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1. Introduction 

The vascular endothelium is the thin monolayer of specialized cells that line the blood 

vessels of the cardiovascular system. This endothelium is more than a simple protective 

barrier since it possesses anticoagulatory properties, mediates the metabolites exchange and 

regulates the vascular tone and homeostasis maintenance. These functions are finely tuned 

by endothelial cells that, in the absence of any stimuli, remain in a quiescent stage (Conway 

& Carmeliet, 2004). In fact, endothelial cells occasionally divide in a normal vessel, 

displaying a very low turnover rate except for localized areas (Foteinos et al., 2008). Thus, 

the endothelium is quite sensitive to a variety of signals including shear stress and 

circulating factors that lead to endothelial activation. As a result of their own physiology 

along the lifespan, endothelial cells progressively accumulate reactive oxygen species and 

pro-oxidant metabolites due to an increased oxidative stress, damages in DNA and 

advanced cellular replication involving shortening of telomeres. Altogether, these 

alterations lead endothelial cells to reach senescence (Brandes et al., 2005; Foreman & Tang, 

2003), which has been proposed to be at the cellular basis of most of the vascular pathologies 

associated with ageing, such as atherosclerosis or hypertension (Minamino & Komuro, 2008; 

Rodríguez-Mañas et al., 2009). 

The major aspect of endothelial physiology implies the growth or formation of new blood 

vessels from pre-existing ones, process named angiogenesis which is mainly induced by 

metabolic requests (Fraisl et al., 2009). Angiogenesis plays a key role from the first steps 

during the embryonic development to the adult stage, and is involved in numerous 

physiological processes such as wound repair or the growth of the tissues (Carmeliet & Jain, 

2011). However, angiogenesis and vascular remodelling decline with age and several lines 

of evidence indicate that ageing and endothelial dysfunction progress in parallel (Brandes et 

al., 2005; Ferrari et al., 2003; Minamino et al., 2004). In this sense, numerous efforts are 

addressed to elucidate the molecular mechanisms that underlie vascular ageing.  

2. TGF-β in angiogenesis - Role of endoglin 

The angiogenesis process consists of two separate but balanced phases, activation and 
resolution, that are finely arranged by a suite of cytokines, among which the transforming 
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growth factor (TGF)-┚ plays a dual role (Pardali et al., 2010). TGF-┚ is the prototypic 
member of a large family of multifunctional and evolutionarily conserved cytokines, 
including also activins and bone morphogenetic proteins (BMPs). Upon proteolytic 
activation, TGF-┚ circulates as a 25 kDa homodimer that elicits its cellular functions by 
binding to a membrane complex of type II (T┚RII) and type I (T┚RI or ALKs) receptors with 
cytoplasmic serine-threonine kinase activity (Kang et al., 2009). Endothelial cells express two 
different T┚RIs, named ALK5 and ALK1, with distinct affinity for the ligand and different 
signalling pathways mediated mainly by Smad proteins (Smad2/3 and Smad1/5/8, 
respectively) (Massague et al., 2005). Moreover, endothelial cells also express endoglin, or 
CD105, an auxiliary TGF-┚ receptor that modulates the balance between ALK1 and ALK5 
signalling. Endoglin is mainly expressed as a homodimeric protein of 180 kDa and is 
associated to the activation phase of angiogenesis, acting as a modulator between both 
phases. In this context, endoglin interacts with ALK1 and promotes the TGF-┚/ALK1 
signalling pathway (Blanco et al., 2005; Lebrin et al., 2004). 

The TGF-┚/endoglin pairing has been studied in different contexts such as differentiation 

(Tang et al., 2011), cancer (Bernabeu et al., 2009; Perez-Gomez et al., 2010) and other 

pathologies including liver fibrosis (Meurer et al., 2011) or preeclampsia (Venkatesha et 

al., 2006). However, endoglin plays a major role in angiogenesis as well as in vascular 

remodelling and homeostasis (Lopez-Novoa & Bernabeu, 2010; ten Dijke et al., 2008). 

Heterozygous mutations in the endoglin gene (ENG) are responsible for the vascular 

dysplasia named hereditary haemorrhagic telangiectasia (HHT) type 1 (McAllister et al., 

1994; Shovlin, 2010), a rare genetic disease with autosomal dominant inheritance. These 

mutations lead to the development of abnormal vascular structures that are the basis of 

the characteristic HHT symptoms, including frequent and recurrent nosebleeds, 

telangiectases in the nasal and gastrointestinal tracts and large arteriovenous 

malformations in different organs such as lung, liver or brain (Mahmoud et al., 2010; 

Shovlin, 2010). Nonetheless, the HHT symptoms are not present at birth and normally 

appear during adolescence, getting worse with age. This is in line with the functional role 

of endoglin in angiogenesis and with previous observation that angiogenesis becomes 

impaired with ageing (Rivard et al., 1999). 

2.1 Two alternatively spliced endoglin isoforms 

Most of published studies about endoglin are referred to L-endoglin (long endoglin) that is 

the predominantly expressed isoform. However, the expression of a short variant (S-

endoglin) was described first in humans (Bellon et al., 1993) and later in mouse (Perez-

Gomez et al., 2005). In humans, both isoforms share the identical large extracellular region 

and the transmembrane domain, so that the only difference resides in their cytoplasmic tails 

(Figure 1A). In the case of L-endoglin, this region is composed by 47 amino acids with a high 

frequency of serine and threonine residues susceptible to be phosphorylated. Also, the 

sequence serine-methionine-alanine, SMA, in the C-terminal end is a docking site for 

proteins with a PDZ domain and is involved in the cytoskeleton organization (Koleva et al., 

2006). By contrast, the sequence of the S-endoglin cytoplasmic tail is 14 amino acids long 

and contains only one serine and threonine residues; also the last 7 residues are specific for 

this isoform (Figure 1B). These data suggest that L-endoglin and S-endoglin may elicit 

different functional effects on the endothelial cell. 
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Fig. 1. The two endoglin isoforms. (A) The electron microscopy density map (grey) of the 
endoglin extracellular region shows the overall structure. The backbone of a theoretical 
atomic model of the endoglin monomer is fitted inside (adapted from Llorca et al., 2007). 
This structure is common to both endoglin variants. The transmembrane domain (red) and 
cytoplasmic tails (brown, L; blue, S) are schematized. (B) The amino acid sequence of the 
cytoplasmic domain is detailed for both isoforms. (C) The endoglin pre-mRNA is 
represented in the middle of the mature transcripts that originate each isoform. The 
retention of the final intron by an alternative splicing process leads to S-endoglin expression. 

S-endoglin arises as the result of an alternative splicing mechanism by which the last intron, 
between exons #13 and #14, is retained in the mature mRNA (Figure 1C). Consequently, an 
early stop codon appears in the open reading frame and truncates the mature protein in the 
cytoplasmic region. Although this mechanism of intron retention normally involves a rapid 
degradation by the nonsense-mediated decay machinery (Lareau et al., 2004; Nott et al., 
2003), under certain conditions it may also lead to a biologically active isoform (Sakabe & de 
Souza, 2007); and this is the case of endoglin. Thus, when endothelial cells become senescent 
during the ageing process, they show an up-regulation of S-endoglin (Blanco et al., 2008). At 
this senescent stage, both endoglin isoforms are co-expressed likely forming heterodimers, 
as it occurs in mice (Perez-Gomez et al., 2005), and some of the cellular responses to TGF-┚ 
are oppositely regulated by each isoform. Indeed, the S-endoglin increase has an 
antiangiogenic role in the blood vessels and contributes to vascular pathology (Blanco et al., 
2008; Perez-Gomez et al., 2005; Velasco et al., 2008). 
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3. Endothelial senescence and TGF-β 

It is well known that ageing per se is the major risk factor for the development of 
cardiovascular diseases. Thus, senescence has been widely and mainly analyzed in in vitro 
studies but there are also evidences that this process takes place in vivo (Erusalimsky & 
Kurz, 2005; Minamino & Komuro, 2007). The first evidence of cellular senescence in primary 
cultures in vitro is the deceleration in the proliferation, that is, an increase in the doubling 
time of the cell population. In parallel, cells experience morphological changes along theses 
passages that involve the augment of the cellular size and shape. However, these 
observations are usually complemented with a useful tool based on the abnormal behaviour 
associated with senescent cells of the lysosomal hydrolase ┚-galactosidase. Thus, the 
senescence-associated ┚-galactosidase (SA ┚-gal) activity at pH 6 is widely accepted as an 
easily detectable senescence histochemical marker (Dimri et al., 1995). 

Endothelial senescence is a cellular process that is clearly linked to both ageing and the 
development of vascular pathologies as well (Brandes et al., 2005; Erusalimsky, 2009; 
Minamino & Komuro, 2007). Basically, senescence constitutes a stress and damage response 
phenomenon that involves a permanent growth arrest (Campisi & d'Adda di Fagagna, 
2007). Consequently, senescent cells undergo diverse changes in gene and protein 
expression that lead to an impairment of cellular functions (Foreman & Tang, 2003; Young & 
Narita, 2009). Thus, these changes usually affect to the endothelial phenotype favouring a 
pro-inflammatory, pro-atherosclerotic, or a prothrombotic state (Erusalimsky, 2009). 

Here, TGF-┚ plays an important role owing to its ability to prompt senescence in a variety of 
cell types (Cipriano et al., 2011; Kordon et al., 1995; Tremain et al., 2000; van der Kraan et al., 
2011; Wu et al., 2009). In the vascular context, it has been reported, e. g., elevated levels of 
TGF-┚ in the aging varicose veins that likely favour the fibrous process and the consequent 
venous insufficiency (Pascual et al., 2007). In this sense, the profibrotic effect of TGF-┚ is 
mediated by the stimulation via Smad3 signalling of the plasminogen activator inhibitor 
(PAI)-1 expression, a key regulator of the synthesis and deposition of the extracellular 
matrix in the tissue homeostasis (Ghosh & Vaughan, 2011). Thus, the increase of TGF-┚ up-
regulates PAI-1 expression, which contributes to the accumulation of collagen and other 
extracellular matrix components. This PAI-1 increase is also in line with the decrease of the 
antithrombogenic properties of a senescent endothelium due to the inhibition of the 
urokinase- and tissue-type plasminogen activator (uPA and tPA, respectively)/plasmin axis 
(Comi et al., 1995; Schneiderman et al., 1992). 

3.1 Replicative senescence 

Senescence was initially considered to reflect the finite capacity for division that normal 
diploid cells exhibit when propagated in culture. This statement is based on the successive 
rounds of cell division that imply the progressively shortening and eventual dysfunction of 
telomeres, the physical ends of chromosomes, in a phenomenon known as Hayflick’s limit 
(Hayflick, 2003; Shay & Wright, 2007). Thus, the down-regulation of telomerase, the enzyme 
responsible for maintaining the telomeres length, is clue for the senescence program. 
Besides, because telomerase is re-activated in the majority of neoplastic processes, it is 
postulated that inhibiting telomerase activity should result in senescence induction by 
telomere shortening which can cause the death of cancer cells (Folini et al., 2011). 
Interestingly, the senescence inducer TGF-┚ down-regulates the telomerase activity. Thus, 
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upon TGF-┚ treatment, Smad3 is able to interact with the transcription factor c-myc, so 
repressing the promoter of the hTERT gene, encoding the catalytic subunit of telomerase 
(Figure 2). Thus, the c-myc activity is blocked in the Smad3 complexes which negatively 
affects to the cell cycle (Li & Liu, 2007; Li et al., 2006). In addition, this repression of the 
hTERT promoter mediated by TGF-┚ can be alternatively reinforced by the activation of the 
TGF-┚ activated kinase (TAK)-1 pathway that abrogates the transcriptional activity of Sp1 
on the hTERT promoter (Fujiki et al., 2007). 

Replicative

senescence

Stress-induced

senescence

p53
↑TGF-β

↑ROS

↓hTERT ↑ROS
Hayflick’s limit

Young EC

(SA-β-gal-)

Senescent EC

(SA-β-gal+)

↑PAI-1

↓Id1

 

Fig. 2. The endothelial senescence. Endothelial cells extensively cultured in vitro enlarge 
their size and shape, showing a positive blue staining for the SA-┚-gal activity. Endothelial 
senescence is reached by, at least, two different routes, including replicative or oxidative 
stress-induced. Both pathways involve the activation of p53 and are characterized by an 
increase in PAI-1 expression and the repression of Id1. 

The characteristic and irreversible growth arrest observed in senescent cells occurs in the 
transition from phase G1 to phase S of the cell cycle and is dependent on the retinoblastoma 
family proteins, playing the tumour suppressor p53 a key role which senses the telomeric 
DNA damage  (Wesierska-Gadek et al., 2005). In this transition, the abolition of p53 
expression interferes with the senescence process that would be related to the low levels of 
PAI-1, one of the p53 target genes (Kortlever et al., 2008). Conversely, it is well known that 
the p53 overexpression or activation is able to arrest the cell cycle and launch the senescence 
program, suggesting that this process could be useful in cancer therapy (Chen & Goligorsky, 
2006; Ewald et al., 2010; Rosso et al., 2006; Sugrue et al., 1997). Furthermore, it was 
demonstrated that the prolonged treatment with interferon (IFN)-┛ induces cellular 
senescence in endothelial cells, involving cell cycle arrest and an up-regulation of p53 and 
p21 proteins cells (Kim et al., 2009). 

Another TGF-┚ target protein that is associated with endothelial senescence is the helix-
loop-helix (HLH) transcription factor Id1, or inhibitor of DNA binding 1. Id1 lacks a basic 
DNA-binding domain, but is able to form heterodimers with other HLH proteins, thereby 
inhibiting DNA binding, a process that is essential for cellular proliferation (Benezra et al., 
1990). In epithelial cells, TGF-┚ induces the formation of a Smad3/ATF3 heteromeric 
complex that represses the Id1 expression and negatively regulates the cell cycle (Kang et al., 
2003). Hence, the decrease in the Id1 expression is considered a biomarker of endothelial 
senescent cells (Tang et al., 2002). 
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3.2 Oxidative stress-induced senescence 

Endothelial senescence can also be triggered by telomere-independent events that in general 

involve damages in the DNA. In this sense, the oxidative stress is a major stimulus for the 

induction of this type of senescence, which is due to the generation of reactive oxygen 

species (ROS, including oxygen ions and peroxides) in the mitochondria (Collins & Tzima, 

2011; Erusalimsky & Skene, 2009). Thus, the cellular metabolism is the central source of 

ROS, but often they have an extracellular origin such as the one induced by radiation. In any 

case, ROS can either provoke or accelerate the development of senescence by damaging the 

DNA (Figure 2), which triggers multiple response mechanisms that usually act through the 

retinoblastoma protein family pathways, the final effectors of the senescence program 

(Campisi & d'Adda di Fagagna, 2007; Erusalimsky, 2009). 

In cell culture, ROS induce an acute form of senescence termed stress-induced premature 

senescence, which does not require extensive cell culture but which resembles somehow the 

replicative one (Toussaint et al., 2000). This type of senescence is relatively easy to analyze in 

in vitro assays because the sole treatment with hydrogen peroxide (H2O2) for a short lapse of 

time is enough to prompt this type of senescence (Chen et al., 1998). By contrast, using 

antioxidant agents such as the grape stilbenoid resveratrol protect from the oxidative stress-

induced premature senescence (Kao et al., 2010). Also, several lines of evidence show that 

ROS can interact and deplete the nitric oxide (NO) generated by the endothelium in the 

vasodilator responses, so contributing to the endothelial dysfunction associated to ageing 

(Grisham et al., 1998; Steiner et al., 2002).  This is in line with the availability of NO-donors 

to inhibit endothelial cell senescence (Hayashi et al., 2006). In fact, comparing elderly with 

young adults one can find that the NO levels, or its bioavailability, are decreased in the first 

group but, interestingly, without any difference regarding to the expression levels or 

activation state of the endothelial nitric oxide synthase (eNOS), the enzyme responsible of 

the NO generation (Sun et al., 2004; Taddei et al., 2001). In parallel, this decrease in the NO 

levels attenuates the negative interference that it exerts on the TGF-┚ signalling pathway 

(Saura et al., 2005), which contributes to prompt the senescence program. 

On the other hand, radiation is an exogenous trigger for ROS. In human skin fibroblasts, 

repeated exposure to ultraviolet-B light at subcytotoxic level is able to prompt premature 

senescence. Interestingly, this effect is mediated by the increase in the TGF-┚ expression and 

consequently by its downstream signalling pathway (Debacq-Chainiaux et al., 2005). In the 

vascular context, this source of ROS has been poorly studied beyond the methodological 

interest to induce premature senescence because endothelial cells enter rapidly in apoptosis 

due to their high sensitivity to radiation (Paris et al., 2001). In this regard, a recent study has 

demonstrated that ionizing radiation suppresses angiogenesis in mice and this effect is 

mediated through the TGF-┚/ALK5-dependent inhibition of endothelial cell sprouting 

(Imaizumi et al., 2010). 

4. Induction of S-endoglin and its role in endothelial senescence 

The molecular changes involved or associated to the senescent program not only concern to 

the induction or repression of a specific set of genes. Many of the changes described in the 

literature report post-translational modifications, e. g., the advanced glycation endproducts 
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(AGEs) which have been implicated in age-related disease and aging itself; as well as the 

p53 acetylation in stress-induced senescence (Furukawa et al., 2007). In addition, a growing 

body of evidence supports the involvement of the post-transcriptional modifications that 

occur in senescence, i. e., the alternative splicing processes associated with senescence 

(Harries et al., 2011; Meshorer & Soreq, 2002). Thus, alterations in the splicing pattern have 

been described for several age-related diseases, such as the Hutchison Gilford progeria 

syndrome (Eriksson et al., 2003), or the Alzheimer’s disease-related tauopathies (Chen et al., 

2010). 
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Fig. 3. S-endoglin expression in senescence. (A) The expression of S-endoglin in blood 
vessels can be revealed by in situ hybridization in the endothelium of human coronary 
artery (black arrow) and in some smooth muscle cells (red arrow). (B) The increase in the 
percentage of senescent endothelial cells in vitro (blue graph) is concomitant with the 
induction of S-endoglin (red graph). (C) Primary cultures of human umbilical vein 
endothelial cells (HUVECs) maintained in vitro along passages co-express both endoglin 
isoforms comparing young (Y) versus senescent (S) cells in RT-PCR assays. In parallel, PAI-1 
is increased, while Id1 and telomerase (hTERT) are down-regulated in senescent cell. As a 
control, the expression levels of the TGF-┚ type I receptors ALK1 and ALK5 are not altered. 
(Figure adapted from Blanco et al., 2008). 

Nonetheless, little is known about the role of splicing in the vascular context during 

senescence. A recent study demonstrates that TGF-┚ induces the distal splice-site selection 

leading to an antiangiogenic variant of the vascular endothelial growth factor (VEGF) 

(Nowak et al., 2008), and this could be one of the reasons why there is a reduced capability 

to form tubular-like structure by senescent endothelial in vitro (Chang et al., 2005). 

As described above, the role of TGF-┚ in senescence has been clearly established, 
modulating specific intracellular effectors and leading to the cell growth arrest. In a first 
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step, TGF-┚ binds to the specific receptor complex at the endothelial cell surface. Then, the 
signal is transmitted into the cytoplasm by different pathways depending on the type I 
receptor present in the complex. Thus, ALK5 signals via Smad2 and Smad3, whereas ALK1 
mainly activates Smad1 and Smad5. In the TGF-┚ receptor complex, the presence of the 
predominantly expressed isoform, L-endoglin, favours the ALK1/Smad1 pathway and is 
related to the activation phase of the angiogenesis (Blanco et al., 2005; Lebrin et al., 2004). 
However, a post-transcriptional change during endothelial senescence, such as the retention 
of the last and small intron in the endoglin mRNA, has important consequences. Thus, the 
up-regulation of S-endoglin in vitro and in vivo is clearly associated with the ageing (Figures 
3A and 3B). The co-expression of S- and L-endoglin in the senescent endothelial cells is able 
to tilt the angiogenic balance toward the resolution phase (ALK5/Smad3 pathway) in 
detriment of the ALK1/Smad1 route (Blanco et al., 2008). Also, S-endoglin induces the up-
regulation of the PAI-1 and the repression of Id1, changes clearly associated to the cell cycle 
arrest in senescence (Figure 3C and 4). 

 Angiogenesis 
 Fibrosis  

 Hypertension 

Senescence

L-endoglin

ALK5 ALK1

Smad3 Smad1

S-endoglin

ALK5 ALK1

Smad3 Smad1

Id1

eNOS

 COX-2

PAI-1/ECM synthesis

 eNOS

COX-2

 

Fig. 4. Functional effects of S-endoglin in endothelial senescence. The S-endoglin up-
regulation in aged endothelial cells promotes the ALK5/Smad3 signalling pathway. As a 
consequent, the vascular physiology is affected decreasing the angiogenesis, increasing the 
fibrosis and unbalancing the eNOS/COX-2 system which is related to hypertension. (Figure 
adapted from Blanco et al., 2008) 

Furthermore, transgenic mice that overexpress the human S-endoglin isoform (S-Eng+) 
experience a significant increase in the mean arterial pressure and a failure in the control on 
the NO-dependent vascular homeostasis, similarly to what happens in the endoglin 
deficient mouse model (Eng+/-) that resembles the HHT disease (Blanco et al., 2008; 
Santibanez et al., 2007). Supporting this, a common compensatory mechanism takes place in 
S-Eng+ and Eng+/- mice involving the up-regulation of the cyclooxigenase (COX)-2 enzyme 
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(Blanco et al., 2008; Jerkic et al., 2006). Taken together, the induction of S-endoglin during 
endothelial senescence might be at the basis of the development of cardiovascular 
pathologies associated with ageing, including atherosclerosis and hypertension (Figure 4). 

4.1 Regulation of endoglin alternative splicing in senescence 

Briefly, the alternative splicing is a molecular process by which organisms notably increase 
the diversity and functionality of their proteome from a finite number of genes. This process 
is carried out by the spliceosome, a huge ribonucleoprotein complex that works with 
amazing fidelity: i) skipping or shuffling exons; ii) selecting alternative splice sites; or iii) 
retaining introns (Graveley, 2001; Kwan et al., 2007). In humans, there are two distinct 
spliceosome complexes, named the major (M-Sp) and the minor (m-Sp) spliceosome. The M-
Sp is involved in the vast majority of the splicing events and comprises five snRNPs named 
U1, U2, U4, U5, and U6 and a multitude of non-snRNP splicing factors (Jurica & Moore, 
2003; Matlin et al., 2005; Zhou et al., 2002). Likewise, the m-Sp is composed by four unique 
snRNPs, U11, U12, U4atac, and U6atac, besides the U5 snRNP shared by both spliceosomes 
(Hall & Padgett, 1996; Tarn & Steitz, 1996). The m-Sp was first associated with the 
maturation of the so-called non-canonical introns but its role on standard splicing has been 
recently reported (Sheth et al., 2006; Will & Luhrmann, 2005). Interestingly, the difference 
between the major spliceosome and the minor spliceosome is their spatial segregation. 
While the M-Sp is in the nucleus, the m-Sp can be detected in the cytosol (Caceres & Misteli, 
2007; Konig et al., 2007). In both cases, the spliceosome assembly is driven by a set of 
snRNPs that sequentially recognize the 5’ and 3’ splice sites, as well as the branch point 
element in between them (Burge et al., 1999). These snRNPs constitute the basal machinery 
of the spliceosome, besides a number of essential proteins that takes part in the spliceosome 
assembly. Moreover, there are several groups of auxiliary proteins that may regulate the 
alternative splicing. These splicing factors, or trans-elements, recognize binding sites, or cis-
elements, spatially distributed inside the introns or exons and act as silencers or enhancers 
(Moore & Silver, 2008; Singh & Valcarcel, 2005; Sperling et al., 2008; Wang et al., 2006). 
Unfortunately, the alternative splicing during endothelial senescence has been poorly 
studied so far, but its importance has been suggested by the lifespan extension provoked by 
the overexpression of the splicing factor SNEV (Voglauer et al., 2006). 

One of the best characterized groups of splicing factors is the serine/arginine (SR) protein 
family, from which the alternative splicing factor/splicing factor 2 (ASF/SF2) is the 
prototypical member (Graveley, 2000). ASF/SF2 is involved in both constitutive and 
alternative splicing processes. Although ASF/SF2 is mainly found in the nuclear speckles, it 
continuously shuttles between the nucleus and the cytoplasm depending on the 
phosphorylation and/or methylation states, which in turn determines its activity (Sanford et 
al., 2008; Sanford et al., 2005; Sinha et al., 2010). In this context, it has been recently reported 
the role of ASF/SF2 in the regulation of the S-endoglin intron retention during endothelial 
senescence (Blanco & Bernabeu, 2011). In endothelial senescent cells, the subcellular pattern 
of ASF/SF2 is mainly cytoplasmic, where ASF/SF2 interferes with the minor spliceosome 
inhibiting the elimination of the last intron of endoglin mRNA. The role of cytoplasmic 
ASF/SF2 as a senescent inductor is supported by its antiangiogenic properties, because the 
inhibition of the ASF/SF2 phosphorylation promotes its cytoplasmic localization and this is 
associated with increased expression levels of the antiangiogenic isoform VEGF165b 
(Nowak et al., 2010). 
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Fig. 5. Regulation of the alternative splicing of endoglin in senescent endothelial cells. In this 
hypothetical model, the last intron of the ENG gene is eliminated in the mature mRNA, so 
that L-endoglin is the predominantly expressed isoform. In this mRNA processing, both 
spliceosomes (nuclear M-Sp and cytoplasmic m-Sp) can be involved. However, in senescent 
endothelial cells, the splicing factor ASF/SF2 (green) is translocated to the cytoplasm, 
stabilizing the S-endoglin mRNA and interfering with the m-Sp activity. Consequently, 
ASF/SF2 promotes the intron retention, thus up-regulating the levels of S-endoglin mRNA 
(adapted from Blanco & Bernabeu, 2011). 

5. Conclusions 

Vascular physiology progressively declines with age due to multiple factors including an 
increase in oxidative stress, DNA damage, and advanced cellular replication involving 
telomere attrition. All these events converge in the key molecule p53, which acts typically 
arresting the cell cycle and triggering the endothelial senescence. At this stage, the 
expression of many specific genes is modulated, regarding not only to their expression 
levels but also the post-translational modifications and alternative processing of their 
premature mRNA molecules, which give rise to interesting protein variants. Nowadays, it 
can be postulated that this phenomenon is at the cellular basis of several age-associated 
cardiovascular pathologies, such as hypertension or atherosclerosis. 

TGF-┚ is able to induce endothelial senescence via a cell surface receptor complex that 
includes the type I (ALK1 and ALK5) and the type II signalling receptors as well as 
endoglin. Endoglin is a TGF-┚ co-receptor highly expressed as L-(long)-endoglin by 
endothelial cells which is associated with active angiogenesis foci and vascular remodelling 
processes. Conversely, an alternative spliced and shorter isoform (S-endoglin) with opposite 
effects to those of L-endoglin in the context of the TGF-┚ system has been described. 
Usually, S-endoglin is almost undetectable in endothelial cells, but is induced during 
senescence. In this up-regulation, the senescence-induced cytoplasmic localization of the 
splicing factor ASF/SF2 plays a key role favouring the retention of the intron between exons 
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#13 and #14. Thus, the up-regulated expression of S-endoglin is considered to be part of the 
endothelial senescence program. Moreover, in vitro and in vivo studies suggest that S-
endoglin contributes to vascular pathology associated with ageing. In this regard, mutations 
in the human ENG gene are responsible for HHT-1, an autosomic dominant vascular disease 
whose symptoms increase and become worse with age. Currently, the haploinsufficiency of 
the predominantly expressed L-endoglin isoform is widely accepted as the pathogenic 
mechanism of the disease. Because S-endoglin is up-regulated in aged mice as well as 
during senescence of endothelial cells and S-endoglin counteracts the function of L-
endoglin, the increased S-endoglin expression during ageing would increase the functional 
L-endoglin haploinsufficiency in HHT-1 and could explain why the symptoms become 
worse with ageing. Therefore, one could predict that the age-dependent penetrance of the 
HHT-1 is due, at least in part, to the S-endoglin induction mediated by ASF ⁄ SF2. 

In summary, these data suggest an important role for the TGF-┚ co-receptor endoglin as a 
modulator of the vascular pathology associated with endothelial senescence. 
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