We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

5]

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and
Evolutionary Algorithms

Yong Liang
Macau University of Science and Technology
China

1. Introduction

Most of the real-world problems could be encoded by different representations, but genetic
and evolutionary algorithms (GEAs) may not be able to successfully solve the problems based
on their phenotypic representations, unless we use some problem-specific genetic operators.
Therefore, a proper genetic representation is necessary when using GEAs on the real-world
problems (Goldberg, 1989; Liepins, 1990; Whitley, 2000; Liang, 2011).

A large number of theoretical and empirical investigations on genetic representations were
made over the last decades. Earlier work (Goldberg, 1989c; Liepins & Vose, 1990) has shown
that the behavior and performance of GEAs is strongly influenced by the representation used.
As a result many genotypic representations were made for proper GEAs searching. Among of
them, the binary, integer, real-valued, messy and tree structure representations are the most
important and widely used by many GEAs.

To investigate the performance of the genetic representations, originally, the schema theorem
proposed by Holland (1975) to model the performance of GEAs to process similarities between
binary bitstrings. Using the definition of the building blocks (BBs) as being highly fit
solutions to sub-problems, which are decomposed by the overall problem, the building block
hypothesis (Goldberg, 1989c) states that GEAs mainly work due to their ability to propagate
short, low order and highly fit BBs. During the last decade, (Thierens, 1995; Miller, 1996;
Harik, 1997; Sendhoff, 1997; Rothlauf, 2002) developed three important elements towards
a general theory of genetic representations. They identified that redundancy, the scaling
of Building Blocks (BBs) and the distance distortion are major factors that influence the
performance of GEAs with different genetic representations.

A genetic representation is denoted to be redundant if the number of genotypes is higher than
the number of phenotypes. Investigating redundant representation reveals that give more
copies to high quality solutions in the initial population result in a higher performance of
GEAs, whereas encodings where high quality solutions are underrepresented make a problem
more difficult to solve. Uniform redundancy, however, has no influence on the performance
of GEAs.

The order of scaling of a representation describes the different contribution of the BBs to the
individual’s fitness. It is well known that if the BBs are uniformly scaled, GEAs solve all BBs

www.intechopen.com

84 Bio-Inspired Computational Algorithms and Their Applications

implicitly in parallel. In contrast, for non-uniformly scaled BBs, domino convergence occurs
and the BBs are solved sequentially starting with the most salient BB (Thierens, 1995). As
a result, the convergence time increases and the performance is decreasing due to the noise
from the competing BBs.

The distance distortion of a representation measures how much the distance between
individuals are changed when mapping the phenotypes to the genotypes, and the locality of
the representation means that whether similar genotypes correspond to similar phenotypes.
The theoretical analysis shows that representation where the distance distortion and locality
are equal to zero, that means the distances between the individuals are preserved, do not
modify the difficulty of the problems they are used for, and guarantee to solve problems of
bounded complexity reliably and predictably.

The importance of choosing proper representations for the performance of GAs is already
recognized, but developing a general theory of representations is a formidable challenge.
Up to now, there is no well set-up theory regarding the influence of representations on the
performance of GAs. To help users with different tasks to search good representations, over
the last few years, some researchers have made recommendations based on the existing
theories. For example, Goldberg (Goldberg, 1989) proposed two basic design principles for
encodings:

¢ Principle of minimal alphabets: The alphabet of the encoding should be as small as possible
while still allowing a natural representation of solutions.

* Principle of meaningful building blocks: The schemata should be short, of low order, and
relatively unrelated to schemata over other fixed positions.

The principle of minimal alphabets advises us to use bit string representation. Combining
with the principle of meaningful building blocks (BBs), we construct uniform salient BBs,
which include equal scaled and splicing/decomposable alleles.

The purpose of this chapter is to introduce our novel genetic representation — a
splicing/decomposable (S/D) binary encoding, which was proposed based on some
theoretical guidance and existing recommendations for designing efficient genetic
representations. The S/D binary representation can be spliced and decomposed to
describe potential solutions of the problem with different precisions by different number
of uniform-salient BBs. According to the characteristics of the S/D binary representation,
GEAs can be applied from the high scaled to the low scaled BBs sequentially to avoid
the noise from the competing BBs and improve GEAs” performance. Our theoretical and
empirical investigations reveal that the S/D binary representation is more proper than other
existing binary encodings for GEAs searching. Moreover, a new genotypic distance dy on the
S/D binary space @, is proposed, which is equivalent to the Euclidean distance d,, on the
real-valued space ®, during GEAs convergence. Based on the new genotypic distance dg,
GEAs can reliably and predictably solve problems of bounded complexity and the methods
depended on the phenotypic distance d, for solving different kinds of optimization problems
can be directly used on the S/D binary space ®,.

This chapter is organized as follows. Section 2 describes three most commonly used binary
representations — binary, gray and unary encodings, and their theoretical analysis of the effect
on the performance of GEAs. Section 3 introduces our proposed splicing/decomposable

www.intechopen.com

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms 85

(S/D) binary representation and its genotypic distance. Section 4 proposes the new genetic
algorithm based on the S/D binary representation, the splicing/Decompocable genetic
algorithm (SDGA). Section 5 discusses the performance of the SDGA and compares the S/D
binary representation with other existing binary encodings from the empirical studies. The
chapter conclusion are drawn in Section 6.

2. Background

Binary encodings are the most commonly used and nature-inspired representations for
GEAs, especially for genetic algorithms (GAs) (Goldberg, 1989). When encoding real-valued
problems by binary representations, different types of binary representations assign the
real-value in different ways to the binary strings. The most common binary representations
are the binary, gray and unary encodings. According to three aspects of representation theory
(redundancy, scaled building block and distance distortion), Rothlauf (Rothlauf, 2002) studied
the performance differences of GAs by different binary representations for real encoding.

2.1 The unary encoding and redundancy

In the unary encoding, a string of length | = s — 1 is necessary to represent s different
phenotypic values. The i" phenotypic value is encoded by the number of ones i — 1 in
the corresponding genotypic string. Thus, 25—1 different genotypes only encode s different
phenotypes. Analysis on the unary encoding by the representation theory reveals that
encoding is redundant, and does not represent phenotypes uniformly. Therefore, the
performance of GAs with the unary encoding depends on the structure of the optimal
solution. Unary GAs fail to solve integer one-max, deceptive trap and BinInt (Rothlauf, 2002)
problems, unless larger population sizes are used, because the optimal solutions are strongly
underrepresented for these three types of problems. Thus, the unary GAs perform much
worse than GAs using the non-redundant binary or gray encoding (Julstrom, 1999; Rothlauf,
2002).

2.2 The binary encoding, scaled building blocks and hamming cliff

The binary encoding uses exponentially scaled bits to represent phenotypes. Each phenotypic
value x, € ®, = {x1,xp,...,Xs} is represented by a binary string x, of length [= log>(s).
Therefore, the genotype-phenotype mapping of the binary encoding is one-to-one mapping
and encodes phenotypes redundancy-free.

However, for non-uniformly binary strings and competing Building Blocks (BBs) for high
dimensional phenotype space, there are a lot of noise from the competing BBs lead to a
reduction on the performance of GAs. The performance of GAs using the binary encoding
is not only affected by the non-uniformly scaling of BBs, but also by problems associated
with the Hamming cliff (Schaffer, 1989b). The binary encoding has the effect that genotypes
of some phenotypical neighbors are completely different. For example, when we choose the
phenotypes x, = 7 and y, = 8, both individuals have a distance of one, but the resulting
genotypes x; = 0111 and y; = 1000 have the largest possible genotypic distance || x — y||; = 4.
As a result, the locality of the binary representation is partially low. In the distance distortion
theory, an encoding preserves the difficulty of a problem if it has perfect locality and if it does
not modify the distance between individuals. The analysis reveals that the binary encoding

www.intechopen.com

86 Bio-Inspired Computational Algorithms and Their Applications

changes the distance between the individuals and therefore changes the complexity of the
optimization problem. Thus, easy problems can become difficult, and vice versa. The binary
GAs are not able to reliably solve problems when mapping the phenotypes to the genotypes.

2.3 The gray encoding and modification of problem difficulty

The non-redundant gray encoding (Schaffer, 1989a) was designed to overcome the problems
with the Hamming cliff of the binary encoding (Schaffer, 1989b). In the gray encoding, every
neighbor of a phenotype is also a neighbor of the corresponding genotype. Therefore, the
difficulty of a problem remains unchanged when using mutation-based search operators that
only perform small step in the search space. As a result, easy problems and problems of
bounded difficulty are easier to solve when using the mutation-based search with the gray
coding than that with the binary encoding. Although the gray encoding has high locality,
it still changes the distance correspondence between the individuals with bit difference of
more than one. When focused on crossover-based search methods, the analysis of the average
fitness of the schemata reveals that the gray encoding preserves building block complexity
less than the binary encoding. Thus, a decrease in performance of gray-encoded GAs is
unavoidable for some kind of problems (Whitley, 2000).

3. A novel splicing/decomposable binary genetic representation

The descriptions in above section show that the existing binary genetic representations are
not proper for GAs searching and cannot guarantee that using GAs to solve problems of
bounded complexity reliably and predictably. According to the theoretical analysis and
recommendations for the design of an efficient representation, there are some important
points that a genetic representation should try to respect. Common representations for
GAs often encode the phenotypes by using a sequence of alleles. The alleles can separated
(decomposed) into building blocks (BBs) which do not interact with each other and which
determine one specific phenotypic property of the solution. The purpose of the genetic
operators is to decompose the whole sequence of alleles by detecting which BBs influence
each other. GAs perform well because they can identify best alleles of each BB and combine
them to form high-quality over-all solution of the problem.

Based on above investigation results and recommendations, we have proposed a new genetic
representation, which is proper for GAs searching. In this section, first we introduce a novel
splicing /decomposable (S5/D) binary encoding, then we define the new genotypic distance
for the S/D encoding, finally we give the theoretical analysis for the S/D encoding based
on the three elements of genetic representation theory (redundancy, scaled BBs and distance
distortion).

3.1 A splicing/decomposable binary encoding

In (Leung, 2002; Xu, 2003a), we have proposed a novel S/D binary encoding for real-value
encoding. Assuming the phenotypic domain ®, of the n dimensional problem can be
specified by

(DP = [0‘1/,31] X [0‘2/,32] X X [lxn,ﬁn]-

www.intechopen.com

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms 87

(01) (11D

(00) (10)

(a)

(ooo) | (1010)

(b

Fig. 1. A graphical illustration of the splicing/decomposable representation scheme, where
(b) is the refined bisection of the gray cell (10) in (a) (with mesh size O(1/2)), (c) is the
refined bisection of the dark cell (1001) in (b) (with mesh size O(1/2?)), and so forth.

Given a length of a binary string I, the genotypic precision is h;(l) = %' i =
1,2,---,n. Any real-value variable x = (xq,x,..,Xx) € ®, can be represented by

a splicing/decomposable (S/D) binary string b = (by,by,..,b;), the genotype-phenotype
mapping f. is defined as

I/n)
X = (x1,%2, ,Xn) = fo(b) = (22(1/11—]) X Djsnt1,
j=0

[/n Unei [/n i
22(n—j) Dixnia 22(n—j) Disc(ni1))
= =0
where
I/n) X — I/n /
ZZ(Z/H_]) X bjxn+i < ;l'(l)l < 22(””_]) X bjxn+i + 1.
j=0 ! j=0

That is, the significance of each bit of the encoding can be clearly and uniquely interpreted
(hence, each BB of the encoded S/D binary string has a specific meaning). As shown in
Figure 1, take ®, = [0,1] x [0,1] and the S/D binary string b = 100101 as an example (in
this case, | = 6, n = 2, and the genotypic precisions 1y (I) = hy(I) = 1). Let us look how
to identify the S/D binary string b and see what each bit value of b means. In Figure 1-(a),
the phenotypic domain @, is bisected into four CDé (i.e., the subregions with uniform size

). According to the left-0 and right-1 correspondence rule in each coordinate direction, these

1
four @ then can be identified with (00), (01), (10) and (11). As the phenotype x lies in the

www.intechopen.com

88 Bio-Inspired Computational Algorithms and Their Applications

subregion (10) (the gray square), its first building block (BB) should be BBy = 10. This leads
to the first two bits of the S/D binary string b. Likewise, in Figure 1-(b), ®, is partitioned

1 1
into 22%2 CI>;§, which are obtained through further bisecting each CI>f, along each direction.

Particularly this further divides @é = (BBy) into four CD;E that can be respectively labelled
by (BB1,00), (BBy,01), (BB1,10) and (BBq,11). The phenotype x is in (BB1,01)-subregion
(the dark square), so its second BB should be BB, = 01 and the first four positions of its
corresponding S/D binary string b is 1001.

1 1
In the same way, ®, is partitioned into 223 ®; as shown in Figure 1-(c), with ®; =

(BB1,BB;y) particularly partitioned into four CDé labelled by (BB, BB;,00), (BB1, BB,,01),
(BB1,BB,10) and (BBq,BB;,11). The phenotype x is found to be (BB, BB,,01), that is,
identical with S/D binary string b. This shows that for any three region partitions, b =
(b1,by, b3, by, bs, bg), each bit value b; can be interpreted geometrically as follows: b; = 0
(b, = 0) means the phenotype x is in the left half along the x-coordinate direction (the
y-coordinate direction) in @, partition with %—precision, and by = 1 (bp = 1) means x is
in the right half. Therefore, the first BBy = (b, by) determine the %—precision location of x.

1 1
If b3 = 0 (by = 0), it then further indicates that when ® is refined into @, the x lies in the

left half of CIDé in the x-direction (y-direction), and it lies in the right half if b3 = 1 (by = 1).
Thus a more accurate geometric location (i.e., the %—precision location) and a more refined BB,
of x is obtained. Similarly we can explain b5 and bg and identify BB3, which determine the
%-precision location of x. This interpretation holds for any high-resolution ! bits S/D binary
encoding.

3.2 A new genotypic distance on the splicing/decomposable binary representation

For measuring the similarity of the binary strings, the Hamming distance (Hamming, 1980) is
widely used on the binary space. Hamming distance describes how many bits are different
in two binary strings, but cannot consider the scaled property in non-uniformly binary
representations. Thus, the distance distortion between the genotypic and the phenotypic
spaces make phenotypically easy problem more difficult. Therefore, to make sure that GAs
are able to reliably solve easy problems and problems of bounded complexity, the use of
equivalent distances is recommended. For this purpose, we have defined a new genotypic
distance on the S/D binary space to measure the similarity of the S/D binary strings.

Definition 1: Suppose any binary strings 4 and b belong to the S/D binary space ®, the
genotypic distance ||a — b||¢ is defined as

n 1/n=1g4. . _ b .
jxn+i jxn+i
R
1= j=

where | and n denote the length of the S/D binary strings and the dimensions of the
real-encoding phenotypic space ®, respectively.

www.intechopen.com

A Splicing/Decomposable Binary Encoding

and Its Novel Operators for Genetic and Evolutionary Algorithms 89
0101|0111 (1101|1111 0101 | 0111|1101 1111
(0.75)| (1.0) | (1.25)]| (1.5) (0.75)] (0.79)| (0.9) | (1.1)
0100|0110 | 1100|1110 0100 | 0110|1100 | 1110
(0.5) | (0.75)| (1.0) | (1.25) (0.5) [(0.56)((0.71)] (0.9)
0001 | 0011 { 1001 | 1011 0001 | 0011|1001 | 1011
(0.25)| (0.5) | (0.75)]| (1.0) (0.25) (0.35)((0.56)| (0.79)
0000 | 0010 | 1000 | 1010 0000 | 0010 | 1000 | 1010
(0.0) | (0.25)]| (0.5) | (0.75) (0.0) | (0.25)| (0.5) | (0.75)
genotypic distances phenotypic distances

Fig. 2. The genotypic and phenotypic distances between * * x* and 0000 in the S/D binary
representation.

For any two S/D binary strings 4,b € ®,, we can define the Euclidean distance of their
correspond phenotypes:

n 1/n=1g. . I/n-1p. .
. X n+i jxn+i
aprZ(> o+l Z%) 9j+1)2,
]:

i=1 j=0

as the phenotypic distance between the S/D binary strings a and b. The phenotypic distance
| - [and the genotypic distance || - ||¢ are equivalents in the S/D binary space ®¢; when we
consider the convergence process of GAs. We state this as the following theorem.

Theorem 1: The phenotypic distance || - ||, and the genotypic distance || - ||¢ are equivalents
in the S/D binary space ®, because the inequation:

- llp < I llg < Vi -l

is satisfied in the the S/D binary space ®,, where 7 is the dimensions of the real-encoding
phenotypic space ®,,.

Proof : For Va,b € Dy

/n—

n 1 .
xn+i — YVjxn+i
la—bls = 3 z Mg]

o ! 71aj><n+i_bj><n+i 2
= (L)Y A i)

1/n—1 %xn+i=bixn+iy2
(Z 2j+1)
_ 1<iy,ip<n l/n 1 %xn+i— b]xn+i1
- + Z2117'512 (2 X ‘ 2 2]+1

x| Sl 1%ﬁ1ﬂﬁlz|)

www.intechopen.com

90 Bio-Inspired Computational Algorithms and Their Applications

because
i1,i 1 Gxnti—bjxnti
o < T x| ity e
- —1 Yxn+i—Yjxn+i
|y e
n o l/n=1g,. b .
< 1 jxn+i . X412
<D EOL
then
la=bllp < lla—bllg < vnx fla—Dbll.
Figure 2 shows the comparison of the genotypic distance || - || and phenotypic distance || - ||,

between S/D binary strings and 0000 in 2 dimensional phenotypic space, where the length of
the S/D binary string | = 4. For any two S/D binary strings a and b, if ||a — 0|, > |[b — 0][p,
then |la — 0|l¢ > [|b — 0l|¢ is also satisfied. This means that || - ||, and || - ||¢ are equivalent
for considering the points’ sequence converge to 0. The searching process of GAs can be
recognized to explore the points” sequence, which sequentially converge to optimum of the
problem. So we can use the new genotypic distance to measure the similarity and convergence
of the individuals on the S/D binary place.

The other advantage of the new genotypic distance || - || is that its computational complexity
is O(I) and much lower than the computational complexity O(I?) of the phenotypic distance
| || p- So using the new genotypic distance || - ||, can guarantee GA to reliably and predictably
solve problems of bounded complexity and improve their performance when consider the
similarity of the individuals.

3.3 Theoretical analysis of the splicing/decomposable binary encoding

The above interpretation reveals an important fact that in the new genetic representation
the significance of the BB contribution to fitness of a whole S/D binary string varies as
its position goes from front to back, and, in particular, the more in front the BB position
lies, the more significantly it contributes to the fitness of the whole S/D binary string. We
refer such delicate feature of the new representation to as the BB-significance-variable property.
Actually, it is seen from the above interpretation that the first n bits of an encoding are
responsible for the location of the n dimensional phenotype x in a global way (particularly,
with O(%)-precision); the next group of n bits is responsible for the location of phenotype
x in a less global (might be called “local’) way, with O(})-precision, and so forth; the last
group of n-bits then locates phenotype x in an extremely local (might be called ‘microcosmic”)
way (particularly, with O(%)-precision). Thus, we have seen that as the encoding length /
increases, the representation

(blleI e /bnl b}’H—ll le+2/ e lb2n/ Tty

b(—n) be—nt1) - /1)
= (BBllBBZI' o /BBZ/TI)

can provide a successive refinement (from global, to local, and to microcosmic), and more and
more accurate representation of the problem variables.

www.intechopen.com

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms 91

S/D binary string

convergence window USBB

——

L. 7/ - 7
~"

Y
already converged USBBs no yet converged USBBs|

Fig. 3. Domino genotypic at the S/D encodings.

In each BB; of the S/D binary string, which consists of the bits (0,11, bisnio -, bt wn)s
i = 0,---,1/n—1, these bits are uniformly scaled and independent each other. We refer
such delicate feature of BB; to as the uniform-salient BB (USBB). Furthermore, the splicing
different number of USBBs can describe the potential solutions of the problem with different
precisions. So, the intra-BB difficulty (within building block) and inter-BB difficulty (between
building blocks) (Goldberg, 2002) of USBB are low. The theoretical analysis reveals that GAs
searching on USBB can explore the high-quality bits faster than GAs on non-uniformly scaled
BB.

The S/D binary encoding is redundancy-free representation because using the S/D binary
strings to represent the real values is one-to-one genotype-phenotype mapping. The whole
S/D binary string is constructed by a non-uniformly scaled sequence of USBBs. The domino
convergence of GAs occurs and USBBs are solved sequentially from high to low scaled.

The BB-significance-variable and uniform-salient BB properties of the S/D binary
representation embody many important information useful to the GAs searching. We will
explore this information to design new GA based on the S/D binary representation in the
subsequent sections.

4. A new S/D binary Genetic Algorithm (SDGA)

The existing exponentially scaled representations including binary and gray encodings consist
of non-uniformly scaled BBs. For non-uniformly and competing BBs in the high dimensional
phenotype space, there are a lot of noise from the competing BBs lead to a reduction on the
performance of GAs. Moreover, by increasing the string length, more and more lower salient
BBs are randomly fixed due to the noise from the competing BBs, causing GAs performance to
decline. Using large population size can reduce the influence of the noise from the competing
BBs. However, in real-world problem, long binary string is necessary to encode a large search
space with high precision, and hence we cannot use too large population size to solve the
noise problem. Thus, GAs will be premature and cannon converge to the optimum of the
problem.

To avoid the noise from the competing BBs of GAs, we have proposed a new
splicing/decomposable GA (SDGA) based on the delicate properties of the S/D binary
representation. The whole S/D binary string can be decomposed into a non-uniformly scaled
sequence of USBBs. Thus, in the searching process of GAs on S/D binary encoding, the

www.intechopen.com

92 Bio-Inspired Computational Algorithms and Their Applications

Parents Children

Fig. 4. The genetic crossover and selection in SDGA.

domino convergence occurs and the length of the convergence window is equal to n, the
length of USBB. As shown in Figure 3 for 4 dimensional case, the high scaled USBBs are
already fully converged while the low scaled USBBs did not start to converge yet, and length
of the convergence window is 4.

In the SDGA, genetic operators apply from the high scaled to the low scaled USBBs
sequentially. The process of the crossover and selection in SDGA is shown in Figure 4. For
two individuals x; and x; randomly selected from current population, The crossover point
randomly set in the convergence window USBB and the crossover operator two children ¢y,
cp. The parents x1, xp and their children ¢y, c; can be divided into two pairs {x1, ¢1} and {x7, c2}.
In each pair {x;, ¢;}(i = 1,2), the parent and child have the same low scaled USBBs. The select
operator will conserve the better one of each pair into next generation according to the fitness
calculated by the whole S/D binary string for high accuracy. Thus, the bits contributed to high
fitness in the convergence window USBB will be preserved, and the diversity at the low scaled
USBBs’ side will be maintain. The mutation will operate on the convergence window and not
yet converged USBBs according to the mutation probability to increase the diversity in the
population. These low salient USBBs will converge due to GAs searching to avoid the noise
from the competing BBs. The implementation pseudocode for SDGA algorithm is shown in
Figure 5.

Since identifying high-quality bits in the convergence window USBB of GAs is faster than that
GAs on the non-uniform BB, while no noise from the competing BBs occurs. Thus, population
can efficiently converge to the high-quality BB in the position of the convergence window
USBB, which are a component of overrepresented optimum of the problem. According to
theoretical results of Thierens (Thierens, 1995), the overall convergence time complexity of the
new GA with the S/D binary representation is approximately of order O(I/\/n), where [is
the length of the S/D binary string and 7 is the dimensions of the problem. This is much faster
than working on the binary strings as a whole where GAs have a approximate convergence
time of order O(I). The gain is especially significant for high dimension problems.

5. Empirical verification

In this section we present an empirical verification of the performance differences between the
different genetic representations and operators we described in the previous sections.

www.intechopen.com

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms

93

Input: N—population size, m—number of USBBs,

g—number of generations to run;

Termination condition: Population fully converged;
begin

g<—0;

m<+—1;

Initialize Pg;

Evaluate Pg;

while (not termination condition) do
fort +— 1to N/2;

randomly select two individuals x} and x? from P;

crossover and selection x}, x% into Py q;

end for

mutation operation Py 1;

Evaluate Pg . 1;

if (USBB;, fully converged) m <— m +1;
end while

end

Fig. 5. Pseudocode for SDGA algorithm.

5.1 Two integer benchmark optimization problems

In our experimentation, we use integer-specific variations of the one-max and the
fully-deceptive trap problems for a comparison of different genetic representations defined

on binary strings.

The integer one-max problem is defined as

n
filxyxg, - xm) =) %,
i=1

and the integer deceptive trap is

fa(x1,x2, -+, xn) = {

Y. qxicifeachi, x; = Xj oy
n n .
Y1 Ximax — i1 Xi — 1 : else.

where x € @, and 7 is the dimension of the problems. In our implementation, we set n = 30.
For the binary representation, the integer one-max problem is equal to the BinInt problem
[Rudnick, 1992]. These two problems have an exponential salience or fitness structure for
binary strings. The integer one-max problem is a fully easy problem, whereas the integer
deceptive trap should be fully difficult to solve for GAs.

5.2 Comparison of the performance of GAs with different representations

In the first set of experiments we applied a standard GA (SGA) using binary, gray, unary, S/D
encodings and SDGA on the integer one-max and deceptive trap problems to compare their
performance. We performed 50 runs and each run was stopped after the population was fully
converged. That means that all individuals in the population are the same. For fairness of

www.intechopen.com

94 Bio-Inspired Computational Algorithms and Their Applications

220 1400

4
200 E/ f 1200

1000

on

= 800

era

S 600

ge

SDGA ¢—¢
S/D Coding =—=a 400
Binary x—x

Gray +—+ 2001 &
100 Unary 0
20 60 100 140 180 220 260 300 20 60 100 140 180 220 260 300
population size population size

Fig. 6. Integer one-max problem of order 3.

(a) (b)
1000 2500 SDGA +—¢
’/H—O—O—O—O—H—O—O—O—O—O—o S/D Coding #—=
900 2000 Binary x—x
N Gray +—+
800 c
» 81500
a ©
g 700 g
& 1000 4
600 ©
500 500
400 0
20 60 100 140 180 220 260 300 20 60 100 140 180 220 260 300
population size population size

Fig. 7. Integer one-max problem of order 5.

comparison, we implemented SGA with different binary encodings and SDGA with the same
parameter setting and the same initial population. For SGA, we used one-point crossover
operator (crossover probability=1) and tournament selection operator without replacement
of size two. We used no mutation as we wanted to focus on the influence of genetic
representations on selectorecombinative GAs.

For the one-max problem, we used 30 dimensional problem for order 2 (in each dimension,
the number of different phenotypes s = 22 = 4),3(s =23 =28),4(s =2* =16)and 5
(s = 2° = 32). Because in our implementation, the global optima of deceptive trap problems
with low orders cannon be explored by all GAs we used. The deceptive trap problems with
high orders are more difficult than those with low orders and are not solvable by GAs. Here,
we only present results for the 30 dimensional deceptive trap problems of order 2 (s = 22 = 4)
and 3 (s = 2% = 8). Using binary, gray and S/D encoding results for the order 2 problems in
a string length | = 60, for order 3 in | = 90, for order 4 in | = 120, and for order 5 in [= 150.
When using unary encoding we need 30 x 3 = 90 bits for order 2, 30 x 7 = 210 bits for order
3, 30 x 15 = 450 bits for order 4 and 30 x 31 = 930 bits for order 5 problems.

Figures 6-7 present the results for the integer one-max problem of orders 3 and 5 respectively,
and Figures 8-9 show the results for integer deceptive trap problems of orders 2 and 3
respectively. The plots show for SGA with different representations and SDGA the best fitness
at the end of the run (left) and the run duration — fully converged generation (right) with
respect to the population size N.

www.intechopen.com

A Splicing/Decomposable Binary Encoding

and Its Novel Operators for Genetic and Evolutionary Algorithms 95
(@) (b)
90 800
80 600
c
2 2 Y
270 S 400
= 8
SDGA ¢—¢ o
60 S/D Coding =—= 200
Binary x—x
Gray +—+
50 Upary —© 0
20 60 100 140 180 220 260 300 20 60 100 140 180 220 260 300
population size population size

Fig. 8. Deceptive trap problem of order 2.

(a)

220 1500
;
200% b
180 1000
@ £
©
2160 ag
- SDGA ¢—#)
140 S/D Coding =—= 500
Binary x—x
120 Gray +—+
100 Unary 0
20 60 100 140 180 220 260 300 20 60 100 140 180 220 260 300
population size population size

Fig. 9. Deceptive trap problem of order 3.

SGA with different scaled binary representations including binary, gray and S/D encodings
complies the noise from the competing BBs. For small population sizes, the noise from the
competing BBs strongly occurs and many bits in the binary strings are randomly fixed, so
SGA fully converged faster but the best fitness is too bad. That means SGA is premature using
small population sizes. For larger population sizes, SGA can explore better solutions, but its
run duration is significantly increasing due to the noise from the competing BBs. Furthermore,
for these high dimensional problems, the population size increases to 300 still not enough
to avoid the noise from the competing BBs, so SGA cannot converge to the optima of the
problems, which are overrepresented by BBs.

Due to the problems of the unary encoding with redundancy, which result in an
underrepresentation of the optimal solution, SGA using unary encoding perform increasingly
badly with increasing problem orders. Therefore, for one-max and deceptive trap problems
of order more than three the performance of SGA using unary encoding performance is
significantly worse than when using binary, gray and S/D encodings. SGA with gray
encoding performs worse than the binary encoding for the one-max problems, and better
for the deceptive trap problems.

As expected, SGA using S/D encoding performs better than that using binary and gray
encodings for the one-max and the deceptive trap problems. Because in S/D encoding, more
salient bits are continuous to construct short and high fit BBs, which are easily identified
by SGA. This reveals that the S/D encoding is proper for GAs searching. However, lower
salient bits in S/D binary string are randomly fixed by the noise from the competing BBs, the

www.intechopen.com

96 Bio-Inspired Computational Algorithms and Their Applications

performance of SGA with S/D encoding cannot significantly better than those with binary
and gray encodings.

As shown Figure 6-9, the performance of SDGA is significantly better than SGA with different
encodings. Using small population size, the explored solutions when SDGA fully converged
are much better than those of SGA because each bit is identified by the searching process
of SDGA, and not randomly fixed by the noise from the competing BBs. According to the
same reason, the run duration of SDGA is longer than that of SGA. That means there no
premature and drift occur. For larger population sizes, the performance of SDGA is much
better than that of SGA due to the high-quality solutions and short run duration, because
GAs search on USBBs of S/D binary encoding faster than the non-uniformly scaled BBs and
domino converge, which occurs only on the non-uniformly sequence of USBBs, is too weak.

one-max (order 2)|one-max (order 3)|one-max (order 4)

P, |best fit.| run dur. |best fit. | run dur. |best fit.| run dur.
(St. Dev) (St. Dev) (St. Dev.) (St. Dev.) (St. Dev) (St. Dev)
SDGA | 89.6 383.1 209.2 577.3 | 448.1 768.7
(1.24) | (436) | (29) | (774) | (6.8) | (107.2)
S/D | 81.1 446.1 180.9 597 375.9 694.9
coding | (9.8) | (187.4) |(21.16) | (287) | (54.3) | (377.2)
Binary | 80.1 473.7 177.7 651 370.5 748.8
(10.3) | (192.7) | (21.9) | (316.8) | (42.2) | (398)
Gray | 78.3 496.9 173.1 691.2 | 365.2 803.6
(9.6) | (196.3) | (20.5) | (3285) | (42.2) | (434.8)
Unary | 76.1 536.8 150.5 844.2 281.5 1006
(10.6) | (2185) | (21.3) | (416.7) | (26.6) | (558.4)

one-max (order 5)| decep. (order 2) | decep. (order 3)
SDGA | 926.6 952.9 88.74 380 208.1 573.1
(9.8) | (1182) | (0.78) | (48) | (2.8) | (75.6)
S/D 777.1 761.8 80.02 428 182.9 602.9
coding | (101) | (422.4) | (9.7) | (173) | (21.6) | (285.4)
Binary | 752.6 838.6 77.16 482 172.8 690.1
(91) | (481.6) | (9.1) | (192) | (21.1) | (334.8)
Gray | 719.8 909.5 78.76 453 177.9 647
(87.9) | (502) (9.4) (183) | (21.8) | (309.5)
Unary | 560.8 1216 74.18 549 150.7 | 882.7
(72.4) | (726.9) | (105) | (221) | (20.6) | (451.9)

Table 1. Comparison of results of SGA with different binary representations and SDGA for
the one-max and deceptive problems.

Table 1 summarizes the experimental results for the one-max and the deceptive trip problems.
The best fitness (run duration) of each problem is calculated as the average of the fitness
(generations) GAs fully converged with different population sizes.

The average fitness of SDGA is much better than that of other SGA. The standard deviations
of best fitness and run duration of SDGA for different problems are significantly smaller than
other SGA. That reveals the population size is important parameter for SGA searching, but
does not the significant parameter for SDGA searching. The run durations of SDGA for

www.intechopen.com

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms 97

700

600 -

500 -

400 1

300 / T
200 ocge'o‘,.,”‘,goér,"*“ea’eg%wé%o%'lm
/ population size =20 +——+

population size =60 *—X

100 |-] 8
population size =200 *¢—*

generation

population size =300 ¢—©

0 I I I I I I I I
0 10 20 30 40 50 60 70 80 90

bit position

Fig. 10. Convergence process of SDGA without the noise from the competing BBs.

one-max problems with orders 4 and 5 are longer than those of SGA because SGA is strongly
premature for the long binary string and small population sizes.

As in Table 1 described, for one-max and deceptive trap problems, all GAs converge to
sidewise of the optima, which are overrepresented by BBs. But SGA with different binary
representation cannot explore the optima of the problems. The ability of SDGA to explore
optima, which are overrepresented by BBs, is significantly better than SGA. To explore the
global optimum of the deceptive trap problems, we need use other niche methods to divide
the whole population into some sub-populations. In each subpopulation, the global optimum
is overrepresented by BBs, thus SDGA can efficiently explore this global optimum of the
deceptive trap problems.

5.3 Avoid the noise from the competing BBs

To validate the predictions about avoiding the noise from the competing BBs, We have
implemented our SDGA to solve 30 dimensional integer one-max problem of order 3. We
have counted the number of generations it takes before each of bits fully converges. Results
are averaged over 50 independent runs. Figure 10 shows the bits convergence for a string of
length [= 90, and the population sizes are 20,100,200, 300 respectively. The experimental
results are summered in Table 2. The run duration of each USBB;, (i = 1, 2, 3) is an average of
the fully converged generations of the bits, which belong to the USBB;.

As shown in Figure 10 and Table 2, the whole S/D binary string includes three USBBs. In each
USBB, the bits converge uniformly at almost same generations. For a non-uniform scaled
sequence of USBBs, the domino converge occurs sequentially from high scaled to low scaled

www.intechopen.com

98

Bio-Inspired Computational Algorithms and Their Applications

population |run duration|run duration|run duration
size of USBB, of USBB, of USBB3
20 47.3(8.2) |193.7(12.7) |365.6(13.8)
100 116.6(6.8) | 263.2(7.8) [470.8(12.1)
200 167.4(7.7) | 366.5(6.7) |559.6(13.9)
300 220.3(7.0) | 430.8(6.6) | 633.6(7.8)

Table 2. Comparison of the run durations of USBBs fully converged with different
population sizes.(Standard Deviation)

USBBs. Thus, no less salient bit converges with more salient bit at same generations and no
noise from the competing BBs occurs.

On the other hand, we know the noise from the competing BBs strongly occurs when GAs
using a small population size. In our implementations, when the population size of SDGA is
small to 20, the convergence process of bits is as same as SDGA using large population size.
The low scaled USBBs converge during long generations by SDGA and no noise from the
competing BBs occurs.

It is clear form Figure 10 and Table 2 that the predictions and the experimental results coincide
very well.

5.4 SDGA with the mutation operator

In this subsection we have consider the action of the mutation operator for SDGA
searching. We have implemented our SDGA with different mutation probabilities to
solve 30 dimensional integer one-max problem of order 3. Results are averaged over 50
independent runs. Figure 11 presents the experimental results where mutation probabilities
are 0.001,0.005,0.01, 0.05 and 0.1 respectively. The plots show for SDGA the run duration —
fully converged generations with respect to the population size N.

As shown in Figure 11, when the mutation probabilities are smaller than 0.01, SDGA can fully
converge with small and large population sizes and the run durations do not increase too
long. When the mutation probabilities increase larger than 0.01, SDGA with large population
sizes are difficult to fully converge, and only when using small population sizes, SDGA can
fully converge, but the run durations increase significantly.

Table 3 summaries the experimental results with population sizes 20, 40 and 60. For small
population sizes (20 and 40), the mutation operators can improve the performance of SDGA,
because it can find some high-quality bits, which are not included in current population. For
large population sizes (> 60), all high-quality bits are included in the initial population, so
mutation operator cannot improve the best fitness when SDGA fully converged. Furthermore,
when the mutation probability is large than 0.01, SDGA cannot fully converge in a reasonable
time (here we set the upper bound of the run duration equal to 10° generations).

5.5 Genotypic distance on the S/D binary representation

To validate the predictions about the methods depended on the distance of real-valued space,
can be directly used on the S/D binary space based on our new defined genotypic distance, we
have combined SGA with the S/D binary encoding and the dynamic niche sharing methods

www.intechopen.com

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms

N =20 N =40 N =60
P, |best fit.|run dur. |best fit.|run dur. |best fit.|run dur.

(St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.) (St. Dev.)
0 198.6 393 208.9 470 210 488
G7) | (72) | a2) | 55 | (0) | (54)
0.001| 201.7 411 209.4 472 210 517
(100) | (49) | (1.2) | (43) | (0) | (54)
0.005| 202.7 422 208.9 492 210 535
29) | (55) | (13) | (82) | (0) | (89)
0.01 | 203.8 415 209.1 504 210 545
22) | (59) | 12) | (6) | (0) | (80)
0.05 | 209.3 534 209.9 739 210 1202
(1) | (158) | (0.3) | (202) | (0) | (317)
0.1 | 209.8 688 210 5629 210 66514
(0.6) | (133) | (0) | (1857) | (0) |(21328)
0.2 | 209.8 | 10981 — — — —

(04) [(7668) | (=) | (=) | (=) | (=)

Table 3. Comparison of results of SDGA with different mutation probabilities for one-max

“on,

problem of order 3. (“-": cannot fully converged during 10° generations)

10000

Mutation Probability = 0.1~ ¢—#
Mutation Probability = 0.05 =—=a i
Mutation Probability = 0.01 »—x -
Mutation Probability = 0.005 +— 3
Mutation Probability = 0.001 *—*
Mutation Probability = 0 oo

6000

4000

2000

generation

1000

800

600

100 120 140 160 180 200 220 240 260 280 300
population size

Fig. 11. SDGA with the mutation operator by different mutation probabilities for one-max
problem of order 3.

www.intechopen.com

100 Bio-Inspired Computational Algorithms and Their Applications

(b)
200q 200 ‘
150 150}
[} (2]
n %]
2 100 £ 100}
50 501
0 0
0 5 10 15 20 0 5 10 15 20

S/D coding genotypic distance Hamming distance

Fig. 12. Comparison of results of the dynamic niche sharing methods with S/D genotypic

distance and Hamming distance for f3(x). (key: “0" — the optima in the final population)
[Miller] for multimodal function optimization to solve 4 benchmark multimodal optimization
problems as listed in Table 4. To assess the effectiveness of the new genotypic distance on
the S/D binary space, its performance is compared with the combination of SGA with S/D
binary representation and the dynamic niche sharing methods based on Hamming distance.
In applying SGA, we set the initial population size N = 100, the maximal generations g;x =
1000, the length of S/D binary string for each dimension [/n = 32, the crossover probability
pc = 0.8 and the mutation probability p;; = 0.005.

Two-peak trap function (2 peaks):

@(2—x),for0§x<2;

fa(x) =

B9 (x —2), for 2 < x < 20;

Deb’s function (5 peaks):
fa(x) = sin®(57x),x € [0,1];
Deb’s decreasing function (5 peaks):
fo(x) = 272 =01/09 5 (57x), x € [0,1];

Roots function (6 peaks):

1 .
f6(x) = m,Wherex S C,x = X1 +lx2 € [_2,2],

Table 4. The test suite of multimodal functions used in our experiments.

Figures 12 - 15 show the comparison results of the dynamic niche sharing methods with the
S/D genotypic distance and Hamming distance for f3(x) — f4(x), respectively. Table 5 lists the
solution quality comparison results in terms of the numbers of multiple optima maintained.
We have run each algorithm 10 times. The dynamic niche sharing methods with the S/D

www.intechopen.com

A Splicing/Decomposable Binary Encoding

and Its Novel Operators for Genetic and Evolutionary Algorithms 101
(a) (b)
1 1
08¢ 0.8}
2 06} 2 0.6}
(] Q
= £
T 04t T 04t
0.2 0.2}
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

S/D coding genotypic distance Hamming distance

Fig. 13. Comparison of results of the dynamic niche sharing methods with S/D genotypic

distance and Hamming distance for f;(x). (key: “0" — the optima in the final population)
genotypic distance can explore all optima in f3(x) — f¢(x) at each run. Contrary, for the
niche methods with Hamming distance, the final population converged to a single optimum
of the multimodal problem and cannot find multiply optima. That means the niche method
cannon work due to the distance distortion between genotypic space (5/D binary space) and
phenotypic space (real-valued space) when using Hamming distance.

The experimental investigations reveal that the methods depended on the Euclidean distance
on the real-valued space can be directly used on the S/D binary space with our new defined
genotypic distance.

Distance | S/D genotypic distance | Hamming distance
threshold |Optima No.|Success rate| Optima No. |Success rate
f3| 2.0 2 100% 1 0%
fa| 0.16 5 100% 1 0%
f5| 0.16 5 100% 1 0%
fo| 0.8 6 100% 1 0%

Table 5. Comparison of results of the dynamic niche sharing methods with the S/D
genotypic distance and Hamming distance.

6. Discussion

This paper has given for the first time a uniform-salient building block (USBB) in the S/D
binary representation, which include uniformly scaled bits. This assumes that the phenotypic
space @, is uniformly scaled in each dimension. If the assumption is not be satisfied, we need
to normalize the phenotypic space ®, first, then encoding the normalized phenotypic space
CID;, into the S/D binary space ®, to guarantee that the bits in each USBB have same scaled.

SDGA applies on the S/D binary representation and converges from high scaled to low
scaled USBBs sequentially. However, when the convergence window USBB cannon converge
to single high-quality BB, there maybe are some high-quality BBs existing to describe
different optima of the problem. At this time, we need to use some other methods (e.g.
the niche methods) to divide the whole population into several sub-populations and each
sub-population focus on each optimum. Thus, each optimum will be overrepresented by

www.intechopen.com

102 Bio-Inspired Computational Algorithms and Their Applications

(@) (b)

1 1
0.8} 0.8t
@ 06} ®2 06
(0] (0]
= £
T 04} T 04t
0.2t 0.2t
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

S/D coding genotypic distance Hamming distance

Fig. 14. Comparison of results of the dynamic niche sharing methods with S/D genotypic
distance and Hamming distance for f5(x). (key: “0" — the optima in the final population)

fitness
fitness

(XK
00
NN h
XN
i 4"0:‘0,‘.,:,:,,:,/ ,m\

\\““ X 6‘\\
i “‘«\ i IR
"","/’4“‘\\\\ L '“":;:;/,;;/,/..‘.“\\\“\‘eee\e \::“‘\\\\\

0
\\\“\“\\ R\‘\\\

u‘t ‘1\ “\

I’I["[’O" 0 4,'1"

iy “\

,’0".“\‘\\\\\\“
'; 0 W X\ “

‘\\\\\\\\\\\\‘

2 2
S/D coding genotypic distance Hamming distance

Fig. 15. Comparison of results of the dynamic niche sharing methods with S/D genotypic
distance and Hamming distance for f4(x). (key: “0" — the optima in the final population)

BBs in its sub-population and SDGA can efficiently explore all the optima using these
sub-populations.

7. Conclusions

In this paper, we introduce a new genetic representation — a splicing/decomposable
(S/D) binary encoding, which was proposed based on some theoretical guidance and
existing recommendations for designing efficient genetic representations. The S/D binary
representation can be spliced and decomposed to describe potential solutions of the problem
with different precisions by different number of uniform-salient building blocks (USBBs).
According to the characteristics of the S/D binary representation, genetic and evolutionary
algorithms (GEAs) can be applied from the high scaled to the low scaled BBs sequentially to
avoid the noise from the competing BBs and improve GEAs’ performance. Our theoretical and
empirical investigations reveal that the S/D binary representation is more proper than other
existing binary encodings for GEAs searching. Moreover, we define a new genotypic distance
on the S/D binary space, which is equivalent to the Euclidean distance on the real-valued
space during GEAs convergence. Based on the new genotypic distance, GEAs can reliably

www.intechopen.com

A Splicing/Decomposable Binary Encoding
and Its Novel Operators for Genetic and Evolutionary Algorithms 103

and predictably solve problems of bounded complexity and the methods depended on the
Euclidean distance for solving different kinds of optimization problems can be directly used
on the S/D binary space.

8. Acknowledgment

This research was supported by Macau Science and Technology Develop Funds (Grant No.
021/2008/A) and (Grant No. 017/2010/A2) of Macau Special Administrative Region of the
People’s Republic of China.

9. References

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

Hamming, R. (1980). Coding and information theory. Prentice-Hall. Han, K. H. & Kim, J. H.
(2000). Genetic quantum algorithm and its application to combinatorial optimization
problem, Proceeding of Congress on Evolutionary Computation 2000: Volume 1, pp.
1354-1360,

LaJolla, CA. Harik, G. R., Cantu-Paz, E., Goldberg, D. E. & Miller, B. L. (1997). The gambler’s
ruin problem, genetic algorithms and the size of populations. In Back, T. (Ed.),
Proceedings of the Forth International Conference on Evolutionary Computation, pp.
7-12, New York.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University
of Michigan Press. Julstrom, B. A. (1999). Redundant genetic encodings may not
be harmful. Proceedings of the Genetic and Evolutionary Computation Conference
1999: Volume 1. San Francisco, CA: Morgan Kaufmann Publishers.

Leung, K. S, Sun, J. Y. & Xu, Z. B. (2002). Efficiency speed-up strategies for evolutionary
computation: an adaptive implementation. Engineering Computations, 19 (3), pp.
272-304.

Leung, K. S. & Liang, Y. (2003). Adaptive elitist-population based genetic algorithm
for multimodal function optimization. Proceeding of Genetic and Evolutionary
Computation Conference 2003: Volume 1, pp. 1160-1171, Chicago, USA.

Liang, Y. & Leung, K. S. (2006). Evolution Strategies with Exclusion-based Selection Operators
and a Fourier Series Auxiliary Function, Applied Mathematics and Computation,
Volume 174, pp. 1080-1109.

Liepins, G. E. & Vose, M. D. (1990). Representational issues in genetic optimization. Journal of
Experimental and Theoretical Artificial Intelligence, 2, pp.101-115.

Lobo, F. G., Goldberg. D. E. & Pelikan, M. (2000). Time complexity of genetic algorithms
on exponentially scaled problems. Proceedings of the Genetic and Evolutionary
Computation Conference 2000: Volume 1. San Francisco, CA: Morgan Kaufmann
Publishers.

Mahfoud, S. W. (1996). Niching methods for genetic algorithms. Doctoral Thesis, University
of Illinois at Urbana-Champaign.

Miller, B. L. & Goldberg, D. E. (1996). Optimal sampling for genetic algorithms (IlliGAL Report
No. 96005). Urbana, IL: University of Illinois at Urbana-Champaign.

Rothlauf, E (2002). Representations for genetic and evolutionary algorithms. Heidelberg;
New York: Physica-Verl.,, 2002 Schaffer, J. D. (Ed.) (1989a). Proceedings of the

www.intechopen.com

104 Bio-Inspired Computational Algorithms and Their Applications

Third International Conference on Genetic Algorithms. San Francisco, CA: Morgan
Kaufmann Publishers

Schaffer, J. D., Caruana, R. A., Eshelman, L.]. & Das, R. (1989b). A study of control parameters
affecting online performance of genetic algorithms for function optimization.
Proceedings of the Third International Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann.

Sendhoff, B., Kreutz, M. & von Seelen, W. (1997). A condition for the genotype-phenotype
mapping: Causality. In Back, T. (ed.), Proceedings of the Seventh International
Conference on Genetic Algorithms, pp. 73-80, San Francisco: Morgan Kaufmann.

Thierens, D. (1995). Analysis and design of genetic algorithms. Leuven, Belgium: Katholieke
Universiteit Leuven.

Whitley, D. (2000). Local search and high precision gray codes: Convergence results
and neighborhoods. In Martin, W., & Spears, W. (Eds.), Foundations of Genetic
Algorithms 6. San Francisco, California: Morgan Kaufmann Publishers, Inc.

Wong, Y. Y., Lee, K. H,, Leung, K. S. & C.W. Ho, C. W. (2003). A novel approach in parameter
adaptation and diversity maintenance for genetic algorithm. Soft Computing, 7(8),
pp- 506-515.

Wong, Z. Y., Leung, K. S., Wong, M. L. & Fang, J. (2000). A new type of nonlinear integrals and
the computational algorithm. Fuzzy Sets and System, 112, pp. 223-231.

Xu, K. B., Wang, Z. Y., Heng, P. A. & Leung, K. S. (2003a). Classification by Nonlinear Integral
Projections. IEEE Transactions on Fuzzy Systems, 11(2), pp. 187 - 201.

Xu, Z. B,, Leung, K. S, Liang, Y. & Leung, Y. (2003b). Efficiency speed-up strategies for
evolutionary computation: fundamentals and fast-GAs. Applied Mathematics and
Computation 142, pp. 341-388.

Zhu, Z.Y. & Leung, K. S. (2002a). An enhanced annealing genetic algorithm for multi-objective
optimization problems, Proceeding of Genetic and Evolutionary Computation
Conference 2002, New York, USA.

Zhu, Z. Y. & Leung, K. S. (2002b). Asynchronous self-adjustable island genetic algorithm
for multi-objective optimization problems, Proceeding of Congress on Evolutionary
Computation 2002, Hawaii, USA.

Liang, Y. & Leung, K. S. (2011). Genetic Algorithm with Adaptive Elitist-population
Strategies for Multimodal Function Optimization. Applied Soft Computing, 11(2),
pp- 1160-1171.

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

BIO-INSPIRED COMPUTATIONAL .
ALGORITHMS AND THEIR Edited by Dr. Shangce Gao
APPLICATIONS

Bdkted by Shangoe Gao

ISBN 978-953-51-0214-4

Hard cover, 420 pages

Publisher InTech

Published online 07, March, 2012
Published in print edition March, 2012

Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities.
Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient
and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of
creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization,
prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a
compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial
immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The
works presented in this book give insights into the creation of innovative improvements over algorithm
performance, potential applications on various practical tasks, and combination of different techniques. The
book provides a reference to researchers, practitioners, and students in both artificial intelligence and
engineering communities, forming a foundation for the development of the field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yong Liang (2012). A Splicing/Decomposable Binary Encoding and Its Novel Operators for Genetic and
Evolutionary Algorithms, Bio-Inspired Computational Algorithms and Their Applications, Dr. Shangce Gao
(Ed.), ISBN: 978-953-51-0214-4, InTech, Available from: http://www.intechopen.com/books/bio-inspired-
computational-algorithms-and-their-applications/a-splicing-decomposable-binary-encoding-and-its-novel-
operators-for-genetic-and-evolutionary-algorit

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EBHIERFEK6SS iEEPrRE ARG DA E4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Atiribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

