysics 

Astrophysics is a field of research very rich in NP-complete problems. Many of actual 

astrophysicists deal with non-linear systems and unstable conditions. In some cases, the 

comparative data, or the environment in GA jargon, is an image originated in telescopes or 

instruments placed in deep space. It is common the need for fit models with multi-spectral 
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data, like radio, infrared, visible and gamma-rays. All these solution constraints lead to an 

incredible variety of possibilities for using GA tools. 

In this section, it will be presented how GAs were used to model protoplanetary discs, an 
application that involves non-linear radiative-density profile relations. The model combines 
spectral energy distribution, observed in a wide range of the electromagnetic spectrum, and 
emissivity behaviour of different dust grain species. 

Another interesting application is the use of GAs together with and spectral synthesis in the 
calculation of abundances and metallicities of T Tauri stars. In this problem, the model is 
outside the GA code, as one of the conditions imposed is to use a standard, well tested, 
spectral generator. It is presented how to deal with the challenge of changing a ready to use 
tool into a NP-complete problem and invert it. 

3.1 Using GA to model protoplanetary discs 

This subsection is based on the published work The use of genetic algorithms to model 
protoplanetary discs (Hetem & Gregorio-Hetem 2007). 

During its formation process, a young star object (YSO) can be surrounded by gas, dust 
grains and debris, that shall be gravitationally (and also electrostatically) agglomerate in the 
future solar system bodies. This material receives the energy brought from the star surface 
and re-irradiates it in other wavelengths. The contribution of this circumstellar matter to the 
spectral energy distribution (SED) slope is often used to recognize different categories of 
young YSOs by following an observational classification based on the near-infrared spectral 
index (Lada & Wilking 1984; Wilking, Lada & Young 1989; André, Ward-Thompson & 
Barsony 1993). Actually, this classification suggests a scenario for the evolution of YSOs, 
from Class 0 to Class III, which is well established for TTs. 

Here, the adopted model is a flared configuration, according to Dullemond et al. (2001) 
modelling of a passively irradiated circumstellar disc with an inner hole. We used this 
model as the P-problem core of a GA based optimization method to estimate the 
circumstellar parameters. 

3.1.1 Presenting the problem 

In this subsection we describe the implementation of the GA method for the flared-disc 
model. 

The SED for a given set of parameters is evaluated according to Dullemond et al. (2001) 
model equations. The disc is composed by three components: the inner rim, the shadowed 
region, and the flared region with two layers: an illuminated hot layer and an inner cold 
layer. The disc parameters are: radius, RD; mass, MD; inclination, θ; density power law index, 
p; and inner rim temperature, Trim. The stellar parameters are: distance, d; mass, M


; 

luminosity, L


; and temperature, T


. 

The model starts by establishing a vertical boundary irradiated directly by the star, which 
considers the effect arising from shadowing from the rim, and the variations in scale height 
as a function of the radius. Figure 1 presents the obtained SED for the star AB Aurigae, as 
presented in Hetem & Gregorio-Hetem (2007). 
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Fig. 1. Results from Dullemond et al. (2001) model applied to the star AB Aurigae. The 
Synthetic SED is the sum of its components: star emission (continuous thin line); rim 
emission (dashed line); disc cold layer emission (dot–dashed line); and the disc hot layer 
emission (dotted line). The observational data in various wavelengths is represented by 
squares (Hetem & Gregorio-Hetem 2007). 

3.1.2 Implementation 

The GA code was designed and built to find the best disk parameters, namely S= {RD; MD; θ; 
p; Trim, d; M


; L


; T


}, as discussed in subsection 2.1.  However, some of these parameters 

are already known: the stellar parameters d, L


; and T


 are adopted from observations and 
easily found in literature. Essentially, the GA method used implements a ┯2 minimization of 
the SED fitting provided by the Dullemond et al. (2001) model. The main structures used to 
manipulate the data are linked lists containing the solutions (parameter set, adaptation level, 

┯2i, and the genetic operator, Φi), expressed by 

 ( ) ( ){ }2
i Di i Di i i i iM R ,θ ,M ,p ,T , ┯ ,Φ=  (1) 

where Si denotes the ith solution, and Ti is the ith Trim. Following Goldberg (1989), the code 
starts with the construction of the first generation, where all parameters are randomly 
chosen within an allowed range (for example, 50 ≤ RD ≤ 1000 AU). We chose as the number 
of individuals (parameter sets) in all the generations to be 100. In the following interactions 
loops, the evaluation function runs the Dullemond et al. (2001) model for each individual, 
and compares the synthetic SED with the observed data through a ┯2 measure, using the 
modified expression (Press et al. 1995): 

 ( )
2

2 1 N

i j ij
j

F
N

χ ϕ= −  (2) 

where Fj is the observed flux at wavelength λj, N is the number of observed data points, and 
┮i j is the calculated flux for the solution Si. The smallest ┯2 is assumed to be the gof, the 
goodness-of-fit measure for that generation. The evaluation function is applied to all 
individuals, and then the judgement procedure sorts the list by increasing ┯2. It also sets one 
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of the genetic operators to the field Φi: copy, crossover, mutation or termination. Each Φ is 
attributed to a fraction of the number of individuals following the values suggested by Koza 
(1994), Bentley & Corne (2002) and references therein. 

With the genetic operators chosen, the next generation is evaluated by applying specific 

rules according to the genetic operators. The copy operator uses an elitist selection, as the 

solutions with the smallest ┯2i are copied to the next generation. For the crossover operator, 

a random mix of two distinct individuals’ genes is built. The mutation operator copies the 

original individual, except for one of the genes, which is randomly changed. The process 

loop continues to build new generations until the end condition is reached, as illustrated by 

the schematic view in figure. 2. 

 

Fig. 2. Main steps of a generic GA (adapted from Hetem & Gregorio-Hetem 2007). 

We also can estimate the error bars in the final results by analysing the ┯2 behaviour as a 

function of the parameter variation. Then one can determine the confidence levels of a given 

parameter, as suggested by Press et al. (1995). Once the GA end condition has been reached, 

one can evaluate the inverse of the Hessian matrix [C] ≡ [α]-1 whose components are given 

by 

 
1

( ) ( )N
k k

ij
k i j

y y

a a

λ λ
α

=

 ∂ ∂
=   ∂ ∂ 
  (3) 

where ∂y(λk)/∂ai is the partial derivative of the SED with respect to parameter ai at λ = λk , 

and N is the number of observed data points. The main diagonal of C can be used to 

estimate the error bars on each parameter by σi ≅ C1/2/N. We estimated the error bars for the 

1σ confidence level and the respective disc parameters for AB Aurigae, resulting in  

MD = 0.1 ± 0.004M


, RD =400±44 AU, θ =65±3o, and Trim =1500±26 K, and these results are in 

agreement with the error-bar estimation provided by the surface contour levels described 

below. Fig. 3 presents the contour levels of the gof(MD, RD) surface calculated for a set of 400 
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random pairs of disc mass and radius around the parameters for the AB Aurigae model 

taken from Dominik et al. (2003). The result at the minimum is gof ~ 0.046, what means that 

the error bar estimation converged to a narrow range around the parameter set. 

 

Fig. 3. Contour levels gof(MD, RD) estimated for AB Aurigae presenting the confidence levels 
┯2(68%)= 0.082 (continuous line), ┯2(90%)= 0.15 (dashed) and ┯2(99%)= 0.21 (dot–dashed) 
(Hetem & Gregorio-Hetem 2007). 

We also applied the described GA method to a four other stars, in order to verify the quality 
of the fitting for objects showing different SED shapes and different levels of infrared excess. 
Our set was chosen by the slope of their near-infrared SED. The infrared excess in Herbig Be 
stars is the result of a spherical dusty envelope (van den Ancker et al. 2001), whereas a thick-
edge flared disc are characteristic of Herbig Ae. With this in mind, we selected A-type or 
late-B-type stars from the Pico dos Dias Survey sample (Gregorio-Hetem et al. 1992; Torres 
et al. 1995; Torres 1998) to apply the GA SED fitting. The results are presented in table 1 
together with their corresponding gofs (see figure 4). 

 

Fig. 4. GA SEDs obtained the stars BD-14 1319, IRAS 07394-1953, IRAS 06475-0735 and HD 
141569. The plots are given as log[┣F┣(Wm-2)] versus log[┣(┤m)] (Hetem & Gregorio-Hetem 
2007). 
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PDS Name M


 (M


) RD (AU) MD (M


) Trim (K) θ (o) p gof 

398 HD 141569 2.4 13 0.06 1085 0.6 -2.0 0.006 

022 BD−14 1319 2.8 690 0.003 380 40 -10. 0.006 

130 IRAS 06475−0735 2.0 309 0.20 1705 53 -1.5 0.016 

257 IRAS 07394−1953 2.0 859 0.64 1838 47 -2.0 0.098 

Table 1. Obtained parameters for the chosen stars (Hetem & Gregorio-Hetem 2007). 

3.2 Abundances and Metallicities of young stars via Spectral Synthesis 

This subsection is based on the published work The use of Genetic Algorithms and Spectral 

Synthesis in the Calculation of Abundances and Metallicities of T Tauri stars (Hetem & 

Gregorio-Hetem 2009). 

In the previous subsection, we presented a method that uses a calculation technique based 

on GA aiming to optimize the parameters estimation of protoplanetary disks of T Tauri 

stars. Inspired by the success of that application, which gives accurate and efficient 

calculations, we decided to develop a similar method to determine atomic stellar 

abundances. 

3.2.1 Artificial spectra as a measurement tool 

In astrophysics, the absorption spectra are obtained and employed as an analytical 

chemistry tool to determine the presence of atoms and ions in stellar atmospheres and, if 

possible, to quantify the amount of the atoms present. In stellar atmospheres, each element 

produces a number of spectrum absorption lines, at wavelengths which can be measured 

with extreme accuracy when compared to spectra emission tables provided by laboratory 

experiments. 

The presence of a given element in the star atmosphere can be verified (and measured) by 

looking for its absorption lines at the correct wavelength. The hydrogen is present in all 

stars by its Balmer absorption lines, and is often used to calibrate the measurements. An 

example of a high-resolution spectrum is presented in figure 5. 

The way astrophysics use to calculate the abundances of atoms in stars follows the steps: 

1. Obtain the star spectrum in a given range (or ranges) of wavelength, where the lines of 
the elements in study should be; 

2. Generate an artificial spectrum, considering the lines whose origin are the desired 
elements and the known physics of absorption line production; 

3. Compare the artificial and observed spectra. Here a simple ┯2 test is enough to compute 
a general comparison index; 

4. Use a GA methodology to optimize the artificial spectrum in order to minimize the 
differences with the observed spectrum (the inverted problem, subsection 2.1); 

5. Once the optimization methodology reaches its goals, consider the elemental 
parameters (density, temperature, ionization, etc) as the measures of the elements in the 
stellar atmospheres. 
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3.2.2 Inverting the problem 

From our discussion on section 2, one can see that generating a synthetic spectrum is a P-

problem, as the result is obtained from a set of parameters, and no more computing is need. 

The generation time is obviously finite, and there are a number of very efficient software 

tools that do that. The only care to be taken is to assure that the artificial spectrum has the 

same wavelength resolution of the observed spectrum, in order to simplify the future 

comparison. 

The above mentioned step 4, a methodology to optimize the artificial spectrum, is the trick 

point. If one wants to use GA so solve the abundances problem, it is necessary to invert the 

P-problem, that is, it is necessary to use the artificial spectrum generation tool as an external 

routine of a bigger and more complex algorithm. The algorithm used to this task is 

presented in figure 6. 

 

Fig. 5. FEROS spectrum for star PDS054 (Rojas et al. 2008). 

 

Fig. 6. Main blocks of a GA code to fit multi-band spectra of T Tauri stars (adapted from 
Hetem & Gregorio-Hetem 2009). 
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Establishing the abundances of each element as the parameters to be found, one 

individual in the GA terminology is the set of all elemental abundances added to some 

atmospheric parameters. The initial parameter set is used to build the first generation 

with 100 individuals. The evaluator routine creates a synthetic spectrum whose entries are 

the genetic data in each chromosome. This task is performed by calling the elected 

spectral tool. 

There are a number of very efficient software tools that can be chosen. In our application, 

the abundances of chemical species are determined by using the spectral synthesis software 

SPECTRUM provided by Corbally (Gray & Corbally 1994) and the atmosphere model 

software ATLAS9 from Kurucz (1993). 

3.2.3 Results 

In this section we present the results of the GA method for three stars, whose high-

resolution spectra were obtained at European Southern Observatory (ESO) in La Silla, Chile, 

with the Fibber Extended Range Optical Spectrograph (FEROS) at the 1.52m telescope. The 

stellar parameters (effective temperature and gravity) were calculated by excitation and 

ionization equilibrium of iron absorption lines (Rojas et al. 2008). The atomic and molecular 

line data were mainly from the National Institute of Standards and Technology1 and the 

Kurucz site2. The solar atomic abundances are from Grevesse & Sauval (1998), and the 

hyperfine structure constants were taken from Dembczyński et al. (1979) and Luc & 

Gerstenkorn (1972). The atmosphere models where obtained from the Kurucz library. 

Specific atmosphere models were calculated through a GNU-Linux porting of the ATLAS9 

program (Kurucz 1993). 

The method performs a multi-range fitting of specific regions of the observed spectrum, 

looking for best fit. The demands and commands to SPECTRUM are only those for 

generating the specific regions of interest, but the χ2 comparing index is evaluated over all 

wavelength ranges.  Figures 7 and 8 present the results for some stars on chosen lines. 

The metallicities and abundances found for the stars are compatible with those previously 

obtained for this particular sample. These preliminary results, achieved by using the GA 

technique, indicate the efficiency of the method. In the future, we intend to use the method 

in a larger sample of T Tauri stars. 

4. Applications on Rocket Engine engineering 

This section presents two solutions in applying GAs in the aerospace area, both concerning 
the fuel pumping in liquid propellant rocket engines. There are many choices to be done in 
the design of a high performance fuel pump, being one of them the type of pump. 

Two different types of pumps were modelled: the Harrington pumps and the turbo pumps. 
Both present a complex design methodology, which includes: tabled functions 
interpolations, numerical integrals and constructive material choices. 

                                                 
1 http://physics.nist.gov/PhysRefData/ASD/index.html 
2 http://kurucz.harvard.edu 4 and  http://wwwuser.oat.ts.astro.it/castelli/ 
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Fig. 7. Main screen of the program GASpectrum after five generations. The upper panel 
presents the spectra: the blue line represents the observed spectrum and the red line 
represents the best individual spectrum (adapted from Hetem & Gregorio-Hetem 2009). 

 

Fig. 8. Main results for stars HD202746, PDS054 and TW Hydra, on calcium, iron, titanium 
and cobalt lines (adapted from Hetem & Gregorio-Hetem 2009). 
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4.1 Using GA to parameterize the design of Harrington pumps 

This subsection is based on the published work Artificial Intelligence Parametrization of 
Harrington Pumps (Caetano & Hetem 2011). 

Since the beginning of liquid engine spacecraft history, the choices on pumping were the 
turbo pumps (Neufeld 1995). However, turbo pumps present many difficulties to design 
and to achieve their optimum performance. Good and experienced designers can project 
specialized turbo pumps that can deliver 70-90% efficiency, but figures less than half that 
are not uncommon. Low efficiency may be acceptable in some applications, but in rocketry 
this is a severe problem. Common problems include: 1) excessive flow from the high 
pressure rim back to the low pressure inlet along the gap between the casing of the pump 
and the rotor; 2) excessive recirculation of the fluid at inlet; 3) excessive vortexing of the 
fluid as it leaves the casing of the pump; 4) damaging cavitation to impeller blade surfaces 
in low pressure zones; and 5) critical shaping of the rotor itself is hardly precise (see the 
many examples and demonstrations presented by Dixon & Hall (2010) for a better 
understanding of these concerns). 

On the other end, the options are the pressurized tanks. In this choice, the fuel and oxidizer 
reservoir are filled charged with a high pressure gas (helium or nitrogen) that pushes the 
fluid to the thrust chamber. So, it is easy to see that the tank output fuel pressure drops as 
the rocket engine consumes its content. As an option, the designer can increase the inside 
pressure, but this came also with a high cost in material (due to tank thickness) and 
instability. Actually, pressurized propellant tanks are used on small rockets like the last 
stages on space missions. 

As an elegant intermediate solution between these two extremes, Harrington (2003) 
presented a design fills the gap between the pressure fed and the turbo pumps. This 
solution also has the advantage of lowering the costs of a rocket project, keeping low weight 
and without the high complexity of a turbo pump, whose operation, theoretical concerns 
and constructive details are explained in next section. 

4.1.1 Pump description and operation 

The construction consists of two chambers (B1 and B2 on figure 9) and a set of 8 valves. The 
chambers are connected to the main tank (Mt) through valves k3 and k4. These chambers 
also deliver propellant to the combustion chamber (CB) through valves k5 and k6. There is a 
high pressure gas generator (Hp) that is connected to the chambers through valves k1 and 
k2. Valves k7 and k8 serve as ventilation for the chambers. 

The pumps work alternating two states. In state 1, B1 is being filled by Mt and B2 is feeding 
the combustion chamber; and in state 2 their role is inverted, say B2 is being filled by Mt and 
B1 is feeding the combustion chamber. The state change is done by opening and closing the 
valves, as presented in figure 9 and table 2. The opening and closing of the valves is 
controlled by a small processor. 

4.1.2 The model: Pump constructive details 

Designing a Harrington pump is simple, but the optimization process is not (as expected: a 

P-problem and a NP-problem respectively). A pump with a small chamber must be filled 
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and vented quickly, with minimal head loss through the gas and liquid valves and 

plumbing. Making the pump cycle as fast as possible would make it lightweight, but higher 

flow velocities cause problems (Harrington 2003). 

 

Fig. 9. Schematic view and operation of a Harrington pump, with its chambers (B1 and 
B2) and valves (k1-8). The main rocket fuel tank is represented by Mt whereas Hp 
represents a high pressure gas generator. The two states are presented. Left: B1 is being 
filled by Mt while B2 is feeding the combustion chamber. Right: B1 is feeding the 
combustion chamber while B2 is being filled by Mt. the arrows indicate the flow. (Caetano 
& Hetem 2011). 

valve state 1 state 2 

k1 closed open 

k2 open closed 

k3 open closed 

k4 closed open 

k5 closed open 

k6 open closed 

k7 open closed 

k8 closed open 

Table 2. Derived model parameters for the sample (Caetano & Hetem 2011). 
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The choice of pump tanks material plays an important role, as its mass density and stress 

coefficients are the main keys in the pump design. The main tank pressure (about 300 kPa) 

and the area of the inlet valves set up the limits for the maximum inflow rate. If the inflow 

velocity is increased this can cause the propellant to be aerated, what is not desirable for the 

proper working of the engine. The extra volume of pressurized gas in the pump chamber 

should be small to minimize gas usage, but if it is too small, there will be a loss of propellant 

through the vent. 

The primary parameters for the calculations are the state changing cycle, tcy, the volume 
flow determined by the rocket engine needs, Q, the specific impulse of the propellants, Isp, at 

the fuel pressure, Pf, the fuel mass density, ρf, the thrust, T, and the material properties: the 

mass density, ρc, and stress coefficient, σc. From these parameters, considering the pump 
chambers are spherical, one can instantly obtain the diameter of one chamber: 

 3 06

cyt

c

Qdt
D

π
=


, (4) 

where the integral results in the chamber volume, and for the simplest case of steady flow, it 
resumes to Vc=Q.tcy. Knowing the diameter and applying the stress formulae from Young 
(1989), the chamber walls thickness can be obtained by 

 
f c

w

c

P D
t

σ
= , (5) 

and the total chamber mass by 

 2
c w c cM t Dπ ρ= . (6) 

To obtain the thrust, one can apply the momentum equation for the case of ideal expansion, 
and: 

 sp fT gQI ρ= , (7) 

where g represents the gravity acceleration. 

Manipulation of these expressions and an estimative of the relative weight of the valves and 
other accessories lead to expression 7 from Harrington (2003), the pump thrust to weight 
ratio: 

 0.43
sp f c

f cy c

gIT

W P T

ρ σ

ρ
= , (8) 

that is to be optimized. The total pump mass is Mp=1.56 Mc, and the mass flow can be easily 

obtained by fm Qρ= . The expressions (4)-(8) were coded in a program to test the feasibility 

of this set of equations as a model. Table 3 presents the results obtained for typical 

parameter values. These results are in agreement with rocket engine pump literature 

(Griffinand & French 1991; Sutton 1986). 
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Entry parameters Model results 

tcy 5 s Vc 0,016667 m3 

Q 200 l/min Dc 31,69203 cm 

Isp 285 s tw 0,090549 cm 

ρf 1 935 kg/m3 Mc 0,8 kg 

Pf 4 Mpa Mp 1,248 kg 

T 8800 N T 8704,85 N 

σc 2 350 MPa T/W 8718,8 

ρc 2 2,8 g/cm3 m  3,116667 kg/s

1 Propellant mixture: LOX/RP-1 
2 2219 Aluminum alloy 

Table 3. Test values for the pump model and results. 

4.1.3 GA optimization method 

Here we describe de Genetic Algorithm (GA) optimization method and the formalism 
applied to code the problem to its needs. 

The pump parameters we want to find are a subset of those described as primary 

parameters: the state changing cycle, tcy, the fuel pressure, Pf, the fuel mass density, ρf, and 

the material properties: the mass density, ρc, and stress coefficient, σc. These are the GA free 
parameters, formally 

 { , , , }cy f c ct P ρ σΛ = , (9) 

known as the parameter set. The technique used to work with the material parameters, ρc 

and σc, are explained in sub-section 4.1.4. 

The obtained pump must deliver a desired mass rate, , of a given propellant, ρf, and must be 

made of a given material, ρc and σc. Some variables are project dependent, like the volume 
flow, Q, the specific impulse of the propellants, Isp, at the fuel pressure, and the thrust, T. 
These three parameters are those the rocket engine designer should define to specify the 
pump he needs. Differently from the first parameters described on the above paragraph, 
these values cannot be altered by the algorithm, and can be included in another group, the 
constant set: 

 { , , }spQ I TΨ = . (10) 

Another group of variables is need: the result set. These are the values that are obtained by 
running the model code: 

 { }c c w c pV ,D ,t ,M ,M ,T,T / W,mΓ =  . (11) 

To satisfy the GA formalism, one must write down the model that describes the necessary 

transformations to obtain Γ from Ψ and Λ, or ( , )fΛ = Ψ Γ . 
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Now we explain how the GA method was implemented in the Harrington pump model 
described above. We first clarify the GA nomenclature in the field of pump design. A 
parameter (e.g. volume flow) corresponds to the concept of a ‘gene’, and a change in a 
parameter is a ‘mutation’. A parameter set that yields a possible solution corresponds to a 

‘chromosome’, our Λ. An ‘individual’ is a solution that is composed of one parameter set 
and two additional GA control variables. One of these variables is χ2, which refers to the 

‘adaptation’ level. The other control variable is Φ, the genetic operator. The term 
‘generation’ means ‘all the individuals’ (or all the solutions) present in a given iteration. 

The code uses the parameters described in (9), namely { , , , }cy f c ct P ρ σΛ = . Essentially, the GA 

method presented herein implements a ┯2 minimization of the comparison between the 

desired results 0 { }c c w c pV ,D ,t ,M ,M ,T,T / W,mΓ =  , and the results obtained by the 

application of expressions (4) to (8), the model results. There are three main advantages of 

using a GA for this task: (i) the GA method potentially browses the whole permitted 

parameter space, better avoiding the ‘traps’ of local minima; (ii) the method is not affected 

by changes in the model; (iii) the GA implementation does not need to compute the 

derivatives of ┯2 (such as ∂┯2/∂Pf, for example) required by the usual methods. This fact 

simplifies the code and minimizes computer errors caused by gradient calculations. 

The main structures used to manipulate the data are linked lists containing the solutions 

(parameter set, adaptation level, 2
iχ , and the genetic operator, Φi, expressed by 

2{ , , ,( , )}i i i i iS χ= Ψ Λ Γ Φ , where Si denotes the ith solution. Following Goldberg (1989) and 

Hetem & Gregorio-Hetem (2007), the code starts with the construction of the first 

generation, where all parameters are randomly chosen within an allowed range (for 

example, 15 cm < Dc < 30 cm). Here, the number of parameter sets in the first generation is 

assumed to be 100. In the next step, the evaluation function runs the model for each 

solution, and compares the synthetic Γi with the desired data, Γ0, to find ┯2, using a modified 

expression given by Press et al. (1995): 

 

2

02

1 0

1 pn
j ij

i
jp jn

χ
=

 Γ − Γ
=   Γ 

 , (12) 

where np is the number of values in the result set, Γ0j, is the desired value on position j (e.g. 

Γ01=Vc), and Γij is the calculated value for the solution Si. The smallest ┯2 corresponds to the 
goodness-of-fit, or simply gof. The gof values express how each individual is adapted, or 
how close each solution is, to the best solution (Bentley & Corne 2002). For the value of T/W, 

which we want to optimize, it is enough to establish a corresponding to Γ0j very high. 

A judgment function then determines the genetic operator Φ to be applied to a solution. Its 
values can be ‘copy’: the individual remains the same in the next generation; ‘crossover’: the 
individual is elected to change a number of genes (parameters) with another individual, 
creating a new one; ‘mutation’: one of its genes is randomly changed; or ‘termination’: none 

of the genes continue to subsequent generations. The chosen action is expressed by the Φi 
variable, associated with each individual. The next step is to evolve the current generation 

(k) to the next (k + 1) one, which is done through a multi-dimensional function β that 
considers the solutions and the genetic operators. Formally, 
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 [ ] ( ) ( ) ( )1 2 1 1 2 21
, , , , , , , , ,N N Nk k

S S S S S Sβ
+

=  Φ Φ Φ    . (13) 

As soon as a new generation is ready, the evaluation function is reapplied, and the 

algorithm repeats the described actions until an end-of-loop condition is reached. The end 

condition can be based on the number of iterations or the quality (a low level for the 2
iχ  

values). 

4.1.4 The choice of chamber constructive material 

The main material properties, the mass density, ρc, and stress coefficient, σc, can also be 

chosen by the GA. Instead of working directly with these parameters, it was created a 

material parameter, Kc, an integer that points to a density-stress database. So, our new 

parameter set becomes 

 { , , ( ), ( )}cy f c c c ct P K Kρ σΛ = , (14) 

or simply 

 { , , }cy f ct P KΛ = . (15) 

As Kc is a discrete value, it was needed to build special routines to manipulate the genes in 

the first generation and in mutation events. 

4.1.5 Results and conclusion 

Table 4 presents the main results for a GA run of 20 generations. The values are in 

agreement with the expected for the pump. The material chosen for the chambers was 

cooper 99.9%. A typical running with about 100 generation is achieved in ~5 seconds in a 

simple laptop computer. 
 

tcy 8.2 s Vc 0.00393786 m3 

Q 200 l/min Dc 0.195924 cm 

Isp 285 s tw 0,089 cm 

ρf 1 935 kg/m3 Mc 0.957973 kg 

Pf 4 Mpa Mp 1.49444 kg 

σc 2 350 MPa T/W 843.227 

ρc 2 2,8 g/cm3 m  0.448098 kg/s 

1 Propellant mixture: LOX/RP-1 
2 Copper 99.9% Cu 

Table 4. GA result values for the pump model. 

The GA proved to be efficient, and due to the method itself being independent of model 

complexity, it certainly can be used in future implementations of pump design. Future 
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evolutions and increasing complexity of the model, like thermal transfer and realistic valves, 

can benefit of GA robustness and reliability. 

The next step in this work is to enhance the model with more realistic and specific trends. It 

is expected to incorporate non-linear functions, differential equations and integrals. Also 

tabled functions are not far from what can be found in a pump project, with its intrinsic 

interpolations. The overall problem of finding parameters for a pump design can easily turn 

to a NP-Problem, that is a problem that is very difficult to find a solution, but, once one has 

a candidate to solution it is easy to verify if it is a good solution. 

4.2 Using GA to parameterize the design of turbo pumps to be used in rocket engines 

This subsection is based on the published work Parametric Design of Rocket Engine Turbo 

pumps with Genetic Algorithms (Burian et al. 2011). 

Turbo pumping in high-thrust, long-duration liquid propellant rocket engine applications, 

generally results in lower weights and higher performance when compared to pressurized 

gas feed systems. Turbo pump feed systems require only relatively low pump-inlet 

pressures, and thus propellant-tank pressures, while the major portion of the pressure 

required at the thrust chamber inlets is supplied by the pumps, saving considerable 

vehicle weight. As stated by Huzel & Huang (1967) the best performing turbo pump 

system is defined as that which affords the heaviest payload for a vehicle with a given 

thrust level, range or velocity increment: gross stage take-off weight; and thrust chamber 

specific impulse (based on propellant combination, mixture ratio, and chamber operating 

efficiency). 

The particular arrangement or geometry of the major turbo pump components is related to 

their selection process (Logan & Roy 2003). Some complex designs, like the SSME-Space 

Shuttle Main Engine, have a multiple stage pump, but most propellant pumps have a single-

stage main impeller. Eventually, one or more design limits are reached which requires more 

iteration, each with a new changed parameter or approach. For a better example, see table 5 

which presents some data from the V2 (II world war German missile) alcohol pump. 

 

Parameter value 

impeller diameter 34 cm

rotation 5000 rpm

performance 265 kW

delivery 50 kg/s

delivery pressure 25 atm

Table 5. Parameters from the alcohol V2 pump, adapted from Sutton & Biblarz (2001). 

This subsection considers the development of a software tool based on GA to assist the 

determination of the excellent parameters for the configuration of turbo pumps in engines 
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for liquid propellant rockets. We present the first version, which considers the calculation of 

the main parameters of a compressor stage. 

4.2.1 The model 

The pump compressor model used in this work is based on chapter 10 of Sutton & Biblarz 
(2001). This model provides a coherent basis for the modeling, and is sufficiently complex to 
be used as a valid test on the further parameter optimizing step. 

The pump parameters we want to find are: the inlet compressor diameter, d1, the 

compressor outlet diameter, d2, the fluid input velocity, v1, the suction specific speed, S, the 

shaft cross section, AS1, the pressure in the main tank, Pt, the total fluid friction (viscosity 

included) due to flow through the pipes, valves, etc, Pf, the pressure due to the tank 

elevation from the pump inlet, Pe. In particular, this last parameter leads to project insights 

concerning the pump position inside the rocket. These are the GA free parameters, formally 

Λ= {d1,d2,v1,S,dS1,Pt,Pf,Pe}, known as the parameter set. The obtained compressor must 

deliver a desired mass rate, m , and, from an input pressure P1, generate a flow with an 

output pressure P2. Some constants shall be considered, like the fluid mass density, ρ, and 

the external gravity, g0. We assumed as fluid the ethanol (C2H6OH) due to its green 

properties and green results. These three parameters are those the rocket engine designer 

should define to specify the compressor he needs. Differently from the first eight parameters 

described on the above paragraph, these values cannot be altered by the algorithm, and can 

be included in another group, the result set 1 2{ , , }m P PΓ =  . 

To satisfy the GA formalism, one must write down the model, or the formalism that 

describes the necessary transformations to obtain Γ from Λ, or Γ=f (Λ). One can obtain these 
expressions following Sutton & Biblarz (2001) model and converting their expressions. First, 
the pressures should be converted to heads, or the height necessary to the fluid to cause a 
given pressure, so we define Ht, He and Hf, the tank head, the elevation head and the friction 
head, respectively, that can be obtained by 

 0

t

t

H

P g dhρ=  , (16) 

 0

e

e

H

P g dhρ=  , (17) 

and 

 0

f

f

H

P g dhρ=  . (18) 

The effective area of the inlet is given by 

 
2
1

1 1

1

4
eff S

d
A A

π
= − , (19) 

which determines the volume flow 
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1

1

effA

Q v dA=  . (20) 

Then, the absolute positive head can be obtained by 

 1 t e fH H H H= + −  (21) 

and the net positive suction head or available suction head above vapor pressure can be 
obtained by 

 s t e f vH H H H H= + − − , (22) 

where Hv is the combustible vapor pressure. The required suction head will be taken as 80% 
of the available suction head in order to provide a margin of safety for cavitation, or 
HSR=0.8H1. To avoid pump cavitation, Hs has to be higher than HSR. If additional head is 
required by the pump, the propellant may have to be pressurized by external means, such as 
by the addition of another pump in series (a booster pump) or by gas pressurization of the 
propellant tanks. A small value of HSR is desirable because it may permit a reduction of the 
requirements for tank pressurization and, therefore, a lower inert tank mass. 

The shaft speed is given by 

 SR
rpm

SI

SH
N

u Q

φ

= , (22) 

where ϕ=3/4 and uSI=17.827459 are constants. uSI is necessary due to SI convertions (see 
Sutton & Biblarz 2001, eq. 10-7). This last expression allows us to obtain Nrad/s, the shaft 
speed in radians per second. The impeller vane tip speed is given by 

 2 /

1

2
rad su d N= . (23) 

With u, we can evaluate the head delivered by the pump 

 
2

0

u
H

gψ
∆ = , (24) 

where ψ has values between 0.90 and 1.10 for different designs. As for many pumps, ψ = 1.0, 
we adopt this value. 

At this point, we are able to obtain all the final results, 1 2{ , , } :m P PΓ =   

 1 1 0P H g ρ= , (25) 

 2 1 0( )P H H g ρ= ∆ + , (26) 

and 

 m Qρ= . (27) 
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It is also interesting to evaluate the shaft specific speed 

 SI
s

SR

u Q
N

Hφ
= , (28) 

which, with the aid of table 10-2 of Sutton & Biblarz (2001), defines the pump and impeller 

type. 

4.2.2 Results and conclusion 

We built a computer code to optimize equations in the same way it was done to the 

Harrington pumps (see subsection 4.1). The resulting parameters obtained from the GA 

code where in good agreement with what is expected for this kind of project. Some 

comparisons between GA results and correct results are presented in table 6. 

 

m  (kg/s) P1 (Pa) P2 (Pa) mean error  
(%) Correct answer 226,8 342669 6816870

generations 

10 228,1 342345 6816450 0,22 

20 227,5 342360 6816440 0,13 

50 227,1 342601 6816890 0,05 

100 226,9 342670 6816880 0,01 

Table 6. Comparison between obtained results (GA) and correct answer (Γ0) for an ethanol 
compressor. 

Evidently, for the simple definitions presented for this model, one does not need a 

sophisticated method as described to obtain a good result. But, as all designers know very 

well, there are no simple projects, especially concerning rocket engine pumps. The next step 

in this work is to enhance the model with more realistic and specific trends. It is expected to 

incorporate non-linear functions, differential equations and integrals. Also tabled functions 

are not far from what can be found in a pump project, with its intrinsic interpolations. The 

overall problem of finding parameters for a pump design can easily turn to a NP-Problem, 

that is a problem that is very difficult to find a solution, but, once one has a candidate to 

solution it is easy to verify if it is a good solution. Again, the GA proved to be efficient, and 

due to the method itself being independent of model complexity, it certainly can be used in 

future implementations. Future evolutions and increasing complexity of the model can 

benefit of GA robustness and reliability. 

5. Applications on energy distribution 

The application described in this section solves the problem of allocation of protective 

devices in electric power distribution plants. For a given power plant distribution, it is 

necessary to choose in which points one must place equipment for the net protection, or 

not. 
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This problem is entirely based on discrete elements – there are no floating point parameters. 
So, the main discussion here is how to build a chromosome syntax that can be used under 
the GA rules, and still be meaningful for the model. Besides, as the problem is fully 
discretized, there are high probabilities of finding different solutions that are equally 
evaluated in their adaptation function. This leads to new enhancements in the model to 
better evaluate the solutions, enhancing the separation between different individuals. 

5.1 Using GA in the allocation of electric power protective devices 

This subsection is based on the published work Automatic Allocation of Electric Power 

Distribution Protective Devices (Burian et al. 2010). 

The measurement of how well the electric power distribution system can provide a secure 

and adequate supply of power to satisfy the customer's requirements is called “reliability”. 

Regarding electric power distribution systems, the electric utilities companies are 

responsible for the most reliable service as possible, reflecting the most advanced state of 

technology with reasonable cost to the end product that is the electric power3. Most 

utilities record outage information such as the number of outages, elapse time, and the 

number of customers interrupted. These data and statistics may be reported for each 

circuit or operating division, for comparison purposes, using the standard performance 

indices. 

The performance indices provide historical datum which can be used to determine 

increasing or decreasing trends and to measure whether system improvement plans have 

yielded expected results. 

The quality model we consider in this subsection uses the following indices, based on the 

sustained outage data: the SAIDI and SAIFI indexes, explained as follows: 

1. SAIDI (System Average Interruption Duration Index): defined by the rate of average 
interruption duration per customer served per year. This index is commonly referred to 
as minutes of interruption per customer. 

 
Sum of Customer Interruption Durations

SAIDI
Total Number of Customers Served

=  (29) 

2. SAIFI (System Average Interruption Frequency Index): that defined by the rate of 
average number of times that a customer's service is interrupted during a reporting 
period per customer served in a given period (usually one year). A customer 
interruption is defined as one sustained interruption to one customer: 

 
Total Number of Customer Interruptions

SAIFI
Total Number of Customers Served

=  (30) 

It is easy to see that what is desired is a circuit with minimal SAIDI and SAIFI with the 
smaller cost in protective installed devices. The resulting circuit with these characteristics 
will the optimized circuit. 

                                                 
3 instead of guarantying continuous service to their customers… 
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Fig. 10. Circuit with Circuit Breaker in the Electric Power Substation without Reclosing 
Capability, based on Bishop (1997). 

5.1.1 The model 

The chosen model was based in the work developed by Bishop (1997) whose circuit has 

multiple laterals with customer’s numbers and load KVA values seen on the figure 10. To 

perform the analysis one needs some statistics, like: number of customers; placement of 

protective devices on the electric power utility; good possibilities to implement protective 

devices; distribution circuit response to the quality indices; and traditional values of repair 

and recover in accordance with Bishop's indices. 

The initial circuit used to the analysis is presented by figure 10, where it was considered the 
values of Bishop (1997) to the indices in circuits of electric power distribution with similar 
features in North American solutions. The used general statistical parameters are presented 
in table 7. As a base case analysis, the system was modelled with no reclosing of substation 
device. This is intended only to yield values for relative comparison with other circuits, with 
protective devices like recloses and fuses placed on the circuit, achieving the comparison 
landscape with the SAIDI and SAIFI indices. 
 

Faults per circuit mile per year 0.22 

Percent of permanent faults 20% 

Percent of temporary faults 80% 

Manual restoration time 2.0 hours  

Repair time for 30 lines 3.0 hours 

Repair time for 10 lines 2.5 hours 

Table 7. General statistical parameters used in the model. 
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Fig. 11. Representation of the circuit of figure 10 with the nodes with all the possible 
locations for protective devices (adapted from Burian et al. 2010). 

5.1.2 The methodology: Converting to a GA application 

The first step is to provide formalism in such a way that the protective devices net could be 

represented by a set of genes in a chromosome Λ, and that the Bishop (1997) model could be 

expressed as a P-problem whose parameters are given by Λ. 

The solution chosen was to code the circuit as a series of nodes, designed by Ni, with i being 

an integer number, and to build a list of links between the nodes (see figure 11). The special 

node N0 is the main protective switch in the substation (which is present in all solutions). 

Each link between nodes can have a protective device, and its location is designed as Pi,j, 

with i and j being the two nodes that define the link. Special data structure is provided to 

the nodes to storage information about the number of phases, number of consumers, 

distance to neighbours nodes, etc. 

The adopted solution considers S as a ordered list of tokens, and the position in the ordered 

list corresponds to a location as Pi,j. Then, for the circuit of figure 11, one has 

 
0,1 1,2 1,3 2 ,4 2 ,5 2 ,6 6,7 6,12 7 ,8

7 ,9 9,10 9,11 12 ,13 12 ,14 14,15 14,16

, , , , , , , , ,

, , , , , ,

P P P P P P P P P

P P P P P P P

  
Λ =  

  
. (31) 

So, Λ is a finite set of tokens, and its number of elements is much smaller than the number of 

nodes squared4, that assumes the role of parameter set in the P-problem. These tokens can 

represent a protective device to be placed in its respective circuit position. The possible 

devices are: main substation switch, only possible in location P0,1 (S); fuse (F), automatic 

reclose switch (R) and nothing (no device).  

                                                 
4 Of course! When representing an electric circuit one does not link one node to all the other nodes… 
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The kind of device defines the algorithm to be used to obtain the overall cost of protective 

devices, and the SAIDI and SAIFI indexes according to Bishop (1997). So, each set Λi 
represents a different circuit, and applying the Bishop’s algorithms one obtains a result set 

 ( ) {SAIDI ,SAIFI , , , }i i i i Si Ri fic c cΓ Λ = . (32) 

where cS, cR and cf are the costs of the main switch reclose switch and fuses, which are 

expressed in monetary “units”, being one unit the cost of the a monophasic fuse.  

As the set Γi itself cannot express the degree of adaptation the individual Λi to the problem 

we want to solve, we must provide an expression to summarize Γi in a more convenient, 

single valued variable, like the gof value, described in subsection 3.1. The definition of this 

gof should have a monotonic behaviour as the costs and the SAIDI and SAIFI index increase. 

We adopted the simple expression 

 ( ) ( )SAIDI SAIFIa b S R fgof c c cκ κ= + + + + . (33) 

where κa and κb are constant scale converters. Then, one can say that optimized circuit will 

be that one that offers the smaller gof. With this, our inverted NP-problem can be solved by 

looking for the individual Λi that presents the smaller gof. As all the parameters are limited 

range integer numbers (tokens), some special care must be taken in the GA routines that 

deal with new individuals and mutation. So, these routines where rebuild taking into 

account the discrete character of the chromosomes. The overall behaviour of the GA 

optimization code follows the algorithm proposed in figure 2. 

5.1.3 Results and conclusion 

The resulting optimized circuit is shown in figure 12, and its corresponding indexes are 

presented in table 8. The GA code performed the ranging of large number of solutions and 

configurations, within the universe of about 50 generations of configurations. This 

demonstrates the GA potential in this kind of analysis and application to discrete allocation 

equipment’s. GA optimization techniques has been showed to be an effective technique to 

optimize the allocation of protective devices inside the electrical distribution systems. 
 

Index value 

SAIDI 2.7694 

SAIFI 1.04385 

Cost S 60 units 

Number S 1 

Cost R 280 units 

Number R 3 

Cost F 25 units 

Number F 9 

Total Cost 365 units 

Table 8. Indexes values for optimized circuit. 
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Fig. 12. Optimized circuit obtained with the GA method (adapted from Burian et al. 2010). 
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