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Some Aspects of the Sentinel Method for
Pollution Problems

A. Omrane*

Laboratoire CEREGMIA, EA 2440, I.E.S Guyane, Campus Universitaire Trou-Biran,
Route de Baduel BP 792, 97337 Cayenne Cedex

French Guiana

1. Introduction

Modelling environmental problems leads to mathematical systems with missing data:
Weather problems have generally missing initial conditions. This chapter is concerned with
identifying pollution terms arising in the state equation of some dissipative system with
incomplete initial condition.

To this aim the so-called sentinel method is used. We explain how the problemn of
determining a sentinel is equivalent to a null-controllability problem for which Carleman
inequalities are revisited.

In a second part of the chapter, we use the same techniques to discuss of how to get
instantaneous information (at fixed t = T ∈ [0,+∞[) on pollution terms in distributed systems
of incomplete data in some ecology and/or meteorology problems.

We consiter a fixed final time T > 0, and Ω an open subset of R
d of smooth boundary ∂Ω, and

we denote by Q = Ω×]0, T[ the space-time cylinder. We are intersted with systems partially
known; we consider here the state equation :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y′ − ∆y + f (y) = ξ + λξ̂ in Q,
y(0) = y0 + τŷ0 in Ω,

y = 0 on Σ1,
∂y

∂ν
= 0 on Σ2,

(1.1)

where y = y(x, t; λ, τ), and where Σ1 is a piece of the boundary Σ = ∂Ω×]0, T[ and Σ2 =
Σ\Σ1. We assume here that f : R → R is of class C1, the functions ξ and y0 are known with
ξ ∈ L2(Q) and y0 ∈ L2(Ω). But, the terms : λξ̂ (so-called pollution term) and τŷ0 (so-called
perturbation term) are unknown, ξ̂ and ŷ0 are renormalized and represent the size of pollution
and perturbation

‖ξ̂‖L2(Q) ≤ 1, ‖ŷ0‖L2(Ω) ≤ 1, so that the reals λ, τ are small enough.

*This projet is supported by the CPER AGROECOTROP 2007-2013, Région Guadeloupe-État-Europe

9

www.intechopen.com



2 Will-be-set-by-IN-TECH

Some non empty open subset O ⊂ Ω, is called observatory set. The observation is y on O, for
the time T. We denote by yobs this observation

yobs = mo ∈ L2(O × (0, T)). (1.2)

We suppose that (1.1) has a unique solution denoted by y(λ, τ) := y(x, t; λ, τ) in some relevant
space. The question is

∣∣∣∣∣∣

how to calculate the pollution term λξ̂ in
the state equation, independently from the
variation τŷ0 around the initial data ?

(1.3)

Least squares. Question (1.3) is natural and leds to some developments; some answer is given
by the least squares method. The method consists in considering the unknowns {λξ̂, τŷ0} =
{v, w} as control variables, then the state y(x, t; v, w) has to be driven as close as possible to
mo.

This comes to some optimal control problem. By this way we look for the pair (v, w), there is
then no real possibility to find v or w independently.

Sentinels. The sentinel method of Lions Lions J.-L. (1992) is a particular least squares method
which is adapted to the identification of parameters in ecosystems with incomplete data; many
models can be found in litterature. The sentinel concept relies on the following three objects
: some state equation (for instance (1.1)), some observation function (1.2), and some control
function w to be determined.

Many papers use the definition of Lions in the theoretical aspect (see for example Bodart
Bodart O. (1994), Bodart-Fabre Bodart O. & Fabre C. (1993)Bodart O. & Fabre C. (1995)), as well
as in the numerical one (see Bodart-Demeestere Bodart O. & Demeestere P. (1997), Demeestere
Demeestere P. (1997) and Kernevez Kernevez J.-P. (1997)).

We use the techniques in Miloudi Y. et al. (2007) to give an answer to the question (1.3). Let
h0 be some function in L2(O × (0, T)). Let on the other hand ω be some open and non empty
subset of Ω. For a control function w ∈ L2(ω × (0, T)), we define the functional

S(λ, τ) =
∫ T

0

∫

O
h0 y(λ, τ) dxdt +

∫ T

0

∫

ω
w y(λ, τ) dxdt. (1.4)

We say that S defines a sentinel for the problem (1.1) if there exists w such that S is insensitive
(at first order) with respect the to missing terms τŷ0, which means

∂S

∂τ
(0, 0) = 0 (1.5)

for any ŷ0 where here (0, 0) corresponds to λ = τ = 0, and if w minimizes the norm
‖v‖L2(ω×(0,T)).

Important Remark. The Lions sentinels S assume ω = O. In this case, the observation and
the control share the same support, and the solution w = −h0 is trivial.

The definition (1.4) extends the one by Lions to the case where the observation and the control
have different supports. This point of view (where ω �= O) has been considered for the first
time in Nakoulima O. (2004) and Miloudi Y. et al. (2007).
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Some Aspects of the Sentinel Method for Pollution Problems 3

1.1 The informations given by the sentinel

Because of (1.5) we can write

S(λ, τ) ≃ S(0, 0) + λ
∂S

∂λ
(0, 0), for λ, τ small.

In (1.4), S(λ, τ) is observed and using (1.2),

S(λ, τ) =
∫

Q
(h0χO +wχω)mo dxdt

so that (1.5) becomes

λ
∂S

∂λ
(0, 0) ≃

∫

Q
(h0χO +wχω)(mo − y0) dxdt, (1.6)

with
∂S

∂λ
(0, 0) =

∫

Q
(h0χO +wχω)yλ dxdt,

where here χO and χω denote the characteristic functions of O and ω respectively.

The derivative yλ = (∂y/∂λ) (0, 0) only depends on ξ̂ and other known data. Consequently,
the estimates (1.6) contains the informations on λξ̂ (see for details remark 1 below).

2. Null-controllability problem

The existence of a sentinel is equivalent to a null-controllability property. Indeed, we begin by
transforming the insensibility condition (1.5).

Denote by

yτ =
d

dτ
y(λ, τ)

∣∣∣
λ=τ=0

.

Then the function yτ is solution of

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y′τ − ∆yτ + f ′(y0)yτ = 0 in Q,
yτ(0) = ŷ0 in Ω,

yτ = 0 on Σ1,
∂yτ

∂ν
= 0 on Σ2,

(2.1)

where y0 = y(0, 0). Problem (2.1) is linear and has a unique solution yτ under mild
assumptions on f .

The insensibility condition (1.5) holds if and only if
∫

Q

(
h0χO +wχω

)
yτ dxdt = 0. (2.2)

We can transform (2.2) by introducing the classical adjoint state. More precisely, we define the
function q = q(x, t) as the solution of the backward problem :

187Some Aspects of the Sentinel Method for Pollution Problems
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4 Will-be-set-by-IN-TECH

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−q′ − ∆q + f ′(y0)q = h0χO +wχω in Q,
q(T) = 0 in Ω,

q = 0 on Σ1,
∂q

∂ν
= 0 on Σ2.

(2.3)

As for the problem (2.1), the problem (2.3) has a unique solution q (under mild assumptions
on f ′(y0)). The function q depends on the control w that we shall determine :
Indeed, if we multiply the first equation in (2.3) by yτ , and we integrate by parts over Q, we
obtain ∫

Q

(
h0χO +wχω

)
yτ dxdt =

∫

Ω
q(0)ŷ0dx ∀ŷ0, ‖ŷ0‖L2(Ω) ≤ 1.

So, the condition (1.5) (or (2.2)) is equivalent to

q(0) = 0. (2.4)

This is a null-controllability problem.

Remark 1. The knowledge of the optimal control w provides informations about the pollution term
λξ̂. Indeed, denote by

L =
∂

∂t
− ∆ + f ′(y0) Id

and let yλ =
∂y

∂λ
(0, 0) be the solution of

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L yλ = ξ̂ in Q,
yλ(0) = 0 in Ω,

yλ = 0 on Σ1,
∂yλ

∂ν
= 0 on Σ2.

Integrating by parts, we then obtain
∫

Q
yλ L∗q dxdt =

∫

Q
qξ̂ dxdt

with

L∗ = − ∂

∂t
− ∆ + f ′(y0) Id.

So that from (2.3) and (1.6) we deduce
∫

Q
λξ̂ dxdt =

∫

Q
(h0χO +wχω)(mo − y0) dxdt.

3. Existence of a sentinel

We begin with some observability inequality, which will be proved in detail in the last section.
Denote by

V =
{

v ∈ C∞(Q) such that : v|Σ1
=

∂v

∂t
∣∣

Σ1

= 0 and
∂v

∂ν
∣∣

Σ2

= 0
}

. (3.1)

Then we have :
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Some Aspects of the Sentinel Method for Pollution Problems 5

Theorem 1. Let be u ∈ V , then there exists a positive constant C = C(Ω, ω, O, T, f ′(yo)) such that

∫

Q

1
θ2 |u|2 dxdt ≤ C

[ ∫

Q
|L u|2 dxdt +

∫ T

0

∫

ω
|u|2 dxdt

]
, (3.2)

where θ ∈ C2(Q) positive with
1
θ

bounded.

According to the RHS of (3.2), we consider the space V endowed with the bilinear form a(., .)
defined by :

a(u, v) =
∫

Q
Lu Lv dxdt +

∫ T

0

∫

ω
u v dxdt.

Let V be the completion of V with respect to the norm

v �→ ‖v‖V =
√

a(v, v),

then, V is a Hilbert space for the scalar product a(v, v̂) and the associated norm.

Remark 2. We can precise the structure of the elements of V. Indeed, let Hθ(Q) be the weigthed
Hilbert space defined by

Hθ(Q) =
{

v ∈ L2(Q) such that :
∫

Q

1
θ2 |v|2 dxdt < ∞

}
,

endowed with the natural norm ‖v‖θ = (
∫

Q
1
θ2 |v|2 dxdt)

1
2 . This shows that V is imbedded

continuously ‖v‖θ ≤ C ‖v‖V .

Now if h0 ∈ L2(Q) and θh0 ∈ L2(Q) (i.e. : h0 ∈ L2
θ(Q)), then from (3.2) and the

Cauchy-Schwartz inequality, we deduce that the linear form defined on V by

v �→
∫

Q
h0χO v dxdt

is continuous. Therefore, from the Lax-Milgram theorem there exits a unique u in V solution
of the variational equation :

a(u, v) =
∫

Q
h0χO v dxdt ∀v ∈ V.

Theorem 2. Assume that h0 ∈ L2
θ(Q), and let u be the unique solution of (3.3). We set

w = −uχω

and

q = Lu.

Then, the pair (w, q) is such that (2.3)-(2.4) hold (i.e there is some insensitive sentinel defined by
(1.4)-(1.5)).
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6 Will-be-set-by-IN-TECH

4. Proof of theorem 1

The proof for the observability inequality in theorem 1 will hold from Carleman estimates that
we carefully show in the following results.

Lemma 1. Let be ω0 an open set such that ω0 ⊂ ω. Then there is ψ ∈ C2(Ω) such that

⎧
⎨
⎩

ψ(x) > 0 ∀ x ∈ Ω,
ψ(x) = 0 ∀ x ∈ Γ,

|∇ψ(x)| �= 0 ∀ x ∈ Ω − ω0.

See Imanuvilov O. Yu. Imanuvilov (1995)

We now use a function ψ as given by the previous lemma, to define convenient weight
functions. For λ > 0, we set

ϕ(x, t) =
eλψ(x)

t(T − t)
,

and

η(x, t) =
e2λ|ψ|∞ − eλψ(x)

t(T − t)
.

Then
∇ϕ = λϕ∇ψ, ∇η = −λϕ∇ψ.

We also notice the following properties :
∣∣∣∣
∂ϕ

∂t

∣∣∣∣ ≤ Tϕ2,
∣∣∣∣
∂2 ϕ

∂t2

∣∣∣∣ ≤ T2 ϕ3, (4.1)

∣∣∣∣
∂η

∂t

∣∣∣∣ ≤ Tϕ2,
∣∣∣∣
∂2η

∂t2

∣∣∣∣ ≤ T2 ϕ3. (4.2)

Remark 3. Note that η increases to +∞ when t → T or t → 0, but η is uniformly bounded on
Ω × [δ, T − δ] for any δ > 0.

On the other hand, for fixed s > 0 the function e−sη(x,t) goes to 0 when t → T or t → 0.

The following theorem states the Carleman inequalities concerning (3.1) :

Proposition 1. There exist constants s0 > 0, λ0 > 0 and C > 0 depending on Ω, ω, ψ, and T, such
that for all s ≥ s0, λ ≥ λ0, and for any function u ∈ V given by (3.1), we have

2s3λ4
∫

Q
ϕ3e−2sη |u|2 dxdt + 4s2λ

∫

Σ2

ϕ
∂η

∂t

∂ψ

∂ν
e−2sη |u|2 dγdt

−4s3λ3
∫

Σ2

ϕ3|∇ψ|2 ∂ψ

∂ν
e−2sη |u|2 dγdt − 4s2λ3

∫

Σ2

ϕ2|∇ψ|2 ∂ψ

∂ν
e−2sη |u|2 dγdt

−2sλ
∫

Σ2

ϕ
∂ψ

∂ν
e−2sη ∂u

∂t
u dγdt − 4sλ

∫

Σ1

ϕ∇ψe−2sη∇u
∂u

∂ν
dγdt

+2sλ
∫

Σ
ϕ

∂ψ

∂ν
e−2sη |∇u|2 dγdt

≤ C
( ∫

Q
e−2sη

∣∣∣∣
∂u

∂t
− ∆u

∣∣∣∣
2

dxdt + s3λ4
∫ T

0

∫

ω
ϕ3e−2sη |u|2 dxdt

)
.

(4.3)

190 Air Quality – Monitoring and Modeling
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Some Aspects of the Sentinel Method for Pollution Problems 7

We use the method by Fursikov and Imanuvilov A. Fursikov & O. Yu. Imanuvilov (1996),
Imanuvilov O. Yu. Imanuvilov (1995), Lebeau and Robbiano Lebeau G. & Robbiano L. (1995),
and Puel Puel J.-P. (2001) (case Σ2 = ∅ and Σ1 = Σ).
For s ≥ s0 and λ ≥ λ0, we define

w (x, t) = e−sη(x,t)u (x, t) .

We easily notice that
w (x, 0) = w (x, T) = 0.

Calculating g = (∂t − ∆)(esηw), with notation (4), we get

P1w + P2w = gs,

where

P1w =
∂w

∂t
+ 2sλϕ∇ψ∇w + 2sλ2 ϕ|∇ψ|2w,

P2w = −∆w − s2λ2 ϕ2|∇ψ|2w + s
∂η

∂t
w,

gs = e−sη g + sλ2 ϕ|∇ψ|2w − sλϕ ∆ψ w.

Taking the L2 norm we get :
∫

Q
|P1w|2 dxdt +

∫

Q
|P2w|2 dxdt + 2

∫

Q
P1wP2w dxdt =

∫

Q
|gs|2 dxdt.

We shall now calculate
∫

Q
P1wP2w dxdt. This will give 9 terms Ik,l .

In order to organize our calculus, we denote by A and B the quantities such that A contains
all the terms which can be upper bounded by

c
(

sλ + λ2
) ∫

Q
ϕ |∇w|2 dxdt,

and by B all those which can be bounded by

c
(

s2λ4 + s3λ3
) ∫

Q
ϕ3 |w|2 dxdt.

We denote by ν the outer normal on Γ. Note down that ψ cancels on Γ. We then have the
following results :

I1,1 = −
∫

Q

∂w

∂t
∆w dxdt

= −
∫

Σ

∂w

∂t

∂w

∂ν
dγdt + 0,

I1,2 = −s2λ2
∫

Q

∂w

∂t
ϕ2|∇ψ|2w dxdt = B,

191Some Aspects of the Sentinel Method for Pollution Problems
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8 Will-be-set-by-IN-TECH

I1,3 = s
∫

Q

∂w

∂t

∂η

∂t
w dxdt =

s

2

∫

Q

∂η

∂t

∂

∂t

(
|w|2

)
dxdt

= − s

2

∫

Q

∂2η

∂t2 |w|2 dxdt = B.

And,

I2,1 = −2sλ
∫

Q
ϕ∇ψ∇w∆w dxdt

= −2sλ
∫

Σ
ϕ∇ψ.∇w

∂w

∂ν
dγdt + 2sλ2

∫

Q
ϕ|∇ψ.∇w|2 dxdt

+sλ
∫

Σ
ϕ

∂ψ

∂ν
|∇w|2 dγdt − sλ2

∫

Q
ϕ|∇ψ|2|∇w|2 dxdt + A,

I2,2 = −2s3λ3
∫

Q
ϕ3|∇ψ|2∇ψ∇w.w = −s3λ3

∫

Q
ϕ3|∇ψ|2∇ψ∇|w|2

= −s3λ3
∫

Σ
ϕ3 |∇ψ|2 ∂ψ

∂ν
|w|2 + 3s3λ4

∫

Q
ϕ3 |∇ψ|4 |w|2 + B,

I2,3 = 2s2λ
∫

Q
ϕ∇ψ∇w

∂η

∂t
w dxdt

= s2λ
∫

Σ
ϕ

∂η

∂t

∂ψ

∂ν
|w|2 dxdt + B.

Finally :

I3,1 = −2sλ2
∫

Q
ϕ|∇ψ|2∆w.w dxdt

= −2sλ2
∫

Σ
ϕ |∇ψ|2 ∂w

∂ν
.w + 2sλ2

∫

Q
ϕ|∇ψ|2|∇w|2 + A + B,

I3,2 = −2s3λ4
∫

Q
ϕ3|∇ψ|4|w|2 dxdt,

I3,3 = 2s2λ2
∫

Q
ϕ

∂η

∂t
|∇ψ|2|w|2 dxdt = B.

Summing all the terms, it follows :

2
∫

Q
P1wP2w dxdt=A + B + 2sλ2

∫

Q
ϕ|∇ψ|2|∇w|2 dxdt

+2s3λ4
∫

Q
ϕ3|∇ψ|4 |w|2 dxdt + 4sλ2

∫

Q
ϕ|∇ψ.∇w|2 dxdt

−2
∫

Σ

∂w

∂t

∂w

∂ν
dγdt − 4sλ

∫

Σ
ϕ∇ψ.∇w

∂w

∂ν
dγdt

+2sλ
∫

Σ
ϕ

∂ψ

∂ν
|∇w|2 dγdt − 2s3λ3

∫

Σ
ϕ3|∇ψ|2 ∂ψ

∂ν
|w|2 dγdt

+2s2λ
∫

Σ
ϕ

∂η

∂t

∂ψ

∂ν
|w|2 dγdt − 4sλ2

∫

Σ
ϕ |∇ψ|2 ∂w

∂ν
.w dγdt.
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But |∇ψ| �= 0 on Ω − ω0, hence there is δ > 0 such that

|∇ψ| ≥ δ on Ω − ω0.

On the other hand ∫

Q
|gs|2 dxdt ≤

∫

Q
e−2sη |g|2 dxdt + B,

so that
∫

Q
|P1w|2 dxdt +

∫

Q
|P2w|2 dxdt + 2

∫

Q
P1wP2w dxdt

≤
∫

Q
e−2sη |g|2 dxdt + B.

Consequently :
∫

Q
|P1w|2 dxdt +

∫

Q
|P2w|2 dxdt + 2sλ2δ2

∫

Q
ϕ |∇w|2 dxdt

+2s3λ4δ4
∫

Q
ϕ3 |w|2 dxdt − 2

∫

Σ

∂w

∂t

∂w

∂ν
dγdt − 4sλ

∫

Σ
ϕ∇ψ.∇w

∂w

∂ν
dγdt

+2sλ
∫

Σ
ϕ

∂ψ

∂ν
|∇w|2 dγdt − 2s3λ3

∫

Σ
ϕ3|∇ψ|2 ∂ψ

∂ν
|w|2 dγdt

+2s2λ
∫

Σ
ϕ

∂η

∂t

∂ψ

∂ν
|w|2 dγdt − 4sλ2

∫

Σ
ϕ|∇ψ|2 ∂w

∂ν
.w dγdt + A + B

≤
∫

Q
e−2sη |g|2 dxdt + B + 2sλ2δ2

∫ T

0

∫

ω0

ϕ |∇w|2 dxdt + 2s3λ4δ4
∫ T

0

∫

ω0

ϕ3 |w|2 dxdt.

We can eliminate A and B by choosing s and λ large enough. And we observe that :

∫ T

0

∫

ω
ϕθ2 |∇w|2 dxdt

≤ C

(∫

Q
ϕP2wθ2wdxdt +

∫ T

0

∫

ω
ϕ

1
2 θ2 |∇w| ϕ

1
2 w dxdt + s2λ2

∫ T

0

∫

ω
ϕ3w2dxdt

)
,

for θ ∈ D(ω) such that 0 ≤ θ ≤ 1 and θ(x) = 1 on ω0 gives

2sλ2δ2
∫ T

0

∫

ω0

ϕ |∇w|2 dxdt ≤ 1
2

∫ T

0

∫

Ω
|P2w|2 dxdt + cs3λ4

∫ T

0

∫

ω
ϕ3 |w|2 dxdt,

Now, we should write the inequality below in terms of the solution u, since

|w|2 = e−2sη |u|2.
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10 Will-be-set-by-IN-TECH

So,

1
2

∫

Q
|P1w|2 dxdt +

1
2

∫

Q
|P2w|2 dxdt

+2sλ2
∫

Q
ϕ |∇w|2 dxdt + 2s3λ4

∫

Q
ϕ3e−2sη |u|2 dxdt

+2s2λ
∫

Σ
ϕ

∂η

∂t

∂ψ

∂ν
e−2sη |u|2 dγdt − 2s3λ3

∫

Σ
ϕ3|∇ψ|2 ∂ψ

∂ν
e−2sη |u|2 dγdt

−2
∫

Σ

∂w

∂t

∂w

∂ν
dγdt − 4sλ

∫

Σ
ϕ∇ψ.∇w

∂w

∂ν
dγdt

+2sλ
∫

Σ
ϕ

∂ψ

∂ν
|∇w|2 dγdt − 4sλ2

∫

Σ
ϕ|∇ψ|2 ∂w

∂ν
.w dγdt

≤ C

(∫

Q
e−2sη |g|2 dxdt + s3λ4

∫ T

0

∫

ω
ϕ3e−2sη |u|2 dxdt

)
.

Now from
∇u = esη (∇w − sλϕ∇ψw) ,

we deduce
∫

Q
ϕe−2sη |∇u|2 dxdt ≤ C

(∫

Q
ϕ |∇w|2 dxdt + s2λ2

∫

Q
ϕ3 |w|2 dxdt

)
.

We then use the explicit form of P1w and P2w, and get

1
s

∫

Q

1
ϕ

∣∣∣∣
∂w

∂t

∣∣∣∣
2

dxdt ≤ C

(∫

Q
e−2sη |g|2dxdt + s3λ4

∫ T

0

∫

ω
ϕ3|w|2dxdt

)
,

and
1
s

∫

Q

1
ϕ
|∆w|2 dxdt ≤ C

(∫

Q
e−2sη |g|2dxdt + s3λ4

∫ T

0

∫

ω
ϕ3|w|2dxdt

)
.

We sum up to finally have

2s3λ4
∫

Q
ϕ3e−2sη |u|2 dxdt + 4s2λ

∫

Σ
ϕ

∂η

∂t

∂ψ

∂ν
e−2sη |u|2 dγdt

−4s3λ3
∫

Σ
ϕ3|∇ψ|2 ∂ψ

∂ν
e−2sη |u|2 dγdt − 4s2λ3

∫

Σ
ϕ2|∇ψ|2 ∂ψ

∂ν
e−2sη |u|2 dγdt

+
∫

Σ

(
2s

∂η

∂t
− 4sλ2 ϕ|∇ψ|2 − 4s2λ2 ϕ2|∇ψ|2

)
e−2sη ∂u

∂ν
u

−2sλ
∫

Σ
ϕ

∂ψ

∂ν
e−2sη ∂u

∂t
u dγdt − 4sλ

∫

Σ
ϕ∇ψe−2sη∇u

∂u

∂ν
dγdt

+2sλ
∫

Σ
ϕ

∂ψ

∂ν
e−2sη |∇u|2 dγdt − 2

∫

Σ
e−2sη ∂u

∂t

∂u

∂ν
dγdt

≤ C

(∫

Q
e−2sη |g|2 dxdt + s3λ4

∫ T

0

∫

ω
ϕ3e−2sη |u|2 dxdt

)
.

Using the fact that u =
∂u

∂t

∣∣∣
Σ1

= 0, and
∂u

∂ν

∣∣∣
Σ2

= 0, we obtain (4.3).

Now we proceed as the following. We define

ϕ̃(x, t) =
e−λψ(x)

t(T − t)
,
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and

η̃(x, t) =
e2λ|ψ|∞ − e−λψ(x)

t(T − t)
.

Then
∇ϕ̃ = −λϕ̃∇ψ, ∇η̃ = λϕ̃∇ψ;

we still have the properties (4.1) and (4.2).

For s ≥ s0 and λ ≥ λ0, we define

w̃ (x, t) = e−sη̃(x,t)u (x, t) . (4.4)

We easily notice that
w̃ (x, 0) = w̃ (x, T) = 0. (4.5)

Calculating P̃w̃ = e−sη̃ g = e−sη̃
[
(∂t − ∆)(esη̃w̃)

]
, we set

P̃1w̃ + P̃2w̃ = g̃s, (4.6)

where

P̃1w̃ =
∂w̃

∂t
− 2sλϕ̃∇ψ∇w̃ + 2sλ2 ϕ̃|∇ψ|2w̃,

P̃2w̃ = −∆w̃ − s2λ2 ϕ̃2|∇ψ|2w̃ + s
∂η̃

∂t
w̃,

g̃s = e−sη̃ g + sλ2 ϕ̃|∇ψ|2w̃ + sλϕ̃ ∆ψ w̃.

We easily deduce the following result :

Proposition 2. There exists s0 > 0, λ0 > 0 and C a positive constant depending on Ω, ω, ψ, and T,
such that for all s ≥ s0, λ ≥ λ0, and for any fuction u of (3.1), we have

2s3λ4
∫

Q
ϕ̃3e−2sη̃ |u|2 dxdt − 4s2λ

∫

Σ2

ϕ̃
∂η̃

∂t

∂ψ

∂ν
e−2sη̃ |u|2 dγdt

+4s3λ3
∫

Σ2

ϕ̃3|∇ψ|2 ∂ψ

∂ν
e−2sη̃ |u|2 dγdt + 4s2λ3

∫

Σ2

ϕ̃2|∇ψ|2 ∂ψ

∂ν
e−2sη̃ |u|2 dγdt

+2sλ
∫

Σ2

ϕ̃
∂ψ

∂ν
e−2sη̃ ∂u

∂t
u dγdt + 4sλ

∫

Σ1

ϕ̃∇ψe−2sη̃∇u
∂u

∂ν
dγdt

−2sλ
∫

Σ
ϕ̃

∂ψ

∂ν
e−2sη̃ |∇u|2 dγdt

≤ C

(∫

Q
e−2sη̃

∣∣∣∣
∂u

∂t
− ∆u

∣∣∣∣
2

dxdt + s3λ4
∫ T

0

∫

ω
ϕ̃3e−2sη |u|2 dxdt

)
.

(4.7)

The proof is similar to the one of Proposition 1, we let it to the reader. We obtain from the
above Propositions 1 and 2 the following observability inequality :

Corollary 1. There is a positive constant C = C(Ω, ω, ψ, T) such that we have

∫

Q

1
θ2 |u|2 dxdt ≤ C

[ ∫

Q

∣∣∣∣
∂u

∂t
− ∆u

∣∣∣∣
2

dxdt +
∫ T

0

∫

ω
|u|2 dxdt

]
, (4.8)

where
1
θ2 = ϕ3e−2sη + ϕ̃3e−2sη̃ is a bounded weight function.
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Summing the terms in (4.3) and (4.7) we get the following :

2s3λ4
∫

Q

(
ϕ3e−2sη + ϕ̃3e−2sη̃

)
|u|2 dxdt

−4s2λ
∫

Σ2

(
ϕ

∂η

∂t
e−2sη − ϕ̃

∂η̃

∂t
e−2sη̃

)
∂ψ

∂ν
|u|2 dγdt

−4s3λ3
∫

Σ2

(
ϕ3e−2sη − ϕ̃3e−2sη̃

)
|∇ψ|2 ∂ψ

∂ν
|u|2 dγdt

−4s2λ3
∫

Σ2

(
ϕ2e−2sη − ϕ̃2e−2sη̃

)
|∇ψ|2 ∂ψ

∂ν
|u|2 dγdt

+2sλ
∫

Σ2

(
ϕe−2sη − ϕ̃e−2sη̃

) ∂ψ

∂ν

∂u

∂t
u dγdt

−4sλ
∫

Σ1

(
ϕe−2sη − ϕ̃e−2sη̃

)
∇ψ∇u

∂u

∂ν
dγdt

+2sλ
∫

Σ

(
ϕe−2sη − ϕ̃e−2sη̃

) ∂ψ

∂ν
|∇u|2 dγdt

≤ C
[ ∫

Q

(
e−2sη + e−2sη̃

) ∣∣∣∣
∂u

∂t
− ∆u

∣∣∣∣
2

dxdt

+s3λ4
∫ T

0

∫

ω

(
ϕ3e−2sη + ϕ̃3e−2sη̃

)
|u|2 dxdt

]
.

Now, it suffices to notice that ϕ = ϕ̃ and η = η̃ on Σ.

5. Instantaneous sentinels

In this part, we discuss of how to get instantaneous information (at fixed t = T ∈ [0,+∞[) on
pollution terms in systems of incomplete data in ecology and/or meteorology problems.

Here, the ecological system is affected by pollution in the boundary of the domain (a border of
an air pollution cloud for example). We verify that if the initial data is completely unknown,
the sentinel is nul. If there is some information on the initial data, the instantaneous sentinel
naturally exists if the control set is bigger than the one where the observation may be defined.

Finally, we give the characterization of the instantaneous sentinel with some remarks.

Using the techniques of the sections below and those in Miloudi Y. et al. (2009). We prove
the existence and characterization of a sentinel, which permits to identify the pollution
parameters at fixed time T. The problem we consider now is the following :

∂y

∂t
+ Ay + f (y) = 0 in Q :=]0, T[×Ω, (5.1)

where Ω ⊂ R
d is an open domain of regular boundary Γ = ∂Ω for instance, A represents a

second order elliptic operator such that akl = alk, akl ∈ C2(Ω̄), and ∑
d
i,j=1 aijηiηj ≥ c2|η|2, and

f : R → R is a (nonlinear) C1 function.

To (5.1) we should add initial and boundary conditions. It is in these conditions that we can
meet incomplete data. We assume that we know that y|t=0 is in a ball of L2(Ω) of center yo,
say ‖y(0, .)− yo(.)‖L2(Ω) ≤ τ, that we should write :

y(0) = yo + τŷo, (5.2)
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where ‖ŷo‖ ≤ 1, and where τŷo is the missing data. To the boundary condition ξ is added
a pollution term λξ̂ which is unknown, and which we want to identify. It appears on a part
Σ0 = Γ0 ⊂ Σ of the total boundary Σ =]0, T[×Γ, as we have :

y =

{
ξ + λ ξ̂ on Σ0,

0 on Σ\Σ0.
(5.3)

The question is to obtain information on the pollution λξ̂, not affected by the missing term
τŷo of the initial data.

Still, one can use the least square method : In the context of the above problem, it consists in
considering the unknowns {λξ̂, τŷo} = {v, w} as two control variables. At time T, the state
is then y(T, x; v, w), and we want this solution to be as close as possible to some measurement
mo. We consider then the distance J(v, w) = ‖y(v, w)− mo‖ in an appropriate norm and we
search for

inf
{v,w}

J(v, w)

where v and w are arbitrary. As we know, with this method, we can not seperate v and w.
The more suitable is then the Sentinel method (see Lions J.-L. (1992), Miloudi Y. et al. (2009),
Kernevez J.-P. (1997) and the references therein).

The state solution y(λ, τ) := y(t, x; λξ̂, τŷo). The observation is given in an observatory O ⊂
Ω, but here we observe y at fixed instant T :

yobs = mo. (5.4)

Now, we are given
ho ∈ L2(O) (5.5)

and
w ∈ L2(ω) (5.6)

where ω ⊂ Ω the open set of controls. We search for w, such that the mean function

S(λ, τ) =
∫

O
ho y(T, x; λ, τ) dx +

∫

ω
w y(T, x; λ, τ) dx

=
∫

Ω

(
hoχO +wχω

)
y(T, x; λ, τ) dx (5.7)

(here χO and χω denote the characteristic functions of O and ω respectively), is insensitive to
the missing data at the first order; i.e.

∂S
∂τ

(0, 0) = 0,

for λ = τ = 0, and such that

‖w‖L2(ω) is of minimal norm. (5.8)

The integral (5.7) is called sentinel, following the definition of Lions Lions J.-L. (1992).
The pollution sources in (5.3) can be considered as functionals whose position and nature are
known, but their amplitudes are however unknown. The goal is to estimate these amplitudes;
the other missing terms (in the initial data (5.2)) do not interest us.
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Remark 4. In Lions Lions J.-L. (1992), ω = O, so there exists always a sentinel (at least the one
where w = −ho). Then the problem is only to find w solution to (5.8). At last, we have to be sure that
w �= −ho.

Below, we use the sentinel method as formulated in Miloudi Y. et al. (2007) and Miloudi Y. et
al. (2009) and Nakoulima O. (2004), where the observation and the control have their support
in two different open sets. Indeed, one can observe somewhere and control elsewhere !

6. Instantaneous sentinel. Case of no information on the missing data

In this section, we extend the method of sentinels to the case of observation and control having
their supports in two different open sets. Moreover, we want information at precise time T
which is a difficult problem.

Denote by y(t, x; λ, τ) := y(λ, τ), the state solution of (5.1)-(5.3). We begin by noticing that
the solution y = y(λ, τ) satisfies the system :

⎧
⎨
⎩

L yτ = 0 in Q,
yτ(0) = ŷo in Ω,

yτ = 0 on Σ,

where yτ denotes the derivative

yτ =
∂y

∂τ
(0, 0)

and where L is the linear differential operator defined by

L =
∂

∂t
+ A + f ′(yo) Id

with yo = y(t, x; 0, 0) for λ = τ = 0. Then

∂S
∂τ

(0, 0) =
∫

Ω

(
hoχO +wχω

)
yτ(T) dx,

Remark 5. From above, the insensitive criterion (5) to the missing term τŷo is given by :

∫

Ω

(
hoχO +wχω

)
yτ(T) dx = 0.

Lemma 2. Let q be the solution to the following well-posed backward problem :

L∗q = 0 in Q, (6.1)

q(T) = hoχO +wχω in Ω, (6.2)

q = 0 on Σ, (6.3)

where L∗ = − ∂
∂t + A∗ + f ′(yo) Id is the adjoint operator. Then, the existence of an instantaneous

sentinel insensitive to the missing data (i.e. such that (5) holds), is equivalent to the null-controllability
problem (6.1)-(6.3) with

q(0) = 0 in Ω. (6.4)
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Proof - Multiplying (6.1) by yτ and integrating by parts we obtain :
∫

Q
(L∗q) yτ dxdt =

∫

Q
qLyτ dxdt −

∫

Ω
q(T)yτ(T) dx

+
∫

Ω
q(0)yτ(0) dx −

∫

Σ

∂q

∂ν
yτ dσ +

∫

Σ

∂yτ

∂ν
q dσ = 0. (6.5)

But, yτ is solution to (6), and q verifies (6.2) and (6.3). Hence

−
∫

Ω

(
hoχO +wχω

)
yτ(T) dx +

∫

Ω
q(0) ŷo dx = 0.

If a sentinel exists, then we have (5). So it remains :
∫

Ω
q(0) ŷo dx = 0 for every ŷo ∈ L2(Ω),

and consequently q(0) = 0 in Ω. The converse is obvious.

Corollary 2. If there is no information on the missing data, then the instantaneous sentinel is nul.

Proof - The proof is easy and lies on the backward uniqueness property (see Lions-Malgrange
Lions J.-L. & Malgrange B. (1960)) : If an instantaneous sentinel exists, then from the above
Lemma we have (6.1), (6.3) and (6.4). We deduce that

q ≡ 0 in Q.

Thus, in particular for t = T, we have q(T) = 0. So that hoχO + wχω = 0 in Ω, and hence -as
in Lions Lions J.-L. (1992)- the sentinel is nul.

6.0.0.1 Information given by the sentinel

We briefly show how (5) and (5.8) are sufficient to get information on the pollution term λξ̂.
We write

S(λ, τ) ≃ S(0, 0) + λ
∂S

∂λ
(0, 0), for λ, τ small.

Using (5.4), we have

λ
∂S

∂λ
(0, 0) =

∫

Q
(h0χO +wχω)yλ dxdt ≃

∫

Q
(h0χO +wχω)(mo − y0) dxdt, (6.6)

where the derivative
yλ = (∂y/∂λ) (0, 0)

only depends on ξ̂ and other known data. Consequently, the estimates (6.6) contain the
information on λξ̂. Indeed, yλ is solution to the well-posed problem

L yλ = 0 in Q, yλ(0) = 0 in Ω, and yλ = ξ̂ on Σ. (6.7)

Multiplying by q and integrating by parts, we obtain
∫

Q
λξ̂ dxdt =

∫

Q
(h0χO +wχω)(mo − y0) dxdt.

Remark 6. From the previous corollary, we see that in order to get a non nul sentinel, we need more
information (on the structure) of the missing initial data. We will need here the assumption (7) below.
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7. Instantaneous sentinel. Case of partial information on the missing data

In this section, we consider the case of the incomplete initial data :

y(0) = yo +
N

∑
i=1

τi ŷo
i (7.1)

where ŷo
i , 1 ≤ i ≤ N are linearly independent in L2(Ω), and belong to a vector subspace of N

dimension, which we denote by Y = 〈ŷo
1, ŷo

2, · · · , ŷo
N〉. The parameters τi are unknown and are

supposed small.

If we denote by yτi =
∂y

∂τi
(0, 0) for λ = τi = 0, 1 ≤ i ≤ N, then yτi is solution with yτi (0) = ŷo

i .

Now, we assume the following :
ω ∩O �= ∅

and we define the instantaneous sentinel by :

S(λ, τ) =
∫

Ω

(
hoχO∩ω +wχω

)
y(T; λ, τ) dx = 0

with τ = (τ1, · · · , τN). Hence, looking for w such that the sentinel S is insensitive to the
missing terms τi ŷ

o
i , is finding w such that :

∂S
∂τi

(0, τi = 0) =
∫

Ω

(
hoχO∩ω +wχω

)
yτi (T) dx = 0, 1 ≤ i ≤ N. (7.2)

Lemma 3. The existence of an instantaneous sentinel insensitive to the missing terms is equivalent to
the existence of a unique pair (w, q) such that we have :

⎧
⎨
⎩

L∗q = 0 in Q,
q(T) = hoχO∩ω +wχω in Ω,

q = 0 on Σ.
(7.3)

and such that
q(0) ∈ Y⊥. (7.4)

Proof - Multiplying the first equation in (7.3) by yτi and integrating by parts, we find :

−
∫

Ω
q(T) yτi (T) dx +

∫

Ω
q(0)ŷo

i dx = 0,

since yτi is solution of (6). And so,

−
∫

Ω

(
hoχO∩ω +wχω

)
yτi (T) dx +

∫

Ω
q(0)ŷo

i dx = 0, 1 ≤ i ≤ N.

But the sentinel should satisfy (7.2). Hence,
∫

Ω
q(0)ŷo

i dx = 0, for all 1 ≤ i ≤ N.

So that
q(0) ⊥ ŷo

i , 1 ≤ i ≤ N if and only if q(0) ∈ Y⊥,

where Y⊥ is the orthogonal of Y in L2(Ω).
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Remark 7. The controllability problem (7.3)-(7.4) has at least a solution: Given ho ∈ L2(O), the
control ’solution’ w is given by

w =

{
−ho in O ∩ ω,

0 in ω \ (O ∩ ω),
(7.5)

and so, the set of solutions to (7.3)-(7.4) is not empty.

8. Penalization

Here we are interested in the problem (5.8). We consider the optimization problem :

(P) min
(w,z)∈A

‖w‖L2(ω)

with

A =

{
(w,q) such that

∣∣∣∣
L∗q = 0 in Q, q(0) ⊥ ŷo

i 1 ≤ i ≤ N,
q(T) = hoχO∩ω +wχω in Ω, q = 0 on Σ

}
.

Theorem 3. There is a unique pair (ŵ, q̂) solution to the problem (P).

Proof - The domain A is no empty and is closed. The mapping : w −→ ‖w‖L2(ω) is
continuous, coercitive and strictly convex. We deduce that there exists a unique solution to
(P) denoted by (ŵ, q̂) ∈ A, which satisfies

‖ŵ‖L2(ω) ≤ ‖w‖L2(ω) ∀ (w, q) ∈ A.

We now use the penalization method in order to characterize the optimal control (ŵ, q̂). Let
be ε > 0, we introduce the function

Jε(w, q) =
1
2
‖w‖2

L2(ω) +
1
2ε

‖L∗q‖2
L2(Q),

and we consider the problem (Pε) given by

(Pε) min
(w,q)∈U

Jε(w, q)

with

U =

{
(w,q) such that

∣∣∣∣
L∗q ∈ L2(Q) in Q, q(0) ⊥ ŷo

i 1 ≤ i ≤ N,
q(T) = hoχO∩ω +wχω in Ω, q = 0 on Σ

}
.

The following proposition gives the existence of a solution to the penalized problem (Pε).

Proposition 3. The problem (Pε) has a unique solution denoted by (wε, qε).

Proof - We have A ⊂ U . Moreover, A is nonempty by the previous theorem. Consequently,
U is nonempty and closed. The cost function Jε is continuous, coercitive and strictly convex.
Hence, problem (Pε) has a unique solution.
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We now prove the following proposition.

Proposition 4. Let be (wε, qε) the unique solution of (Pε), then for ε −→ 0 we obtain

{
wε ⇀ ŵ weakly in L2 (ω) ,
qε ⇀ q̂ weakly in W (0, T) ,

where W(0, T) =
{

q ∈ C(0, T); q(t) ∈ L2(Ω)
}

.

Proof - Since (wε, qε) is solution to (Pε) then

Jε(wε, qε) ≤ Jε(w, q) ∀(w, q) ∈ A.

In particular (ŵ, q̂) ∈ A ⊂ U is solution to (Pε). Then :

‖wε‖L2(ω) ≤ ‖ŵ‖L2(ω) ≤ C and so ‖L∗qε‖L2(Q) ≤ C
√

ε,

where C is a positive constant which is not the same at each time.

Knowing that (wε, qε) ∈ U , we deduce

‖qε‖H2,1(Q) ≤ C.

Then, there is a subsequent (wε, qε), and two functions w0 ∈ L2(ω) and q0 ∈ H2,1(Q) such
that {

wε ⇀ w0 in L2(ω),
qε ⇀ q0 in H2,1(Q).

Now as H2,1(Q) →֒ L2(Q) with compact injection, the pair (w0, q0) satisfies the following :

L∗q0 = h + k0χω in Q, q0(T) = q0 = 0 in Ω, q0 = 0 in Σ. (8.1)

But,
1
2
‖w0‖2

L2(ω) ≤ lim
ε→0

inf Jε(wε, qε) ≤ Jε(ŵ, q̂) ≤ 1
2
‖ŵ‖L2(ω).

Since (ŵ, q̂) is the unique solution of (P), then ŵ = w0. Finally, as q0 satisfies (8.1), we obtain
q̂ = q0.

9. Concluding remarks

From the numerical aspect, there where some results in the litterature. In B.-E. Ainseba et
al. Ainseba B.E. et al. (1994a)Ainseba B.-E. et al. (1994b), the authors compare numerically the
least square method and the sentinel one during time [0, T[ and find that they are equivalent in
the linear case f (y) = C y. However, the sentinel approach has an advantage in case of several
measures -as it is really the case in general-; Indeed, it suffices to calculate a simple integral to
identify the parameter each time, since one has to minimize a quadratic cost functional for the
least square approach in order to determine both the parameter and the missing terms.

In the nonlinear case and when the observation is noisy, the least square method costs a
lot numerically and can fail after a large number of iterations, while the sentinel method is
relatively robust face to the perturbations of the observation. Moreover, the calculus of w
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does not depend on the observation and then makes the method efficient in case of several
measures. We refer to Ainseba B.E. et al. (1994a)Ainseba B.-E. et al. (1994b) and to the book of
J.-P. Kernevez Kernevez J.-P. (1997) for further information and numerical details.

As we have seen, the existence of an instantaneous sentinel is equivalent to controllability
problems. In the case of no supplementary information on the missing data (that we do not
want to identify), the sentinel is nul as in Lions Lions J.-L. (1992).

In the case where we have some more information on the structure of the missing data
(which becomes incomplete data), we proved that the existence of the instantaneous sentinel is
equivalent to a nontrivial controllability problem, which has a solution under the assumption
O ∩ ω �= ∅.
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