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1. Introduction 

Although glucocorticoids (GCs) are among the most widely used compounds for treating 
asthma, patients with severe asthma sometimes have uncontrolled symptoms despite GC 
therapy. These patients have an impaired response to GCs, and may demonstrate a 
temporal reduction in GC reactivity when asthma deteriorates. Although it can be difficult 
to differentiate truly GC-resistant (GC-R) asthma (Hakonarson et al., 2005), it may 
correspond to severe asthma. It is defined as persistence of airway obstruction associated 
with an increase of less than 15% in the forced expiratory volume in 1 second (FEV1) 
following 2-week high-dose prednisolone administration, as evaluated mainly by 
reversibility of airflow obstruction (Corrigan & Loke, 2007; Woolcock, 1996). A definition 
referring to the inhalation route remains obscure (Hakonarson et al., 2005).  

Co-administration of certain drugs, e.g. rifampicin, phenytoin and phenobarbital, which 
may possibly reduce steroid availability by affecting steroid metabolism through CYP3A4, 
should always be considered by clinicians.  

Many processes involved in inflammation escape GC modulation, and resistance to the anti-
inflammatory effects of these compounds is mediated via several mechanisms. 

2. Actions of GCs 

GCs upregulate mRNAs of molecules that suppress inflammatory cytokines and 
downregulate mRNAs of various inflammatory cytokines and chemokines. GCs increase 
gene expression of GC-induced leucine zipper (GILZ), mitogen-activated protein kinase 
phosphatase-1 (MKP-1), and the RNA-binding protein tristetraprolin. Expression of 
lipocortin-1, interleukin (IL)-10, IL-1 receptor antagonist, and inhibitor-κBǂ (I-κBǂ)  is also 
induced. GCs suppress expression of epithelial-derived cytokines and chemoattractants that 
promote inflammatory cell recruitment. Cytokine expressions is inhibited through reversal 
of histone acetylation at sites of cytokine gene expression by direct interaction of GC 
receptors (GRs) with nuclear factor kappa B (NF-κB)-associated coactivators or by 
recruitment of histone deacetylases (HDAC) to the activated transcription complex.  

Low concentrations of dexamethasone (DEX) reportedly rapidly regulate intracellular pH, 

Ca2+ and cAMP-dependent protein kinase activity, and inhibit Cl- secretion in bronchial 
epithelial cells via nongenomic mechanisms (Urbach et al., 2006). 
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Fig. 1. Anti-inflammatory actions of GC 
Trans-Activation: GRs bind to GREs and activate genes encoding ǃ2-adrenergic receptors 
and anti-inflammatory proteins, such as secretory leukoprotease inhibitor (SLPI), MKP-1, 
IκB-ǂ, and GILZ.  
Trans-Repression: GRs inhibit transcription factors such as NF-κB and AP-1. GRs bind to co-
activators, such as cAMP-response element-binding protein (CREB)-binding protein (CBP), 
and thereby inhibit HAT activity. GRs also recruit HDAC2 to the NF-κB -activated 
inflammatory gene complex.  
Nongenomic effect: GCs rapidly regulate intracellular pH, Ca2+ and cAMP-dependent 

protein kinase (PKA) activity and inhibit Cl- secretion in human bronchial epithelial cells, 
suggesting  GC modulate secretion. 

3. Transcription factors 

Overexpression of chemokines and cytokines induces inflammatory processes in the 

airways of asthmatics. These mediators are downstream targets of transcription factors that 

antagonize steroid signaling via competition with GR-associated co-activators. This mutual 

transcriptional activity competition between GR and other regulators is among the 

mechanisms contributing to GC-R asthma. 
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3.1 GRs  

GRs belong to the steroid/thyroid/retinoic acid nuclear receptor superfamily of 
transcription factor proteins. 

Anti-inflammatory actions of GCs are often attenuated in inflamed tissues and differ among 
tissues. Ligand-dependent downregulation of GR expression via proteasomes was apparent 
in a respiratory epithelial cell line as compared to keratinocyte-like and hematopoietic cell 
lines, and was enhanced by lipopolysaccharide (LPS) via activation of p38 mitogen-activated 
protein kinase (MAPK), c-Jun N-terminal (JNK) and cyclin-dependent kinases (Hirasawa et 
al., 2009). 

GRs are phosphorylated on specific serine residues after hormone binding and also by 
several kinases and phosphatases as a substrate. Although the precise roles of each specific 
phosphorylation event remain unclear, GR phosphorylation is involved in its stability, 
subcellular localization, interactions with coregulators, and transcriptional responses. 
Phosphorylation of GR on one or more residues adds increasing complexity to GC signaling 
and may explain how GR differentially regulates subsets of genes in various cell types. GR 
phosphorylation patterns via enhanced kinase activities of p38 MAPK, JNK, and GSK-3 in 
diseased cells contribute to different GC signaling within normal and diseased tissues 
(Bantel et al., 2002; Galliher-Beckley et al., 2008; Irusen et al., 2002; Itoh et al., 2002; Rogatsky 
et al., 1998; Szatmáry et al., 2004; Wang et al., 2004). GC-induced alterations in GR 
phosphorylation status are suggested to be associated with acquired GC resistance 
(Galliher-Beckley & Cidlowski, 2009).  

Although phosphor-Ser226-GR reportedly associates with endogenous GRE-containing 
promoters and remains transcriptionally active, most studies suggest that Ser226 
phosphorylation of GR attenuates GR signaling (Ismaili & Garabedian, 2004). Furthermore, 
JNK-mediated phosphorylation of GR at Serine 226 blunted hormone signaling by 
enhancing nuclear export of GR (Itoh et al., 2002). Activation of p38 MAPK by IL-2 and IL-4 
induces GR phosphorylation and reduces ligand-binding affinity of GR in the nucleus 
(Irusen et al., 2002). Reduced GR ligand-binding affinity induced by IL-2/IL-4 (Kam et al., 
1993; Sher et al., 1994) can be blocked with specific p38 MAPK inhibitors, suggesting that 
p38 MAPK inhibitors may reverse GC insensitivity (Irusen et al., 2002). IL-2/IL-4 
pretreatment and p38 MAPK activation may affect the expression and/or activity of 
phosphatases, thereby inhibiting DEX-induced S211 phosphorylation of GR, which serves 
as a biomarker for activated GR in vivo, and preventing GR nuclear translocation in 
response to hormones (Goleva et al., 2009). 

Sensitivity to GCs could reflect the degree of GC-induced GR nuclear translocation 
(Matthews et al., 2004). The IL-2/IL-4 combination alters GR nuclear translocation in T 
cells, an effect reversed by IFN-Ǆ via inhibition of p38MAPK activation, suggesting critical 
role of INF-Ǆ for maintaining GC sensitivity (Goleva et al., 2009).  Combined budesonide 
and formoterol can stimulate GR and promote its translocation to the nucleus (Roth et al., 
2002).    

GRǃ is an alternatively spliced form that binds to DNA but cannot be activated by GC, and 
reportedly antagonizes the trans-activating activity of GRǂ. GRǃ expression is significantly 
increased in some patients with GC-R asthma and GRǃ might be involved in GC resistance 
(Goleva et al., 2006; Hamid et al., 1999; Kelly et al., 2008; Pujols et al., 2001; Sousa et al., 
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2000). CD38 expression upregulates the GRǃ isoform, becoming insensitive to GC action 
thus providing a novel in vitro cellular model for ascertaining how GC resistance develops 
in primary cells (Tliba et al., 2006). A recent study demonstrated that GRǃ promotes steroid 
insensitivity by controlling HDAC2 expression by inhibiting GC response elements in its 
promoter (Li et al., 2010). Hypoxia impairs anti-inflammatory actions of GCs by decreasing 
expression of GRǂ, but not GRǃ, in A549 cells (Huang et al., 2009). However, the role of GRǃ 
in modulating sensitivity to GCs remains controversial. 

FK506-binding protein 51 (FKBP51) expression might affect clinical responsiveness to GCs 

(Denny at al., 2005; Reynolds et al., 1999; Vermeer et al., 2004a; Vermeer et al., 2004b). 

FKBP51 is an immunophilin chaperone protein residing in the cytoplasm before GC 

binding. GC dissociates GR from chaperone complexes, translocates GR to the nucleus, and 

modulates transcription. FKBP51 overexpression inhibits GR signaling by impairing nuclear 

translocation (Wochnik et al., 2005) and reducing GC binding (Denny et al., 2000). FKBP51 

was induced by GCs (Rogatsky et al., 2003; Vermeer et al., 2003), suggesting FKBP51 to 

function in a negative-feedback loop limiting GR signaling. Airway epithelial cells collected 

from asthmatics showed high FKBP51 expression associated with a poor GC response 

(Woodruff et al., 2007).  

3.2 Activator protein-1 (AP-1) 

AP-1 expression is enhanced in asthmatic airways by Th2 cytokines (Demoly et al., 1992). 

GC resistance was associated with inability of GCs to deactivate JNK MAPK, as reflected by 

elevated phosphorylated c-Jun and c-fos gene expression in GC resistance and coinciding 

with decreased GR-AP-1 interaction intensity in steroid-resistant asthmatics as compared 

with peripheral blood mononuclear cells (PBMC) (Adcock et al., 1995; Takahashi et al., 

2002), monocytes and T lymphocytes (Lane et al., 1998), immunohistochemical analysis of 

the tuberculin-mediated cutaneous response (Sousa et al., 1999), and bronchial biopsies 

(Loke et al., 2006) from GC-responsive patients. 

3.3 NF-κB 

NF-κB, a homo- or heterodimer consisting of subunits from the Rel family of proteins 

comprised of c-Rel, NF-κB1 (p50), NF-κB2 (p52), Rel A (p65), and Rel B, is activated by a 

broad range of inflammatory and environmental stimuli, e.g. tumor necrosis factor-ǂ (TNF-

ǂ), IL-1ǃ, IL-2, leukotriene B4, allergens, mitogens, LPS, viral infection, oxidative stress, and 

reactive oxygen exposure. The inflammation target is the prevalent heterodimer NF-κB p65-

p50.  p50 can increase DNA binding and p65 confers transcriptional regulation.  

In patients with bronchial asthma, like other inflammatory diseases, NF-κB activity is 

increased. Increased activity has been reported in airway epithelial cells, submucosal cells, 

and sputum macrophages (Caramori et al., 2009; Hart et al., 1998; Vignola et al., 2001). 

Increases in activated p65, phosphorylated IκBǂ (p-IκBǂ), and IκB kinase ǃ (IKKǃ) have 

been documented in PBMC from subjects with severe uncontrolled asthma (Gagliardo et al., 

2003). Rhinovirus infection activates NF-κB, leading to cytokine production and expression 

of adhesion molecules (Papi & Johnston, 1999; Zhu et al., 1996; Zhu et al., 1997), 

exacerbating asthma and steroid refractoriness. Excess active NF-κB in severe uncontrolled 
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asthma, which may reflect inflammatory stimuli,  may impair the anti-inflammatory actions 

of GCs by interacting with GR. 

3.4 GATA-3 

The zincfinger transcription factor GATA-3 is essential for expression of the IL-4, IL-5 and 
IL-13 genes (Ray & Cohn, 1999; Zhu et al., 2006). Upon activation, GATA-3 is 
phosphorylated by p38 MAPK and translocates from the cytoplasm to the nucleus via the 
nuclear import protein importin-ǂ. GCs inhibit GATA-3 function by rapidly blocking 
GATA-3 nuclear translocation via preferential binding to shared importin-ǂ and also by 
inhibiting p38 MAPK via MKP-1 induction (Barnes, 2008). 

3.5 CCAAT enhancer-binding protein (C/EBP) 

C/EBP belongs to the basic region-leucine zipper transcription factor family. C/EBP-ǂ, 
which binds the zinc finger motif of single active GR molecules and translocates to the 
nucleus, modulates GR function allowing induction of key anti-inflammatory mediators 
(Roth et al., 2004). Airway smooth muscle (ASM) cells from asthmatics are deficient in 
C/EBP-ǂ, seemingly due to reduced translation controlling factor eukaryotic initiation 
factor-4E (eIF-4E) (Borger et al., 2009), resulting in poor inhibition of smooth muscle 
proliferation in vitro (Borger et al., 2007; Roth & Black, 2009). Budesonide plus formoterol 
simultaneously activates GR and C/EBP-ǂ, resulting in synergistic stimulatory effects on 
p21 promoter activity and additive inhibitory effects on serum-induced proliferation (Roth 
et al., 2002). 

3.6 Interferon regulatory factor-1 (IRF-1) 

Recent investigations demonstrated elevated IRF-1, an early response gene involved in diverse 
transcriptional regulatory processes, in cells exposed to multiple cytokines that reduce GC 
responsiveness. IRF-1 promotes GC insensitivity in human ASM cells by interfering with GR 
signaling (Tliba et al., 2008). Inhibition of GR function by IRF-1 involves its interaction with 
transcriptional co-regulator GR-interacting protein 1 (GRIP-1). Under GC-R conditions, 
cytokines enhance expression of IRF-1, depleting GRIP-1 from the GR complex, thereby 
reducing transcriptions of GR-dependent genes such as MKP-1 and promoting expressions of 
IRF-1-dependent pro-inflammatory genes such as CD38 (Bhandare et al., 2010). As IRF-1 
expression is markedly increased after viral infections, suppressive effects of IRF-1 on GC 
signaling may explain the reduced GC responsiveness in asthmatics experiencing viral 
infections (Kröger et al., 2002; Vianna et al., 1998; Yamada et al., 2000). 

4. Chromatin modification; histone acetyltransferase (HAT) and HDAC 

Reduced HDAC activity and reciprocally increased HAT activity are reported to be  among 

the mechanisms underlying reduced GC sensitivity in bronchial asthma patients (Ito et al., 

2002a). Patients with severe asthma have diminished GC sensitivity of PBMC compared to 

those with nonsevere asthma, associated with reduced HDAC activity paralleling impaired 

GC sensitivity (Hew et al., 2006). HDAC2 deacetylates GR, enabling p65–NF-κB association 

and subsequent attenuation of pro-inflammatory gene transcription (Ito et al., 2006). Low-

dose theophylline restores HDAC activity in vivo (Ito et al., 2002b). 
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Fig. 2. Intracellular factors and pathways of GC-R asthma.  
GC acts through switching on the expression of anti-inflammatory genes such as MKP-1 or 
switching off inflammatory genes through negatively regulate the activity of various other 
DNA-bound transcription factors, including  NF-κB, AP-1 ,CREB, IRF-1, STAT, and  
GATA-3, via the transrepression mechanism or  tethering mechanism. Inflammatory 
stimulation provokes activation of protein kinase pathways and transcription factors, 
resulting in attenuation of GR function and reduction of HDAC activity or recruitment.  

5. Protein kinase signaling 

Intracellular protein kinases are involved in the expression and activation of inflammatory 
mediators in the airways. MAPK family members, e.g. p38MAPK, JNK and extracellular 
signal-regulated kinase (ERK), are implicated in airway inflammation via activation of pro-
inflammatory transcription factors including AP-1 and NF-κB, or via regulation of  
stabilization and increased translation of pro-inflammatory cytokine mRNA, dependent on 
conserved AU-rich elements in the 3’-UTRregion (Dean et al., 2004). 

GCs not only induce MKP-1, an endogenous inhibitor of MAPK genes, but also reduce its 
degradation (Abraham et al., 2006; Clark, 2003). MKP-1 inhibits MAPK pathways and 
thereby inhibits JNK and to a lesser extent ERK. 

Alveolar macrophages from patients with severe asthma show reduced inhibition of 
cytokine release by DEX with increased p38 MAPK activation, possibly resulting from 
impaired MKP-1 inducibility (Bhavsar et al., 2008), suggesting that GC insensitivity in 
severe asthma could  be improved by p38 MAPK inhibitors (Bhavsar et al., 2010). 
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Moreover, GC responses of GC-R patient samples were restored by adding MAPK inhibitors 
(Goleva et al., 2009; Irusen et al., 2002; Li et al., 2004; Tsitoura & Rothman, 2004). Thus, 
MAPK-mediated inhibition of GR function appears to be key to GC resistance.  

In GC-R asthma patients, increased p38 MAPK phosphorylation corresponds to reduced 
induction of dual-specificity phosphatases (DUSP) 1 expression (Bhavsar et al., 2008). Taken 
together, these observations suggest GC unresponsiveness to play central roles in MAPK 
dysregulation and probably also impaired DUSP1 induction. 

Cytokine signaling, including type I interferon signaling, through cognate Jak/signal 
transduction and activators of transcription (STAT) pathways is reported to be unaffected or 
even stimulated by GR. Inhibition of JAK/STAT signaling may be of therapeutic benefit in 
GC-R airway disease (Clarke et al., 2010; Flammer et al., 2010). 

PI3K plays an integral role in the immune system, for both mast cells and eosinophil 
function (Marwick et al., 2010), and may contribute to GC sensitivity by reducing HDAC 
activity (Ito et al., 2007). Therapeutic inhibition of PI3Kǅ is reported to  restore GC function 
in oxidative stress-induced GC-insensitive mice (Marwick et al., 2009). 

6. Cytokine-induced GC insensitivity 

Inflammatory cytokines alter GC cellular responses. Cytokines from Th2 cells are implicated 
in the pathogenesis of athma. IL-4 and IL-13 switch B cells to IgE synthesis, IL-5 plays a role 
in eosinophil maturation and survival, and IL-13 regulates airway hyper-responsiveness 
(AHR) and mucus hyperplasia. A study of bronchoalveolar lavage (BAL) fluid showed 
significantly greater numbers of cells expressing IL-2 and IL-4 mRNA in GC-R than in GC-
sensitive asthmatics (Leung et al., 1995). Bronchial biopsy specimens from GC-R asthma 
patients revealed overexpression of IL-2, IL-4 and IL-13 and reduced GR affinity of 
inflammatory cells (Leung et al., 1999; Szefler & Leung, 1997).  

IL-33, described as a promoter of Th2 immunity and systemic inflammation (Schmitz et al., 
2005), is expressed at higher levels in ASM cells of asthmatics. DEX failed to abrogate TNF-
ǂ-induced IL-33 expression (Préfontaine et al., 2009). 

TNF-ǂ, a pro-inflammatory cytokine, is often associated with conditions that might activate 
innate immunity in the lung. Upregulation of the TNF-ǂ axis in bronchial asthma with 
reduced sensitivity was reported (Berry et al., 2006; Howarth et al., 2005; Morjaria et al., 
2008). TNF-ǂ is produced by Th1 cells and macrophages and to a lesser extent mast cells in 
ASM, possibly inducing AHR. TNF-ǂ is increased in BAL and bronchial biopsy specimens 
from severe asthma patients and is associated with GC-R (Howarth et al., 2005). TNF-ǂ 
suppresses GC responsiveness in monocytes (Franchimont et al., 1999) and upregulates 
pathways involved in chronic airway remodeling and subepithelial fibrosis (Sullivan et al., 
2005). TNFǂ upregulates the ERK1/ERK2 and p38MAPK pathways and induces expression 
of CXCL8, a neutrophil chemoattractant. Activation of the ERK1/ERK2 MAPK cascade is 
completely insensitive to actions of GCs in ASM cells and is involved in neutrophil 
recruitment contributing to inflammation (Robins et al., 2011). 

Cytokines associated with Th1 immunity rather than allergic Th2 responses may contribute 
to the pathogenesis of severe GC-R asthma (Heaton et al., 2005). Th1 cells induce steroid-
resistant AHR through an INF-Ǆ/TLR4-MyD88-dependent mechanism after LPS-priming of 
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the innate host defense system (Yang et al., 2009). Although interferon Ǆ (IFN-Ǆ), a Th1 
cytokine, prevented airway inflammation, some studies suggest that Th1 cells, secreting 
IFN-Ǆ, might cause severe airway inflammation (Cui et al., 2005; Hansen et al., 1999). 
Sputum IFN-Ǆ levels were markedly increased in airway cells obtained by sputum induction 
in patients with moderate to severe asthma and nonallergic asthma (Truyen et al., 2006). 
IFN-Ǆ is expressed by an increased percentage of cells in the airways of severe asthmatics 
(Shannon et al., 2008). 

TNF-ǂ and IFN-Ǆ synergistically enhance transcriptional activation of interferon- Ǆ -

inducible protein-10 (CXCL10), a potent chemoattractant for mast cells and T lymphocytes, 

cells implicated in asthma pathophysiology and elevated in patients suffering viral 

exacerbation of asthma, in human ASM cells via STAT-1, NF-κB and the transcriptional 

coactivator CREB-binding protein. Abrogation of JAK2 and subsequent STAT-1 signaling 

was more effective than fluticasone in an in vitro model of steroid-resistant inflammation, 

suggesting JAK/STAT signaling inhibition to be of therapeutic benefit in GC-R (Clarke et 

al., 2010).  

Dysregulation of INF-Ǆ producing Th1 cells or IL-10-producing regulatory T cells can 

counterbalance the number of Th2 cells. IL-10, a potent anti-inflammatory and 

immunosuppressive cytokine, appears to correlate inversely with the incidence and/or 

severity of asthma (Akdis et al., 2004; Borish et al., 1996; Heaton et al., 2005; Lim et al., 1998). 

Induction of IL-10 synthesis may contribute to the clinical efficacy of GCs in allergy and 

asthma. CD4+ T cells from GC-R asthmatics show markedly reduced capacity to synthesize 

IL-10, which inhibits pro-inflammatory cytokine production, antigen presentation, T cell 

activation and mast cell and eosinophil function, following in vitro stimulation in the 

presence of DEX, as compared with those from GC-sensitive patients with similar disease 

severity (Hawrylowicz et al., 2002). 

Thus, GC-R asthma is associated with an altered cytokine gene expression profile; i.e. failure 
to suppress production of inflammatory cytokines and to induce production of anti-
inflammatory cytokines. 

Dehydroepiandrosterone (DHEA) can reverse cytokine imbalances associated with  
asthma, possibly preventing and attenuating allergic airway inflammation. Clinically,  
a steroid-sparing effect is observed with DHEA. DHEA and its analogs might prove useful 
in reversing relative GC-insensitivity in patients with GC-R asthma (Kasperska-Zajac,  
2010).  

7. Inflammatory cells 

In severe asthma, pathological features different from those in mild-to-moderate asthma 
include mixed Th2/Th1 phenotypes with possible Th17 or regulatory T cell involvement. 
This type of asthma is GC-refractory. 

Some asthma patients have neutrophils instead of eosinophils in their sputum. In general, 
asthma associated with neutrophils tends to show increased airway gland secretion, AHR, 
tissue destruction and airway remodeling, resulting in a severe condition (Douwes et al., 
2002; Wenzel et al., 1998; Wenzel, 2009). Epidermal growth factor receptor (EGFR) 
(Puddicombe et al., 2000), which correlates with IL-8 (Hamilton et al., 2003; Hamilton et 
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al., 2005), could contribute to sustained neutrophilic inflammation. Subjects with 
neutrophilic asthma have increased activation of proteolytic enzymes, such as neutrophil 
elastase, indicating protease/anti-protease imbalance, as compared with other asthma 
phenotypes (Simpson et al., 2005). Moreover, it is characterized by a poor response to GC 
(Green et al., 2002; Pavord et al., 1999; Pavord, 2007). A mouse model suggested GC-R 
neutrophilic inflammation in acute exacerbation of asthma to be related to impaired 
nuclear recruitment of HDAC2, leading to ongoing enhanced expression of neutrophil 
chemoattractant and survival factors (Ito et al., 2008). The neutrophil infiltrates in these 
patients suggest activation of innate host defense pathways. This is consistent with 
evidence that infection and allergen exposure function synergistically in the pathogenesis 
of asthma exacerbations.  

In a mouse model, Th17 cells, which play a central role in regulating neutrophilic 
inflammation during infection, were linked to GC-R AHR (McKinley et al., 2008). IL-17 is 
reported to be  increased in the lungs, sputum, and BAL fluid of asthmatics (Bullens et al., 
2006), and its expression level correlates with disease severity (Kawaguchi et al., 2009). IL-17 
is especially important for neutrophil recruitment (Pène et al., 2008). Th17 cytokine 
responses are not sensitive to DEX. Th17 cell-mediated airway inflammation and AHR are 
steroid-resistant, indicating a potential role of Th17 cells in GC-R asthma. IL-17F plays a pro-
inflammatory role in asthma, by activating transcription factors such as C/EBPǃ, C/EBPǄ 
and NF-κB.  

8. Other novel intracellular mechanisms causing GC-R 

Amphiregulin is secreted by human mast cells after exposure to antigens via aggregation of 
FcǆRI, resulting in sputum production. Its expression is not inhibited by DEX. This may 
explain GC treatment being largely ineffective against sputum overproduction (Okumura et 
al., 2005).  

Cofilin is a novel factor causing GC-R. Cofilin is known to promote actin depolymerization 
and filament severing. Cofilin 1, the evolutionarily conserved ADF/cofilin family, is crucial 
for many cellular processes, e.g. cell motility, cell division and membrane organization.  
The inhibitory action of cofilin on GR may have physiological relevance. Overexpressions  
of cofilin and actin as well as chemical cytoskeletal disruption changed the subcellular 
receptor distribution and upregulated c-Jun, possibly explaining the inhibitory mechanism 
of cofilin-1. Increased cofilin-1 expression is important for regulating GC sensitivity in 
peripheral blood lymphocytes of patients with severe treatment-resistant asthma (Vasavda 
et al., 2006). 

9. Air way structure and remodeling 

The effects of GC on airway remodeling are not completely understood. Airway remodeling 
is associated with increased deposition of extracellular matrix (ECM) proteins such as type I 
collagen. Immunoreactivity of type I collagen was not reduced in the submucosa of 
moderate to severe asthmatics after a 2-week oral GC course (Chakir et al., 2003). 
Overexpression of AP-1, which is known to be involved in regulating the procollagen-ǂ II 
promoter by inhibiting its activity, impairs GC inhibition of collagen production by 
fibroblasts in asthmatics (Jacques et al., 2010). 
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The ratio of matrix metalloprotease (MMP)-9 to tissue inhibitor of MMP (TIMP)-1 is higher 
in the lungs of patients with severe asthma. MMP-9 is produced in neutrophils (Cundall et 
al., 2003). This is poorly inhibited by GCs. Eosinophilic asthma is characterized by active 
MMP-9 without free elastase (Simpson et al., 2005). DEX upregulates TIMP-1 mRNA in BAL 
fluid cells from patients with GC-sensitive asthma, but not in cells from those with GC-R 
asthma. Inability of GC to enhance TIMP-1 production shifts the MMP-9/TIMP-1 ratio in 
GC-R asthma, potentially promoting proteolytic activity and possibly resulting in abnormal 
tissue remodeling of airways (Goleva et al., 2007), leading to reduced lung function and ǃ-
agonist reversibility in these patients.  

10. Environmental and behavioral factors 

The classical macrophage activation and induction of LPS signaling pathways along with 
high endotoxin levels in BAL fluid from GC-R asthma patients suggest LPS exposure to 
contribute to GC-R asthma (Goleva et al., 2008).  

Increased T-cell receptor vǃ8+ T cells in BAL fluid of subjects with poorly controlled asthma 
suggests a role for microbial superantigens (Hauk et al., 1999). Microbial superantigens may 
contribute to GC insensitivity through induction of GR (Hauk et al., 2000). Microbial 
superantigens induce human T-cell resistance to GC, via the Raf-MEK-ERK1/ERK2 
pathway of T-cell receptor signaling, which leads to GCRǂ phosphorylation and inhibition 
of DEX-induced GCRǂ nuclear translocation (Li et al., 2004). This may occur in exacerbation 
of asthma symptoms by bacterial infection.  

Clinically, bronchial asthma patients who smoke have an impaired GC response as 
compared to nonsmokers (Chaudhuri et al., 2006). The sputum of asthmatic patients who 
smoke contains more neutrophils and CXCL8, which is closely associated with severe 
asthma (Thomson et al., 2004). Smoking increases NF-κB activity, resulting in increased 
expression of inflammatory genes such as IL-8, MMP and monocyte chemoattractant 
protein. Smoking can inhibit GR function by suppressing GR-associated HDAC2 activity 
and expression (Ito et al., 2001). It also reduces the GRǂ:ǃ ratio in PBMC (Livingston et al., 
2004), and GC insensitivity in smokers with asthma may be more generalized, affecting 
tissue sites other than the airways (Livingston et al., 2007).  

In asthma patients, reduced vitamin D levels are associated with impaired lung function, 
increased AHR and reduced GC responsiveness (Ginde et al., 2009; Sutherland et al., 2010). 
Impaired induction of IL-10 by GCs in T cells from GC-R asthmatics can be reversed by 
vitamin D3 and IL-10 (Xystrakis et al., 2006). This may reflect IL-10 increasing GR expression 
by human CD4+ T cells while vitamin D3 overcomes ligand-induced downregulation of GR. 
Vitamin D reduced human ASM expression of chemokines, including fractalkine and CX3C 
chemokine (Banerjee et al., 2008; Sukkar et al., 2004). Thus, vitamin D may hold promise in 
treating GC-R asthma. 

Asthma appears to be more severe in obese individuals (Moore et al., 2007). Obese asthma 
patients have increased illness severity and altered responses to conventional therapy, as 
well as leukotriene antagonists (Sin & Sutherland, 2008), as compared with lean asthmatics. 
Elevated body mass index is associated with a blunted in vitro response to DEX in asthma 
patients. MKP-1 induction by GC is impaired in PBMC and alveolar macrophages from 
obese asthmatics. Increased TNF-ǂ in overweight and obese patients with asthma might be 
involved in downregulation of MKP-1 (Sutherland et al., 2008). 
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Table 1. Extracellular factors and reported mechanisms of GC-R. 

In general, the factors exacerbate asthma symptoms occur largely at the same time the 
factors of GC-R. Those extracellular factors control the intensity of inflammation,which may 
explain the very common clinical observation that resistance is relative, and patients often 
respond to high doses of GCs. GC-R asthma may be attributable mostly to reduced GR 
function resulting from enhanced activations of AP-1 and NF-κB and upstream kinase 
pathways, or reduced HDAC activity.  

11. Conclusions 

The inflammatory processes in asthma are complex and heterogeneous (Anderson, 2008; 
Gibson et al., 2001). GC insensitivity may contribute to disease severity. GC-R asthma is 
usually an acquired condition. Variable intensity of inflammation may explain the very 
common clinical observation that resistance is relative. Reduced GC sensitivity in asthmatics 
is largely due to altered activation of GR by upstream kinase activity, enhanced activation of 
AP-1 and NF-κB or reduced HDAC activity, associated with inflammation. Th2 independent 
mechanisms tend to involve GC-R. Understanding the contributing factors and cellular and 
molecular mechanisms of GR-asthma is important for identifying new targets for biological 
intervention. 
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