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1. Introduction 

The genetic algorithm (GA) is an optimization and search technique based on the principles 
of genetics and natural selection. A GA allows a population composed of many individuals 
to evolve under specified selection rules to a state that maximizes the “fitness” (i.e., 
minimizes the cost function). The fundamental principle of natural selection as the main 
evolutionary principle has been formulated by Charles Darwin, without any knowledge 
about genetic mechanism. After many years of research, he assumed that parents qualities 
mix together in the offspring organism. Favorable variations are preserved, while the 
unfavorable are rejected. There are more individuals born than can survive, so there is a 
continuous struggle for life. Individuals with an advantage have a greater chance for 
survive i.e., the “survival of the fittest”. This theory arose serious objections to its time, even 
after the discovering of the Mendel’s laws, and only in 1920s “was it proved that Mendel’s 
genetics and Darwin’s theory of natural selection are in no way conflicting and that their 
happy marriage yields modern evolutionary theory” (Michalewicz, 1996). 

The dynamical principles underlying Darwin’s concept of evolution have been used to 
provide the basis for a new class of algorithms that are able to solve some difficult problems 
in computation. These “computational equivalents of natural selection, called 
evolutionary algorithms, act by successively improving a set or generation of candidate 
solutions to a given problem, using as a criterion how fit or adept they are at solving the 
problem.” (Forbes, 2005). Evolutionary algorithms (EAs) are highly parallel, which makes 
solving these difficult problems more tractable, although usually the computation effort is 
huge.  

In this chapter we focus on some applications of the GAs in Digital Electronic Design, using 
the concept of extrinsic Evolvable Hardware (EHW). But first of all, we present the genesis 
of the main research directions in Evolutionary Computation, the structure of a Simple 
Genetic Algorithm (SGA), and a classification of GAs, taking into account the state of the art 
in this field of research.  

2. A brief history of evolutionary computation  

In the 1950s and the 1960s several computer scientists independently studied evolutionary 
systems with the idea that evolution could be used as an optimization tool for engineering 
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problems. The idea in all these systems was to evolve a population of candidate solutions to 
a given problem, using operators inspired by natural genetic variation and natural selection. 

In the 1960s, two german scientists, Ingo Rechenberg and Hans-Paul Schwefel introduced 
"evolution strategies", a method they used to optimize real−valued parameters for the shape 
of airplane wings. The field of evolution strategies “has remained an active area of research, 
mostly developing independently from the field of genetic algorithms (although recently the 
two communities have begun to interact)” (Mitchell, 1997). Around the same time, 
completely independently, american scientist Lawrence Fogel developed a method of 
computational problem solving he termed “evolutionary programming”, a technique in 
which candidate solutions to given tasks were represented as finite−state machines, which 
were evolved by randomly mutating their state−transition diagrams and selecting the fittest 
(Forbes, 2005). 

Genetic algorithms (GAs) “were invented by John Holland in the 1960s and were developed 
by Holland and his students and colleagues at the University of Michigan in the 1960s and 
the 1970s. In contrast with evolution strategies and evolutionary programming, Holland's 
original goal was not to design algorithms to solve specific problems, but rather to formally 
study the phenomenon of adaptation as it occurs in nature and to develop ways in which 
the mechanisms of natural adaptation might be imported into computer systems. Holland's 
1975 book Adaptation in Natural and Artificial Systems presented the genetic algorithm as an 
abstraction of biological evolution and gave a theoretical framework for adaptation under 
the GA. Holland's GA is a method for moving from one population of "chromosomes" (e.g., 
strings of ones and zeros, or "bits") to a new population by using a kind of "natural 
selection" together with the genetics−inspired operators of crossover, mutation, and 
inversion. (…) Holland's introduction of a population−based algorithm with crossover, 
inversion, and mutation was a major innovation” (Mitchell, 1997). Rechenberg's evolution 
strategies generate a single offspring, which is a mutated version of the parent. 

“Holland was the first to attempt to put computational evolution on a firm theoretical 

footing. Until recently this theoretical foundation, based on the notion of "schemas," was the 

basis of almost all subsequent theoretical work on genetic algorithms. In the last several 

years there has been widespread interaction among researchers studying various 

evolutionary computation methods, and the boundaries between GAs, evolution strategies, 

evolutionary programming, and other evolutionary approaches have broken down to some 

extent. Today, researchers often use the term "genetic algorithm" to describe something very 

far from Holland's original conception” (Mitchell, 1997). 

Current techniques are more sophisticated and combine the basic algorithms with other 

heuristics. Koza developed in 1992 “genetic programming”, which applies a GA to writing 

computer programs. “The variables are various programming constructs, and the output is a 

measure of how well the program achieves its objectives. The GA operations of mutation, 

reproduction (crossover) and cost calculation require only minor modifications. GP is a 

more complicated procedure because it must work with the variable length structure of the 

program or function. A GP is a computer program that writes other computer programs” 

(Haupt & Haupt, 2004). “Genetic Programming uses evolution-inspired techniques to 

produce not just the fittest solution to a problem, but an entire optimized computer program.” 

(Forbes, 2005). 
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Fig. 1. Increasing the number of works in the field over the past 20 years 

Figure 1 represents the number of papers in the field of GAs, in the last 20 years, in two of 
the most popular databases: SpringerLink from Springer, which contain 81187 papers on 
GAs, from a total amount of 5276591, and IEEExplore Digital Library from IEEE, which 
contain 32632 papers on GAs, from a total amount of 2926204.  

3. A simple Genetic Algorithm 

The set of all the solutions of an optimization problem constitutes the search space. The 
problem consists in finding out the solution that fits the best, from all the possible solutions. 
When the search space becomes huge, we need a specific technique to find the optimal 
solution. GAs provides one of these methods. Practically they all work in a similar way, 
adapting the simple genetics to algorithmic mechanisms. GA handles a population of 
possible solutions. Each solution is represented through a chromosome, which is just an 
abstract representation.  

Coding all the possible solutions into a chromosome is the first part, but certainly not the 
most straightforward one of a GA. A set of reproduction operators has to be determined, 
too. Reproduction operators are applied directly on the chromosomes, and are used to 
perform selection of the parents, by using a fitness function (usually the most fitted, with 
some likelihood), recombinations (crossover) and mutations and over solutions of the 
problem. “Appropriate representation and reproduction operators are really something 
determinant, as the behavior of the GA is extremely dependant on it. Frequently, it can be 
extremely difficult to find a representation, which respects the structure of the search space 
and reproduction operators, which are coherent and relevant according to the properties of 
the problems” (Sivanandam & Deepa, 2008). 
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Procedure Genetic Algorithm 
begin 
 generate randomly the initial population of chromosomes; 
 repeat 
  calculate the fitness of chromosomes in population; 
  repeat  
   select 2 chromosomes as parents;  
   apply crossover to the selected parents; 
   apply mutation to the new chromosomes; 
   calculate the fitness of new child chromosomes; 
  until end of the number of new chromosomes 
  update the population;  
 until end of the number of generations 
end  

Fig. 2. Pseudocode description of the Procedure Genetic Algorithm 

Once the reproduction and the fitness function have been properly defined, a GA is evolved 
according to the same basic structure (see source above in pseudocode). It starts by 
generating an initial population of chromosomes, which is generated randomly to ensure 
the genetic diversity. Then, the GA loops over an iteration process to make the next 
generation. Each iteration consists of fitness evaluation, selection, reproduction, new 
evaluation of the offsprings, and finally replacement in population. Stopping criterion may 
be the number of iterations (called here generations), or the convergence of the best 
chromosome toward the optimal solution.  

4. Classification of Genetic Algorithms 

Sometimes the cost function is extremely complicated and time-consuming to evaluate. As a 
result some care must be taken to minimize the number of cost function evaluations. An 
idea was to use parallel execution of various Simple GAs, and these algorithms are called 
Parallel Genetic Algorithms (PGAs). PGAs have been developed to reduce the large 
execution times that are associated with simple genetic algorithms for finding near-optimal 
solutions in large search spaces. They have also been used to solve larger problems and to 
find better solutions. PGAs have considerable gains in terms of performance and scalability. 
There are a lot of methods of PGAs (Independent PGA, Migration PGA, Partition PGA, 
Segmentation PGA) which are fully described in (Sivanandam & Deepa, 2008). 

Hybrid Genetic Algorithms (HGAs) produce another important class of GAs. A hybrid GA 
combines the power of the GA with the speed of a local optimizer. The GA excels at 
gravitating toward the global minimum. It is not especially fast at finding the minimum 
when in a locally quadratic region. Thus the GA finds the region of the optimum, and then 
the local optimizer takes over to find the minimum. Some examples of HGAs used in Digital 
Electronics Design will be presented in the next section. 

Adaptive genetic algorithms (AGAs) are GAs whose parameters, such as the population 
size, the crossing over probability, or the mutation probability are varied while the GA is 
running. “The mutation rate may be changed according to changes in the population; the 
longer the population does not improve, the higher the mutation rate is chosen. Vice versa, 
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it is decreased again as soon as an improvement of the population occurs” (Sivanandam & 
Deepa, 2008). 

Fast Messy Genetic Algorithm (FmGA) is a binary, stochastic, variable string length, 
population based approach to solving optimization problems. The main difference between 
the FmGA and other genetic approaches is the ability of the FmGA to explicitly manipulate 
building blocks (BBs) of genetic material in order to obtain good solutions and potentially 
the global optimum. Some works, like (Haupt & Haupt, 2004), use only the term of Messy 
Genetic Algorihms (mGAs).   

Finally, Independent Sampling Genetic Algorithm (ISGA) are more robust GAs, which  
manipulate building blocks to avoid the premature convergence in a GA. Implicit 
parallelism and the efficacy of crossover are enhanced and the ISGAs have been shown to 
outperform several different GAs (Sivanandam & Deepa, 2008). Other classes of efficient 
GAs may be implemented for different specific applications. 

5. Applications of Genetic Algorithms 

“GAs have been applied in science, engineering, business and social sciences. Number of 
scientists has already solved many engineering problems using genetic algorithms. GA 
concepts can be applied to the engineering problem such as optimization of gas pipeline 
systems. Another important current area is structure optimization. The main objective in 
this problem is to minimize the weight of the structure subjected to maximum and minimum 
stress constrains on each member. GA is also used in medical imaging system. The GA is 
used to perform image registration as a part of larger digital subtraction angiographies. It can 
be found that GAs can be used over a wide range of applications” (Sivanandam & Deepa, 
2008). GAs can also be applied to production planning, air traffic problems, automobile, 
signal processing, communication networks, environmental engineering and so on. In (Bentley 
& Corne, 2002), Evolutionary Creativity is discussed, using a lot of examples from music, art in 
general, architecture and engineering design. Evolutionary Electronics, both Analog and 
Digital, have been investigated in many publications (Bentley & Corne, 2002; Popa, 2004; Popa 
et al., 2005). (Higuchi et al., 2006)  is a very good book on Evolvable Hardware.  

Evolvable Hardware (EHW) is a hardware built on software reconfigurable Programmable 
Logic Devices (PLDs). In these circuits the logic design is compiled into a binary bit string 
and, by changing the bits, arbitrary hardware structures can be implemented instantly. The 
key idea is to regard such a bit string as a chromosome of a Genetic Algorithm (GA). 
Through genetic learning, EHW finds the best bit string and reconfigures itself according to 
rewards received from the environment (Iba et al., 1996).  

In the rest of this section we present three applications in evolutionary design of digital 
circuits developed by the author, using GAs. First of them describes a method of synthesis 
of a Finite State Machine (FSM) in a Complex Programmable Logic Device (CPLD), using a 
standard GA. The other two applications use different techniques of hybridisation of a 
standard GA: first of them with two other optimisation techniques (inductive search and 
simulated annealing), to solve the Automatic Test Pattern Generation for digital circuits, a 
problem described in (Bilchev & Parmee, 1996), and the second one to improve the 
convergence of the standard GA in evolutionary design of digital circuits, using the new 
paradigm of Quantum Computation (Han & Kim, 2002).  
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5.1 Implementation of a FSM using a standard GA 

This first example uses extrinsic hardware evolution, that is uses a model of the hardware 
and evaluates it by simulation in software. The FSM represented in the figure 3 is a 
computer interface for serial communication between two computers. A transition from one 
state to another depends  from only one of the 4 inputs , 1, 4ix i = . The circuit has 4 outputs, 

each of them beeing in 1 logic only in a single state. The FSM has 6 states and has been 
presented in (Popa, 2004).  
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Fig. 3. A FSM described as state transition graph and manual state assignment 

With the state assignment given in the figure 3, the traditional design with D flip-flops gives 
the following equations for the excitations functions: 

   2 3 1 0 2 1D x Q Q Q Q= ⋅ ⋅ + ⋅             (1) 

 1 2 1 0 4 2 1 0D x Q Q x Q Q Q= ⋅ ⋅ + ⋅ + ⋅       (2) 

 0 1 2 0 2 1 0 1 0D x Q Q x Q Q Q Q= ⋅ ⋅ + ⋅ ⋅ + ⋅   (3) 

The output functions, are given by the following equations: 

   1 1 0y Q Q= ⋅     (4) 

 2 2 1 0y Q Q Q= ⋅ ⋅     (5) 

 3 2 1y Q Q= ⋅     (6) 

 4 2 1y Q Q= ⋅    (7) 
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For the evolutionary design of this circuit we take into account that each boolean function 
has a maximum number of 5 inputs and a maximum number of 4 minterms. If we want to 
implement these functions in a PLD structure (an AND array and logic cells configurable as 
OR gate), then the number of fuse array links is 2 5 4 40⋅ ⋅ = , and we may to consider this 

number as the total length of the chromosome (Iba et al., 1996).  

Our GA is a standard one, with the population size of 30 chromosomes. One point crossover 
is executed with a probability of 80% and the mutation rate is 2%. Six worse chromosomes 
are replaced each generation. The stop criterion is the number of generations. 

 

Fig. 4. The evolution of the excitation functions of the computer interface 

Figure 4 reflects the evolution of the circuit for the first 3 functions, called excitation 
functions, which generate the subcircuit A. However, this circuit is built from 3 independent 
circuits, each generating one output bit. Therefore, the evolution of a circuit with one output 
bit is repeated 3 times. The Y axis is the correct answer rate. If it reaches 100%, then the 
hardware evolution succeeds.  

In the same way, figure 5 reflects the evolution of the circuit for the output functions, which 
generate the subcircuit B. The evolution succeeds after a less number of generations because 
the total search space is in this case much lower than in previous case (all the output 
functions have only 3 variables). 

Evolution may provide some non-minimal expressions for these boolean functions, but 
minimization is not necessary for PLD implementations. The length of the chromosomes is 
greater than the optimal one, and the evolved equations are much more complicated than 
the given equations (1-7). The complete cost of the whole combinational circuit is consisted 
of 15 gates and 37 inputs for traditional design, and 30 gates and 102 inputs for evolutionary 
design.  
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Fig. 5. The evolution of the output functions of the computer interface 

We have implemented both the traditional design and the evolved circuit in a real Xilinx 
XCR3064 CoolRunner CPLD by using the Xilinx ISE 6.1i software. In traditional design, that 
is using equations (1-7), the FSM used only 7 macrocells from a total number of 64 
macrocells, 11 product terms from a total number of 224 product terms, and 7 function block 
inputs, from a total number of 160. Surprising is the fact that, although evolutionary design, 
with the same state assignment, provides more complicated equations, the implementation 
of this circuit in XCR3064XL CPLD also used 7 macrocells from a total number of 64, 10 
product terms from a total number of 224, and 7 function block inputs, from a total number 
of 160. This is even a better result than in preceding case, because the number of product 
terms is less with 1. Both implementations have used the same number of flip-flops (that is 
3/64) and the same number of pins used like inputs/outputs (that is 9/32). We have 
preserved the state assignment of the FSM, and the subcircuits A and B are in fact as pure 
combinational circuits. The interesting fact is that our GA have supplied a better solution 
than the one given by the minimization tool used for this purpose by the CAD software.  

5.2 Multiple hybridization of a GA  

Hybrid Genetic Algorithms (HGAs) combine the power of the GA with the speed of a local 
optimizer. Usually the GA finds the region of the optimum, and then the local optimizer 
takes over to find the minimum. (Bilchev & Parmee, 1996) developed a search space 
reduction methodology, which was called the Inductive Search. The problem of global 
optimisation is partitioned into a sequence of subproblems, which are solved by searching 
of partial solutions in subspaces with smaller dimensions.  

This method has been used to solve the Automatic Test Pattern Generation Problem in 
Programmable Logic Arrays (PLAs), that is to find an effective set of input test vectors, 
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which are able to cover as many as possible faults in the circuit (we have taken into account 
two PLA structures with a total number of 50 and respective 200 stuck-at 0 possible faults).  

(Wong & Wong, 1994) designed a HGA using the algorithm of Simulated Annealing as local 

optimizer. The optimisation process in Simulated Annealing is essentially a simulation of 

the annealing process of a molten particle. Starting from a high temperature, a molten 

particle is cooled slowly. As the temperature reduces, the energy level of the particle also 

reduces. When the temperature is sufficiently low, the molten particle becomes solidified. 

Analogous to the temperature level in the physical annealing process is the iteration number 

in Simulated Annealing. In each iteration, a candidate solution is generated. If this solution 

is a better one, it will be accepted and used to generate yet another candidate solution. If it is 

a deteriorated solution, the solution will be accepted with some probability.  

Each of this two methods of hybridisation discussed above have some advantages. The 
inductive search effort at each inductive step controls the trade-off between the  

Procedure MHGA 
begin 

Initialize a partial solution for N = 1 and establish the initial temperature 0T ; 

 for k = 2 to N ,  
Generate randomly the initial population of chromosomes; 
repeat  

append each chromosome to the partial solution, and evaluate it; 
repeat  

select, proportional with fitness, 2 parents;  
apply crossover to obtain 2 offsprings; 
apply mutation to the new chromosomes; 
calculate the fitness of new chromosomes; 
the new chromosomes are accepted or not accepted; 

until  end of the number of chromosomes 
update the population, according with the fitness; 
the temperature is decreased; 

until end of the number of generations 
Update the partial solution; 

 end 
end 

Fig. 6. The structure of the MHGA 

computational complexity and the expected quality of results, while Simulated Annealing 

avoids the premature convergence and reduces the adverse effects of the mutation 

operation. In (Popa et al., 2002) we proposed a HGA that cumulates all these advantages in a 

single algorithm, through a double hybridisation of  the Genetic Algorithm: with Inductive 

Search on the one hand, and with Simulated Annealing technique on the other hand. The 

structure of the Multiple Hybridated Genetic Algorithm is presented in figure 6. 

We have conducted the experiments with all three HGAs described above, in the purpose to 

find the maximum fault coverage with a limited number of test vectors. We have tested first 

a PLA structure with 50 potential "stuck-at 0" faults, taking into account the maximum 
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coverage with the faults with only 6 test vectors, and results may be seen in the figure 7. 

Then, we repeated the same algorithm for a more complicated PLA structure, with 200 

potential "stuck-at 0" faults, and we tried to cover the maximum number of faults with 24 

test vectors. The evolutions of these three algorithms may be seen in figure 8.  

 

Fig. 7. Fault Coverage Problem of 50 possible faults solved with three HGAs in 500 iterations 

If n is the number of covered faults and N is the number of all faults in the fault population, 

the associated fitness function is 100%
n

f
N

= ⋅ . There may also be a number of constraints 

concerning the possible combinations of input signals. The designers of the circuit define the 
set of legal combinations in terms of the legal states of a number of channels. The set of all 
legal templates defines the feasible region. The main genetic parameters used in these 
algorithms are: a population size of 20 chromosomes, uniform crossover with 100% rate, 
uniform mutation with 1% rate. The maximum fault coverage achieved with the Multiple 
Hybridated Genetic Algorithm after 500 iterations was about 69%, while the maximum fault 
coverage achieved with the Inductive Genetic Algorithm, the best of the two single 
hybridated genetic algorithms, was about 66%. These results represent the average values of 
5 succesive runnings. We have tried even with 10 or more number of runnings, but the 
results are basically the same.  

Another set of experiments were made on a more complex digital structure of PLA type 

with 200 possible faults. Figure 8 shows the comparative performances of the three HGAs 

on this fault coverage problem. The number of input test vectors is 24. After 250 fitness 

function calls, that is 25 iterations, each with 10 generations per inductive step, the fault 

coverage of the Multiple Hybridated Genetic Algorithm is with about 1% better than the 

fault coverage of the Inductive Genetic Algorithm.  
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Fig. 8. Fault Coverage Problem of 200 possible faults solved with three HGAs  

These experiments show that the proposed MHGA seems to offer a better performance than 

the two other HGAs: the Inductive Genetic Algorithm and the Genetic Algorithm 

hybridated by Simulated Annealing. We have proved on two different examples, with 

different complexities, that MHGA offers the greatest value of fault coverage in Automatic 

Test Pattern Generation Problem in digital circuits of PLA type. 

5.3 A Quantum Inspired GA for EHW  

Quantum Inspired Genetic Algorithm (QIGA) proposed in (Popa et al., 2010) uses a single 
chromosome, which is represented like a string of qubits, as is described in (Han & Kim, 
2002; Zhou & Sun, 2005). A quantum chromosome which contains n qubits may be 
represented as: 

 1 2

1 2

  ....  n

n

q
α α α

β β β
 

=   
,    (8) 

where each couple iα , iβ , for 1,...,i n= , are the probability amplitudes associated with the 

0  state and the 1  state such that 2 2 1i iα β+ =  and the values 2
iα  and 2

iβ  represent the 

probability of seeing a conventional gene, 0 or 1, when the qubit is measured. 

A quantum chromosome can be in all the 2n  states at the same time, that is: 

 0 1 2 1
00...0 00...1 ... 11...1nq a a a

−
= + + ,       (9) 

where ia  represents the quantum probability amplitude, and 2
ia  is the probability of seeing 

the i-th chromosome from the all 2n  possible classic chromosomes (Zhou & Sun, 2005). 
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Due to this superposition of states in a quantum chromosome, we use a single chromosome 
in population.  In Conventional Genetic Algorithm (CGA) or Simple Genetic Algorithm with 
the structure given in figure 2, the population has always a number of chromosomes, and 
the efficiency of the algorithm depends usually on the size of population. But a quantum 
chromosome can represent all the possible conventional chromosomes at the same time, and 
so, it may generates an arbitrary population of conventional chromosomes each generation. 
Quantum population will be transformed to conventional population when the fitness is 
evaluated. 

Single Chromosome Quantum Genetic Algorithm (SCQGA) is described in (Zhou & Sun, 
2005). In the first step, a quantum chromosome is generated using (8). A random number is 
compared with probabilities of each qubit, and it collapses to 0, or to 1. The conventional 
population of N chromosomes is obtained by repeating this process N times. In the next 
step, the fitness value is calculated for each conventional chromosome. It requires a lot of 
time, that involves the speed performance of the algorithm. The same problem of fitness 
evaluation and the low speed of the algorithm subsists also in CGAs. 

Our idea, which was implemented in QIGA, was to initiate the collapse of the quantum 
chromosome each generation but, from time to time to generate a whole population of 
conventional chromosomes, and in the remaining iterations to generate only a single 
conventional chromosome. A new parameter, which we called the probability of collapse, 
establishes the rate of generating a conventional population during the evolution. The last 
important step of the algorithm is to establish a method of updating the quantum 
chromosome from the current generation to the next one. QIGA uses the same method 
described in (Han, 2003). The idea is to modify the probabilities of each quantum gene (or 
qubit) from the quantum chromosome using quantum rotation gate. This operator changes 
the probability amplitude by altering the quantum phase θ  to θ θ+ ∆ . The idea for the 

construction of the rotation gate is to make the changing of the entire population (quantum 
chromosome) to the direction of the best individual. Each bit from the best conventional 
chromosome is compared with the adequate bit from the average version of the quantum 
chromosome (this version is build using a probability of 0.5 for each qubit). If the two bits 
are equal with 0 or 1, then 0θ∆ = . If the bit of the best chromosome is 1 and the other one is 

0, then aθ∆ = , otherwise aθ∆ = − . The angle parameter of the rotation gate θ∆  may be 0, -

a, or a, depending on the position of each qubit in chromosome. The parameter a is a 
positive small parameter, which decides the evolving rate (Zhou & Sun, 2005). 

Basic structure of QIGA is given in figure 9. q(t) is the quantum chromosome in the iteration 

t, and P(t) is the population in the same iteration t. This population may contain a lot of 

chromosomes, or only one, depending on the probability of collapse in  q(t). These three 

algorithms, CGA, SCQGA and QIGA have been compared on the same problem, which 

consists on synthesis of a boolean function with 4 variables, using different logic gates. The 

chromosomes define the connection in the network between the primary inputs and 

primary outputs of the gates, and decide the logic operators of the gates. The population of 

CGA has 64 chromosomes, 20 of them being changed each generation, and genetic operators 

use a single point 100% crossover and 5% rate mutation. 

Figure 10 illustrates the average of evolutions of the three algorithms after 10 successful 

runnings on 300 generations. A successful running presumes a fitness evaluation of 100%, 
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that is the truth table of the evolved function must be identical with the truth table of the 

specified function. We can see some similarities in these evolutions, but significant 

differences may be seen in Table 1.  

Procedure QIGA 
begin 
 t ← 0 

Initialize a quantum chromosome q(t); 
if the collaps of q(t) is likely 
 generate multiple chromosomes in population P(t); 
else 
 generate a single chromosome in population P(t); 
end 
evaluate all the chromosomes in population P(t); 
store the best solution b among P(t); 
while (not termination condition) do 
 begin  

   t ← t + 1 
   if the collapse of q(t-1) is likely 

   generate multiple chromosomes in population P(t); 
   else 

   generate a single chromosome in population P(t); 
  

   end 
   evaluate all the chromosomes in population P(t);  

   update q(t) using quantum gates; 
   store the best result b among P(t); 
  end 
 end 
end  

Fig. 9. The structure of the QIGA 

In CGA, global time of a successful run is about 74 seconds, and this value consists of both 
self time and the time spent for multiple evaluations of chromosomes in different  
populations. Self time is the time spent in an algorithm, excluding the time spent in its child 

functions. Self time also includes overhead resulting from the process of profiling, but this 
additional time is not important in our case. Evaluation time is almost 60 seconds, because 
the number of appeals to the evaluation function is elevated (25200 calls, that is evaluation 
of 64 plus 20 chromosomes in 300 generations). 

In SCQGA, global time is less than 40 seconds, because the number of calls to the evaluation 
function is less than above (only 19200 calls, that is evaluation of 64 chromosomes in 300 
generations), and this quantum algorithm doesn't use anymore genetic operators like 
crossover and mutation. Finally, our QIGA has a global time less than 20 seconds, as a 
consequence of the insignificant number of calls to the evaluation function (only 4836 calls, a 
random number given by the probability of collapse). Self time is comparable with SCQGA, 
and evaluation time is less than 12 seconds. Taking into account all these times, QIGA has 
the best ratio between evaluation and global time.  
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Fig. 10. The evolutions of CGA, SCQGA and QIGA 

 

Parameter CGA SCQGA QIGA 

Global time 73.990 s 38.599 s 19.263 s 

Self time 2.447 s 1.417 s 1.390 s 

Evaluation time 59.561 s 31.536 s 11.750 s 

Calls of evaluation function 25200 19200 4836 

Ratio between evaluation and global time 80.5 % 81.7 % 60.9 % 

Number of generations 300 300 300 

Successful runnings in 10 attempts (with fitness 
of 100%) 
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Table 1. A comparison between CGA, SCQGA and IQGA 

Unfortunately, the number of successful runs in 300 generations is only in the order of 70% 
for CGA, and 60% for the rest two algorithms. It occurs due to the constraint that only 100% 
in fitness evaluation is accepted. In other applications, this constraint may be not critical.  

6. Conclusion 

In this chapter we did a summary outline of GAs and discussed some possible applications. 
We presented three extrinsic evolutionary designs of digital circuits at gate level using GAs.  

Future research must be done in this area. Firstly it is important to find a better 
representation of the circuit in chromosomes, because complex functions need a great 
number of architecture bits, which directly influences the GA search space. EHW 
successfully succeeds only when fitness reaches 100% and in huge search spaces this 
condition may be not always possible. This is the main reason that for the time being the 
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complexity of evolved circuits is so far small. In our opinion, conclusion drawn in the paper 
(Yao & Higuchi, 1999) is still available: “EHW research needs to address issues, such as 
scalability, online adaptation, generalization, circuit correctness, and potential risk of 
evolving hardware in a real physical environment. It is argued that a theoretical foundation 
of EHW should be established before rushing to large-scale EHW implementations”.  

Recently appeared the idea of hybridization of a GA with elements of quantum computation 
(Han & Kim, 2002; Han, 2003). We have proposed a new quantum inspired genetic 
algorithm (QIGA) considerably faster than other similar algorithms, based on the idea of 
introducing a new parameter, which we called the probability of collapse, and to initiate the 
collapse of the quantum chromosome in order to generate a conventional population of 
chromosomes from time to time, and not each generation, as usually is done. We believe 
that some improvements in this method may be found in a future research, by establishing 
of a new method of updating the quantum chromosome from the current generation to the 
next one. Finally, some hybridization techniques may be useful for new quantum inspired 
evolutionary algorithms. (Rubinstein, 2001) used Genetic Programming to evolve quantum 
circuits with various properties, and (Moore & Venayagamoorthy, 2005) has developed an 
algorithm inspired from quantum evolution and Particle Swarm to evolve conventional 
combinational logic circuits.   
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