
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

6

Genetic Algorithms: An Overview
with Applications in Evolvable Hardware

Popa Rustem
“Dunarea de Jos” University of Galati

Romania

1. Introduction

The genetic algorithm (GA) is an optimization and search technique based on the principles
of genetics and natural selection. A GA allows a population composed of many individuals
to evolve under specified selection rules to a state that maximizes the “fitness” (i.e.,
minimizes the cost function). The fundamental principle of natural selection as the main
evolutionary principle has been formulated by Charles Darwin, without any knowledge
about genetic mechanism. After many years of research, he assumed that parents qualities
mix together in the offspring organism. Favorable variations are preserved, while the
unfavorable are rejected. There are more individuals born than can survive, so there is a
continuous struggle for life. Individuals with an advantage have a greater chance for
survive i.e., the “survival of the fittest”. This theory arose serious objections to its time, even
after the discovering of the Mendel’s laws, and only in 1920s “was it proved that Mendel’s
genetics and Darwin’s theory of natural selection are in no way conflicting and that their
happy marriage yields modern evolutionary theory” (Michalewicz, 1996).

The dynamical principles underlying Darwin’s concept of evolution have been used to
provide the basis for a new class of algorithms that are able to solve some difficult problems
in computation. These “computational equivalents of natural selection, called
evolutionary algorithms, act by successively improving a set or generation of candidate
solutions to a given problem, using as a criterion how fit or adept they are at solving the
problem.” (Forbes, 2005). Evolutionary algorithms (EAs) are highly parallel, which makes
solving these difficult problems more tractable, although usually the computation effort is
huge.

In this chapter we focus on some applications of the GAs in Digital Electronic Design, using
the concept of extrinsic Evolvable Hardware (EHW). But first of all, we present the genesis
of the main research directions in Evolutionary Computation, the structure of a Simple
Genetic Algorithm (SGA), and a classification of GAs, taking into account the state of the art
in this field of research.

2. A brief history of evolutionary computation

In the 1950s and the 1960s several computer scientists independently studied evolutionary
systems with the idea that evolution could be used as an optimization tool for engineering

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

106

problems. The idea in all these systems was to evolve a population of candidate solutions to
a given problem, using operators inspired by natural genetic variation and natural selection.

In the 1960s, two german scientists, Ingo Rechenberg and Hans-Paul Schwefel introduced
"evolution strategies", a method they used to optimize real−valued parameters for the shape
of airplane wings. The field of evolution strategies “has remained an active area of research,
mostly developing independently from the field of genetic algorithms (although recently the
two communities have begun to interact)” (Mitchell, 1997). Around the same time,
completely independently, american scientist Lawrence Fogel developed a method of
computational problem solving he termed “evolutionary programming”, a technique in
which candidate solutions to given tasks were represented as finite−state machines, which
were evolved by randomly mutating their state−transition diagrams and selecting the fittest
(Forbes, 2005).

Genetic algorithms (GAs) “were invented by John Holland in the 1960s and were developed
by Holland and his students and colleagues at the University of Michigan in the 1960s and
the 1970s. In contrast with evolution strategies and evolutionary programming, Holland's
original goal was not to design algorithms to solve specific problems, but rather to formally
study the phenomenon of adaptation as it occurs in nature and to develop ways in which
the mechanisms of natural adaptation might be imported into computer systems. Holland's
1975 book Adaptation in Natural and Artificial Systems presented the genetic algorithm as an
abstraction of biological evolution and gave a theoretical framework for adaptation under
the GA. Holland's GA is a method for moving from one population of "chromosomes" (e.g.,
strings of ones and zeros, or "bits") to a new population by using a kind of "natural
selection" together with the genetics−inspired operators of crossover, mutation, and
inversion. (…) Holland's introduction of a population−based algorithm with crossover,
inversion, and mutation was a major innovation” (Mitchell, 1997). Rechenberg's evolution
strategies generate a single offspring, which is a mutated version of the parent.

“Holland was the first to attempt to put computational evolution on a firm theoretical

footing. Until recently this theoretical foundation, based on the notion of "schemas," was the

basis of almost all subsequent theoretical work on genetic algorithms. In the last several

years there has been widespread interaction among researchers studying various

evolutionary computation methods, and the boundaries between GAs, evolution strategies,

evolutionary programming, and other evolutionary approaches have broken down to some

extent. Today, researchers often use the term "genetic algorithm" to describe something very

far from Holland's original conception” (Mitchell, 1997).

Current techniques are more sophisticated and combine the basic algorithms with other

heuristics. Koza developed in 1992 “genetic programming”, which applies a GA to writing

computer programs. “The variables are various programming constructs, and the output is a

measure of how well the program achieves its objectives. The GA operations of mutation,

reproduction (crossover) and cost calculation require only minor modifications. GP is a

more complicated procedure because it must work with the variable length structure of the

program or function. A GP is a computer program that writes other computer programs”

(Haupt & Haupt, 2004). “Genetic Programming uses evolution-inspired techniques to

produce not just the fittest solution to a problem, but an entire optimized computer program.”

(Forbes, 2005).

www.intechopen.com

Genetic Algorithms: An Overview with Applications in Evolvable Hardware

107

Fig. 1. Increasing the number of works in the field over the past 20 years

Figure 1 represents the number of papers in the field of GAs, in the last 20 years, in two of
the most popular databases: SpringerLink from Springer, which contain 81187 papers on
GAs, from a total amount of 5276591, and IEEExplore Digital Library from IEEE, which
contain 32632 papers on GAs, from a total amount of 2926204.

3. A simple Genetic Algorithm

The set of all the solutions of an optimization problem constitutes the search space. The
problem consists in finding out the solution that fits the best, from all the possible solutions.
When the search space becomes huge, we need a specific technique to find the optimal
solution. GAs provides one of these methods. Practically they all work in a similar way,
adapting the simple genetics to algorithmic mechanisms. GA handles a population of
possible solutions. Each solution is represented through a chromosome, which is just an
abstract representation.

Coding all the possible solutions into a chromosome is the first part, but certainly not the
most straightforward one of a GA. A set of reproduction operators has to be determined,
too. Reproduction operators are applied directly on the chromosomes, and are used to
perform selection of the parents, by using a fitness function (usually the most fitted, with
some likelihood), recombinations (crossover) and mutations and over solutions of the
problem. “Appropriate representation and reproduction operators are really something
determinant, as the behavior of the GA is extremely dependant on it. Frequently, it can be
extremely difficult to find a representation, which respects the structure of the search space
and reproduction operators, which are coherent and relevant according to the properties of
the problems” (Sivanandam & Deepa, 2008).

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
0

2000

4000

6000

8000

10000

12000

14000

Year

N
u

m
b

e
r

o
f

p
a

p
e

rs

Papers in the field of GAs

SpringerLink

IEEExplorer Digital Library

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

108

Procedure Genetic Algorithm
begin
 generate randomly the initial population of chromosomes;
 repeat
 calculate the fitness of chromosomes in population;
 repeat
 select 2 chromosomes as parents;
 apply crossover to the selected parents;
 apply mutation to the new chromosomes;
 calculate the fitness of new child chromosomes;
 until end of the number of new chromosomes
 update the population;
 until end of the number of generations
end

Fig. 2. Pseudocode description of the Procedure Genetic Algorithm

Once the reproduction and the fitness function have been properly defined, a GA is evolved
according to the same basic structure (see source above in pseudocode). It starts by
generating an initial population of chromosomes, which is generated randomly to ensure
the genetic diversity. Then, the GA loops over an iteration process to make the next
generation. Each iteration consists of fitness evaluation, selection, reproduction, new
evaluation of the offsprings, and finally replacement in population. Stopping criterion may
be the number of iterations (called here generations), or the convergence of the best
chromosome toward the optimal solution.

4. Classification of Genetic Algorithms

Sometimes the cost function is extremely complicated and time-consuming to evaluate. As a
result some care must be taken to minimize the number of cost function evaluations. An
idea was to use parallel execution of various Simple GAs, and these algorithms are called
Parallel Genetic Algorithms (PGAs). PGAs have been developed to reduce the large
execution times that are associated with simple genetic algorithms for finding near-optimal
solutions in large search spaces. They have also been used to solve larger problems and to
find better solutions. PGAs have considerable gains in terms of performance and scalability.
There are a lot of methods of PGAs (Independent PGA, Migration PGA, Partition PGA,
Segmentation PGA) which are fully described in (Sivanandam & Deepa, 2008).

Hybrid Genetic Algorithms (HGAs) produce another important class of GAs. A hybrid GA
combines the power of the GA with the speed of a local optimizer. The GA excels at
gravitating toward the global minimum. It is not especially fast at finding the minimum
when in a locally quadratic region. Thus the GA finds the region of the optimum, and then
the local optimizer takes over to find the minimum. Some examples of HGAs used in Digital
Electronics Design will be presented in the next section.

Adaptive genetic algorithms (AGAs) are GAs whose parameters, such as the population
size, the crossing over probability, or the mutation probability are varied while the GA is
running. “The mutation rate may be changed according to changes in the population; the
longer the population does not improve, the higher the mutation rate is chosen. Vice versa,

www.intechopen.com

Genetic Algorithms: An Overview with Applications in Evolvable Hardware

109

it is decreased again as soon as an improvement of the population occurs” (Sivanandam &
Deepa, 2008).

Fast Messy Genetic Algorithm (FmGA) is a binary, stochastic, variable string length,
population based approach to solving optimization problems. The main difference between
the FmGA and other genetic approaches is the ability of the FmGA to explicitly manipulate
building blocks (BBs) of genetic material in order to obtain good solutions and potentially
the global optimum. Some works, like (Haupt & Haupt, 2004), use only the term of Messy
Genetic Algorihms (mGAs).

Finally, Independent Sampling Genetic Algorithm (ISGA) are more robust GAs, which
manipulate building blocks to avoid the premature convergence in a GA. Implicit
parallelism and the efficacy of crossover are enhanced and the ISGAs have been shown to
outperform several different GAs (Sivanandam & Deepa, 2008). Other classes of efficient
GAs may be implemented for different specific applications.

5. Applications of Genetic Algorithms

“GAs have been applied in science, engineering, business and social sciences. Number of
scientists has already solved many engineering problems using genetic algorithms. GA
concepts can be applied to the engineering problem such as optimization of gas pipeline
systems. Another important current area is structure optimization. The main objective in
this problem is to minimize the weight of the structure subjected to maximum and minimum
stress constrains on each member. GA is also used in medical imaging system. The GA is
used to perform image registration as a part of larger digital subtraction angiographies. It can
be found that GAs can be used over a wide range of applications” (Sivanandam & Deepa,
2008). GAs can also be applied to production planning, air traffic problems, automobile,
signal processing, communication networks, environmental engineering and so on. In (Bentley
& Corne, 2002), Evolutionary Creativity is discussed, using a lot of examples from music, art in
general, architecture and engineering design. Evolutionary Electronics, both Analog and
Digital, have been investigated in many publications (Bentley & Corne, 2002; Popa, 2004; Popa
et al., 2005). (Higuchi et al., 2006) is a very good book on Evolvable Hardware.

Evolvable Hardware (EHW) is a hardware built on software reconfigurable Programmable
Logic Devices (PLDs). In these circuits the logic design is compiled into a binary bit string
and, by changing the bits, arbitrary hardware structures can be implemented instantly. The
key idea is to regard such a bit string as a chromosome of a Genetic Algorithm (GA).
Through genetic learning, EHW finds the best bit string and reconfigures itself according to
rewards received from the environment (Iba et al., 1996).

In the rest of this section we present three applications in evolutionary design of digital
circuits developed by the author, using GAs. First of them describes a method of synthesis
of a Finite State Machine (FSM) in a Complex Programmable Logic Device (CPLD), using a
standard GA. The other two applications use different techniques of hybridisation of a
standard GA: first of them with two other optimisation techniques (inductive search and
simulated annealing), to solve the Automatic Test Pattern Generation for digital circuits, a
problem described in (Bilchev & Parmee, 1996), and the second one to improve the
convergence of the standard GA in evolutionary design of digital circuits, using the new
paradigm of Quantum Computation (Han & Kim, 2002).

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

110

5.1 Implementation of a FSM using a standard GA

This first example uses extrinsic hardware evolution, that is uses a model of the hardware
and evaluates it by simulation in software. The FSM represented in the figure 3 is a
computer interface for serial communication between two computers. A transition from one
state to another depends from only one of the 4 inputs , 1, 4ix i = . The circuit has 4 outputs,

each of them beeing in 1 logic only in a single state. The FSM has 6 states and has been
presented in (Popa, 2004).

S0: 000

S1: 001

S2: 010

S3: 011

S4: 100

S5: 110

Xi
S

Yi

Xi or

i = 1,2,3,4

S2 S3 S5

X
1

X
2 X

3
X

4

Y
1

Y
2

Y
3

Y
4

X
2

X
3

X
4

X
4

S0

X
1

S1 S4

Fig. 3. A FSM described as state transition graph and manual state assignment

With the state assignment given in the figure 3, the traditional design with D flip-flops gives
the following equations for the excitations functions:

 2 3 1 0 2 1D x Q Q Q Q= ⋅ ⋅ + ⋅ (1)

 1 2 1 0 4 2 1 0D x Q Q x Q Q Q= ⋅ ⋅ + ⋅ + ⋅ (2)

 0 1 2 0 2 1 0 1 0D x Q Q x Q Q Q Q= ⋅ ⋅ + ⋅ ⋅ + ⋅ (3)

The output functions, are given by the following equations:

 1 1 0y Q Q= ⋅ (4)

 2 2 1 0y Q Q Q= ⋅ ⋅ (5)

 3 2 1y Q Q= ⋅ (6)

 4 2 1y Q Q= ⋅ (7)

www.intechopen.com

Genetic Algorithms: An Overview with Applications in Evolvable Hardware

111

For the evolutionary design of this circuit we take into account that each boolean function
has a maximum number of 5 inputs and a maximum number of 4 minterms. If we want to
implement these functions in a PLD structure (an AND array and logic cells configurable as
OR gate), then the number of fuse array links is 2 5 4 40⋅ ⋅ = , and we may to consider this

number as the total length of the chromosome (Iba et al., 1996).

Our GA is a standard one, with the population size of 30 chromosomes. One point crossover
is executed with a probability of 80% and the mutation rate is 2%. Six worse chromosomes
are replaced each generation. The stop criterion is the number of generations.

Fig. 4. The evolution of the excitation functions of the computer interface

Figure 4 reflects the evolution of the circuit for the first 3 functions, called excitation
functions, which generate the subcircuit A. However, this circuit is built from 3 independent
circuits, each generating one output bit. Therefore, the evolution of a circuit with one output
bit is repeated 3 times. The Y axis is the correct answer rate. If it reaches 100%, then the
hardware evolution succeeds.

In the same way, figure 5 reflects the evolution of the circuit for the output functions, which
generate the subcircuit B. The evolution succeeds after a less number of generations because
the total search space is in this case much lower than in previous case (all the output
functions have only 3 variables).

Evolution may provide some non-minimal expressions for these boolean functions, but
minimization is not necessary for PLD implementations. The length of the chromosomes is
greater than the optimal one, and the evolved equations are much more complicated than
the given equations (1-7). The complete cost of the whole combinational circuit is consisted
of 15 gates and 37 inputs for traditional design, and 30 gates and 102 inputs for evolutionary
design.

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

112

Fig. 5. The evolution of the output functions of the computer interface

We have implemented both the traditional design and the evolved circuit in a real Xilinx
XCR3064 CoolRunner CPLD by using the Xilinx ISE 6.1i software. In traditional design, that
is using equations (1-7), the FSM used only 7 macrocells from a total number of 64
macrocells, 11 product terms from a total number of 224 product terms, and 7 function block
inputs, from a total number of 160. Surprising is the fact that, although evolutionary design,
with the same state assignment, provides more complicated equations, the implementation
of this circuit in XCR3064XL CPLD also used 7 macrocells from a total number of 64, 10
product terms from a total number of 224, and 7 function block inputs, from a total number
of 160. This is even a better result than in preceding case, because the number of product
terms is less with 1. Both implementations have used the same number of flip-flops (that is
3/64) and the same number of pins used like inputs/outputs (that is 9/32). We have
preserved the state assignment of the FSM, and the subcircuits A and B are in fact as pure
combinational circuits. The interesting fact is that our GA have supplied a better solution
than the one given by the minimization tool used for this purpose by the CAD software.

5.2 Multiple hybridization of a GA

Hybrid Genetic Algorithms (HGAs) combine the power of the GA with the speed of a local
optimizer. Usually the GA finds the region of the optimum, and then the local optimizer
takes over to find the minimum. (Bilchev & Parmee, 1996) developed a search space
reduction methodology, which was called the Inductive Search. The problem of global
optimisation is partitioned into a sequence of subproblems, which are solved by searching
of partial solutions in subspaces with smaller dimensions.

This method has been used to solve the Automatic Test Pattern Generation Problem in
Programmable Logic Arrays (PLAs), that is to find an effective set of input test vectors,

www.intechopen.com

Genetic Algorithms: An Overview with Applications in Evolvable Hardware

113

which are able to cover as many as possible faults in the circuit (we have taken into account
two PLA structures with a total number of 50 and respective 200 stuck-at 0 possible faults).

(Wong & Wong, 1994) designed a HGA using the algorithm of Simulated Annealing as local

optimizer. The optimisation process in Simulated Annealing is essentially a simulation of

the annealing process of a molten particle. Starting from a high temperature, a molten

particle is cooled slowly. As the temperature reduces, the energy level of the particle also

reduces. When the temperature is sufficiently low, the molten particle becomes solidified.

Analogous to the temperature level in the physical annealing process is the iteration number

in Simulated Annealing. In each iteration, a candidate solution is generated. If this solution

is a better one, it will be accepted and used to generate yet another candidate solution. If it is

a deteriorated solution, the solution will be accepted with some probability.

Each of this two methods of hybridisation discussed above have some advantages. The
inductive search effort at each inductive step controls the trade-off between the

Procedure MHGA
begin

Initialize a partial solution for N = 1 and establish the initial temperature 0T ;

 for k = 2 to N ,
Generate randomly the initial population of chromosomes;
repeat

append each chromosome to the partial solution, and evaluate it;
repeat

select, proportional with fitness, 2 parents;
apply crossover to obtain 2 offsprings;
apply mutation to the new chromosomes;
calculate the fitness of new chromosomes;
the new chromosomes are accepted or not accepted;

until end of the number of chromosomes
update the population, according with the fitness;
the temperature is decreased;

until end of the number of generations
Update the partial solution;

 end
end

Fig. 6. The structure of the MHGA

computational complexity and the expected quality of results, while Simulated Annealing

avoids the premature convergence and reduces the adverse effects of the mutation

operation. In (Popa et al., 2002) we proposed a HGA that cumulates all these advantages in a

single algorithm, through a double hybridisation of the Genetic Algorithm: with Inductive

Search on the one hand, and with Simulated Annealing technique on the other hand. The

structure of the Multiple Hybridated Genetic Algorithm is presented in figure 6.

We have conducted the experiments with all three HGAs described above, in the purpose to

find the maximum fault coverage with a limited number of test vectors. We have tested first

a PLA structure with 50 potential "stuck-at 0" faults, taking into account the maximum

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

114

coverage with the faults with only 6 test vectors, and results may be seen in the figure 7.

Then, we repeated the same algorithm for a more complicated PLA structure, with 200

potential "stuck-at 0" faults, and we tried to cover the maximum number of faults with 24

test vectors. The evolutions of these three algorithms may be seen in figure 8.

Fig. 7. Fault Coverage Problem of 50 possible faults solved with three HGAs in 500 iterations

If n is the number of covered faults and N is the number of all faults in the fault population,

the associated fitness function is 100%
n

f
N

= ⋅ . There may also be a number of constraints

concerning the possible combinations of input signals. The designers of the circuit define the
set of legal combinations in terms of the legal states of a number of channels. The set of all
legal templates defines the feasible region. The main genetic parameters used in these
algorithms are: a population size of 20 chromosomes, uniform crossover with 100% rate,
uniform mutation with 1% rate. The maximum fault coverage achieved with the Multiple
Hybridated Genetic Algorithm after 500 iterations was about 69%, while the maximum fault
coverage achieved with the Inductive Genetic Algorithm, the best of the two single
hybridated genetic algorithms, was about 66%. These results represent the average values of
5 succesive runnings. We have tried even with 10 or more number of runnings, but the
results are basically the same.

Another set of experiments were made on a more complex digital structure of PLA type

with 200 possible faults. Figure 8 shows the comparative performances of the three HGAs

on this fault coverage problem. The number of input test vectors is 24. After 250 fitness

function calls, that is 25 iterations, each with 10 generations per inductive step, the fault

coverage of the Multiple Hybridated Genetic Algorithm is with about 1% better than the

fault coverage of the Inductive Genetic Algorithm.

www.intechopen.com

Genetic Algorithms: An Overview with Applications in Evolvable Hardware

115

Fig. 8. Fault Coverage Problem of 200 possible faults solved with three HGAs

These experiments show that the proposed MHGA seems to offer a better performance than

the two other HGAs: the Inductive Genetic Algorithm and the Genetic Algorithm

hybridated by Simulated Annealing. We have proved on two different examples, with

different complexities, that MHGA offers the greatest value of fault coverage in Automatic

Test Pattern Generation Problem in digital circuits of PLA type.

5.3 A Quantum Inspired GA for EHW

Quantum Inspired Genetic Algorithm (QIGA) proposed in (Popa et al., 2010) uses a single
chromosome, which is represented like a string of qubits, as is described in (Han & Kim,
2002; Zhou & Sun, 2005). A quantum chromosome which contains n qubits may be
represented as:

 1 2

1 2

 n

n

q
α α α

β β β

=
, (8)

where each couple iα , iβ , for 1,...,i n= , are the probability amplitudes associated with the

0 state and the 1 state such that 2 2 1i iα β+ = and the values 2
iα and 2

iβ represent the

probability of seeing a conventional gene, 0 or 1, when the qubit is measured.

A quantum chromosome can be in all the 2n states at the same time, that is:

 0 1 2 1
00...0 00...1 ... 11...1nq a a a

−
= + + , (9)

where ia represents the quantum probability amplitude, and 2
ia is the probability of seeing

the i-th chromosome from the all 2n possible classic chromosomes (Zhou & Sun, 2005).

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

116

Due to this superposition of states in a quantum chromosome, we use a single chromosome
in population. In Conventional Genetic Algorithm (CGA) or Simple Genetic Algorithm with
the structure given in figure 2, the population has always a number of chromosomes, and
the efficiency of the algorithm depends usually on the size of population. But a quantum
chromosome can represent all the possible conventional chromosomes at the same time, and
so, it may generates an arbitrary population of conventional chromosomes each generation.
Quantum population will be transformed to conventional population when the fitness is
evaluated.

Single Chromosome Quantum Genetic Algorithm (SCQGA) is described in (Zhou & Sun,
2005). In the first step, a quantum chromosome is generated using (8). A random number is
compared with probabilities of each qubit, and it collapses to 0, or to 1. The conventional
population of N chromosomes is obtained by repeating this process N times. In the next
step, the fitness value is calculated for each conventional chromosome. It requires a lot of
time, that involves the speed performance of the algorithm. The same problem of fitness
evaluation and the low speed of the algorithm subsists also in CGAs.

Our idea, which was implemented in QIGA, was to initiate the collapse of the quantum
chromosome each generation but, from time to time to generate a whole population of
conventional chromosomes, and in the remaining iterations to generate only a single
conventional chromosome. A new parameter, which we called the probability of collapse,
establishes the rate of generating a conventional population during the evolution. The last
important step of the algorithm is to establish a method of updating the quantum
chromosome from the current generation to the next one. QIGA uses the same method
described in (Han, 2003). The idea is to modify the probabilities of each quantum gene (or
qubit) from the quantum chromosome using quantum rotation gate. This operator changes
the probability amplitude by altering the quantum phase θ to θ θ+ ∆ . The idea for the

construction of the rotation gate is to make the changing of the entire population (quantum
chromosome) to the direction of the best individual. Each bit from the best conventional
chromosome is compared with the adequate bit from the average version of the quantum
chromosome (this version is build using a probability of 0.5 for each qubit). If the two bits
are equal with 0 or 1, then 0θ∆ = . If the bit of the best chromosome is 1 and the other one is

0, then aθ∆ = , otherwise aθ∆ = − . The angle parameter of the rotation gate θ∆ may be 0, -

a, or a, depending on the position of each qubit in chromosome. The parameter a is a
positive small parameter, which decides the evolving rate (Zhou & Sun, 2005).

Basic structure of QIGA is given in figure 9. q(t) is the quantum chromosome in the iteration

t, and P(t) is the population in the same iteration t. This population may contain a lot of

chromosomes, or only one, depending on the probability of collapse in q(t). These three

algorithms, CGA, SCQGA and QIGA have been compared on the same problem, which

consists on synthesis of a boolean function with 4 variables, using different logic gates. The

chromosomes define the connection in the network between the primary inputs and

primary outputs of the gates, and decide the logic operators of the gates. The population of

CGA has 64 chromosomes, 20 of them being changed each generation, and genetic operators

use a single point 100% crossover and 5% rate mutation.

Figure 10 illustrates the average of evolutions of the three algorithms after 10 successful

runnings on 300 generations. A successful running presumes a fitness evaluation of 100%,

www.intechopen.com

Genetic Algorithms: An Overview with Applications in Evolvable Hardware

117

that is the truth table of the evolved function must be identical with the truth table of the

specified function. We can see some similarities in these evolutions, but significant

differences may be seen in Table 1.

Procedure QIGA
begin
 t ← 0

Initialize a quantum chromosome q(t);
if the collaps of q(t) is likely
 generate multiple chromosomes in population P(t);
else
 generate a single chromosome in population P(t);
end
evaluate all the chromosomes in population P(t);
store the best solution b among P(t);
while (not termination condition) do
 begin

 t ← t + 1
 if the collapse of q(t-1) is likely

 generate multiple chromosomes in population P(t);
 else

 generate a single chromosome in population P(t);

 end
 evaluate all the chromosomes in population P(t);

 update q(t) using quantum gates;
 store the best result b among P(t);
 end
 end
end

Fig. 9. The structure of the QIGA

In CGA, global time of a successful run is about 74 seconds, and this value consists of both
self time and the time spent for multiple evaluations of chromosomes in different
populations. Self time is the time spent in an algorithm, excluding the time spent in its child

functions. Self time also includes overhead resulting from the process of profiling, but this
additional time is not important in our case. Evaluation time is almost 60 seconds, because
the number of appeals to the evaluation function is elevated (25200 calls, that is evaluation
of 64 plus 20 chromosomes in 300 generations).

In SCQGA, global time is less than 40 seconds, because the number of calls to the evaluation
function is less than above (only 19200 calls, that is evaluation of 64 chromosomes in 300
generations), and this quantum algorithm doesn't use anymore genetic operators like
crossover and mutation. Finally, our QIGA has a global time less than 20 seconds, as a
consequence of the insignificant number of calls to the evaluation function (only 4836 calls, a
random number given by the probability of collapse). Self time is comparable with SCQGA,
and evaluation time is less than 12 seconds. Taking into account all these times, QIGA has
the best ratio between evaluation and global time.

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

118

Fig. 10. The evolutions of CGA, SCQGA and QIGA

Parameter CGA SCQGA QIGA

Global time 73.990 s 38.599 s 19.263 s

Self time 2.447 s 1.417 s 1.390 s

Evaluation time 59.561 s 31.536 s 11.750 s

Calls of evaluation function 25200 19200 4836

Ratio between evaluation and global time 80.5 % 81.7 % 60.9 %

Number of generations 300 300 300

Successful runnings in 10 attempts (with fitness
of 100%)

7

6

6

Table 1. A comparison between CGA, SCQGA and IQGA

Unfortunately, the number of successful runs in 300 generations is only in the order of 70%
for CGA, and 60% for the rest two algorithms. It occurs due to the constraint that only 100%
in fitness evaluation is accepted. In other applications, this constraint may be not critical.

6. Conclusion

In this chapter we did a summary outline of GAs and discussed some possible applications.
We presented three extrinsic evolutionary designs of digital circuits at gate level using GAs.

Future research must be done in this area. Firstly it is important to find a better
representation of the circuit in chromosomes, because complex functions need a great
number of architecture bits, which directly influences the GA search space. EHW
successfully succeeds only when fitness reaches 100% and in huge search spaces this
condition may be not always possible. This is the main reason that for the time being the

0 50 100 150 200 250 300
70

75

80

85

90

95

100

Number of generations

F
it
n
e
s
s
 e

v
a
lu

a
ti
o
n
 i
n
 %

Evolution of CGA, SCQGA, and QIGA

CGA

SCQGA

QIGA

www.intechopen.com

Genetic Algorithms: An Overview with Applications in Evolvable Hardware

119

complexity of evolved circuits is so far small. In our opinion, conclusion drawn in the paper
(Yao & Higuchi, 1999) is still available: “EHW research needs to address issues, such as
scalability, online adaptation, generalization, circuit correctness, and potential risk of
evolving hardware in a real physical environment. It is argued that a theoretical foundation
of EHW should be established before rushing to large-scale EHW implementations”.

Recently appeared the idea of hybridization of a GA with elements of quantum computation
(Han & Kim, 2002; Han, 2003). We have proposed a new quantum inspired genetic
algorithm (QIGA) considerably faster than other similar algorithms, based on the idea of
introducing a new parameter, which we called the probability of collapse, and to initiate the
collapse of the quantum chromosome in order to generate a conventional population of
chromosomes from time to time, and not each generation, as usually is done. We believe
that some improvements in this method may be found in a future research, by establishing
of a new method of updating the quantum chromosome from the current generation to the
next one. Finally, some hybridization techniques may be useful for new quantum inspired
evolutionary algorithms. (Rubinstein, 2001) used Genetic Programming to evolve quantum
circuits with various properties, and (Moore & Venayagamoorthy, 2005) has developed an
algorithm inspired from quantum evolution and Particle Swarm to evolve conventional
combinational logic circuits.

7. References

Bentley, P. J. & Corne, D. W. (Ed(s).). (2002). Creative Evolutionary Systems, Academic Press,
ISBN: 1-55860-673-4, San Francisco, USA

Bilchev, G. & Parmee, I. (1996). Constraint Handling for the Fault Coverage Code
Generation Problem: An Inductive Evolutionary Approach, Proceedings of 4-th
Conference on Parallel Problem Solving from Nature (PPSN IV), pp. 880-889, Berlin,
September 1996

Burda, I. (2005). Introduction to Quantum Computation, Universal Publishers, ISBN: 1-58112-
466-X, Boca Raton, Florida, USA

Forbes, N. (2005). Imitation of Life. How Biology Is Inspiring Computing, MIT Press, ISBN: 0-
262-06241-0, London, England

Han, K. H. & Kim, J. H. (2002). Quantum-Inspired Evolutionary Algorithm for a Class of
Combinatorial Optimization, IEEE Transactions on Evolutionary Computation,vol.6,
no.6, (December 2002), pp. 580-593, ISSN 1089-778X

Han, K. H. (2003). Quantum-Inspired Evolutionary Algorithm, Ph.D. dissertation, Department
of Electrical Engineering and Computer Science, Korea Advanced Institute of
Science and Technology, Korea, 2003

Haupt, R. L. & Haupt, S. E. (2004). Practical Genetic Algorithms (second edition), Wiley-
Interscience, ISBN: 0-471-45565-2, New-Jersey, USA

Higuchi, T.; Liu, Y. & Yao, X. (Ed(s).). (2006). Evolvable Hardware, Spinger-Verlag, ISBN-13:
978-0387-24386-3, New-York, USA

Iba, H.; Iwata, M. And Higuchi, T. (1996). Machine Learning Approach to Gate-Level
Evolvable Hardware. Proceedings of the First International Conference on Evolvable
Systems ICES’96, pp.327-343, Tsukuba, Japan, October 1996

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

120

Mazumder, P. & Rudnick, E. M. (1999). Genetic Algorithms for VLSI Design, Layout & Test
Automation, Prentice Hall PTR, ISBN: 0-13-011566-5, Upper Saddle River, New
Jersey, USA

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs (third
edition), Springer-Verlag, ISBN: 3-540-58090-5, New-York, USA

Mitchell, M. (1997). An Introduction to Genetic Algorithms (third printing), MIT Press, ISBN:
0-262-13316-4, London, England

Moore, Ph. & Venayagamoorthy, G. K. (2005). Evolving Combinational Logic Circuits using
a Hybrid Quantum Evolution and Particle Swarm Inspired Algorithm, Proceedings
of the 2005 NASA/DoD Conference of Evolution Hardware EH’05, pp. 97–102, 2005

Popa, R.; Aiordachioaie, D. & Nicolau, V. (2002). Multiple Hybridization in Genetic
Algorithms, The 16-th European Meeting on Cybernetics and Systems Research
EMCSR'2002, pp.536-541, ISBN 3-85206-160-1, Vienna, Austria, April 2-5, 2002

Popa, R. (2004). Evolvable Hardware in Xilinx XCR3064 CPLD, IFAC Workshop on
Programmable Devices and Systems, PDS 2004, pp. 232-237, ISBN: 83-908409-8-7,
Cracow, Poland, November 18-19, 2004

Popa, R.; Aiordachioaie, D. & Sîrbu, G. (2005). Evolvable Hardware in Xilinx Spartan 3 -
FPGA, 2005 WSEAS International Conference on Dynamical Systems and Control, pp.
66-71, ISBN: 960-8457-37-8, Venice, Italy, November 2-4, 2005

Popa, R.; Nicolau, V. & Epure, S. (2010). A New Quantum Inspired Genetic Algorithm for
Evolvable Hardware, 3rd International Symposium On Electrical and Electronics
Engineering ISEEE 2010, pp. 64-69, ISBN: 978-1-4244-8407-2, Galaţi, Romania,
September 16-18, 2010 (in IEEExplore Digital Library, DOI 10.1109/
ISEEE.2010.5628539)

Rubinstein, B. I. P. (2001). Evolving Quantum Circuits using Genetic Programming,
Proceedings of the 2001 Congress on Evolutionary Computation, CEC2001, pp. 114–121,
IEEE Press, 2001

Schöneburg, E.; Heinzmann, F. & Feddersen, S. (1994). Genetische Algorithmen und
Evolutionsstrategien. Eine Einführung in Theorie und Praxis der simulierten Evolution,
Addison-Wesley, ISBN: 5-89319-493-2, München, Germany

Sivanandam, S. N. & Deepa, S. N. (2008). Introduction to Genetic Algorithms, Springer-Verlag,
ISBN: 978-3-540-73189-4, India

Wong, K. P. & Wong, Y. W. (1994). Development of Hybrid Optimisation Techniques Based
on Genetic Algorithms and Simulated Annealing, Workshop on Evolutionary
Computation (AI’94), pp. 127-154, Armidale, Australia, November 1994

Yao, X. & Higuchi, T. (1999). Promises and Challenges of Evolvable Hardware, IEEE
Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews,
Evolutionary Computation,vol.29, no.1, (February 1999), pp. 87-97, ISSN 1094-6977

Zhou, S. & Sun, Z. (2005). A New Approach Belonging to EDAs: Quantum-Inspired Genetic
Algorithm with Only One Chromosome, International Conference on Natural
Computing, ICNC2005, pp. 141–150, LNCS 3612, Springer-Verlag, 2005

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

Edited by Dr. Shangce Gao

ISBN 978-953-51-0214-4

Hard cover, 420 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities.

Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient

and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of

creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization,

prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a

compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial

immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The

works presented in this book give insights into the creation of innovative improvements over algorithm

performance, potential applications on various practical tasks, and combination of different techniques. The

book provides a reference to researchers, practitioners, and students in both artificial intelligence and

engineering communities, forming a foundation for the development of the field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Popa Rustem (2012). Genetic Algorithms: An Overview with Applications in Evolvable Hardware, Bio-Inspired

Computational Algorithms and Their Applications, Dr. Shangce Gao (Ed.), ISBN: 978-953-51-0214-4, InTech,

Available from: http://www.intechopen.com/books/bio-inspired-computational-algorithms-and-their-

applications/genetic-algorithms-an-overview

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

