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1. Introduction

Reflection and transmission of transverse-electric (TE) electromagnetic waves at a single
nonlinear homogeneous, isotropic, nonmagnetic layer situated between two homogeneous,
semi-infinite media has been the subject of intense theoretical and experimental investigations
in recent years. In particular, the Kerr-like nonlinear dielectric film has been the focus of a
number of studies in nonlinear optics (Chen & Mills, 1987; 1988; Leung, 1985; 1988; Peschel,
1988; Schürmann & Schmoldt, 1993).

Exact analytical solutions have been obtained for the scattering of plane TE-waves at
Kerr-nonlinear films (Leung, 1989; Schürmann et al., 2001). As far as exact analytical solutions
were considered in these articles absorption was excluded, at most it was treated numerically
(Gordillo-Vázquez & Pecharromán, 2003; Schürmann & Schmoldt, 1996; Yuen & Yu, 1997).

As Chen and Mills have pointed out it is a nontrivial extension of the usual scattering theory
to include absorption (Chen & Mills, 1988) and it seems (to the best of our knowledge) that the
problem was not solved till now. In the following we consider a nonlinear lossy dielectric film
with spatially varying saturating permittivity. In Section 2 we reduce Maxwell’s equations
to a Volterra integral equation (14) for the intensity of the electric field E(y) and give a
solution in form of a uniform convergent sequence of iterate functions. Using these solutions
we determine the phase function ϑ(y) of the electric field, and, evaluating the boundary
conditions in Section 3, we derive analytical expressions for reflectance, transmittance,
absorptance, and phase shifts on reflection and transmission and present some numerical
results in Section 4.

It should be emphasized, that the contraction principle (that is used in this work) (Zeidler,
1995) includes the proof of the existence of the exact bounded solution of the problem and
additionally yields approximate analytical solutions by iterations. Furthermore, the rate of
convergence of the iterative procedure and the error estimate can be evaluated (Zeidler, 1995).
Thus this approach is useful for physical applications.

The present approach can be applied to a linear homogeneous, isotropic, nonmagnetic layer
with absorption. In this case the problem is reduced to a linear Volterra integral equation that
can be solved by iterations without any restrictions. The lossless linear permittivity as well as
the Kerr-like permittivity can be treated as particular cases of the approach.
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2 Will-be-set-by-IN-TECH

Referring to figure 1 we consider a dielectric film between two linear semi-infinite media
(substrate and cladding). All media are assumed to be homogeneous in x− and z− direction,
isotropic, and non-magnetic. The film is assumed to be absorbing and characterized by a
complex valued permittivity function ε f (y).
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Fig. 1. Configuration considered in this paper. A plane wave is incident to a nonlinear slab
(situated between two linear media) to be reflected and transmitted.

A plane wave of frequency ω0 and intensity E2
0 , with electric vector E0 parallel to the

z-axis (TE) is incident on the film of thickness d. Since the geometry is independent of the
z-coordinate and because of the supposed TE-polarization fields are parallel to the z-axis
(E = (0, 0, Ez)). We look for solution E of Maxwell’s equations

rotH = −iω0εE

rotE = iω0µ0H

that satisfy the boundary conditions (continuity of Ez and ∂Ez/∂y at interfaces y ≡ 0 and
y ≡ d) and where (due to TE-polarization) H = (Hx, Hy, 0). Due to the requirement of the
translational invariance in x-direction and partly satisfying the boundary conditions the fields
tentatively are written as (ẑ denotes the unit vector in z-direction)

E(x, y, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẑ
[

E0ei(px−qc ·(y−d)−ω0t)+

Erei(px+qc ·(y−d)−ω0t)
]

, y > d,

ẑ
[

E(y)ei(px+ϑ(y)−ω0t)
]

, 0 < y < d,

ẑ
[

E3ei(px−qsy−ω0t)
]

, y < 0,

(1)

where E(y), p =
√

εck0 sin ϕ, k0 = ω0
√

ε0µ0, qc, qs, and ϑ(y) are real and Er = |Er| exp(iδr)
and E3 = |E3| exp(iδt) are independent of y.
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Reflection and Transmission of a Plane TE-Wave at a Lossy, Saturating, Nonlinear Dielectric Film 3

We assume a permittivity ε(y) of the three layer system modeled by

ε(y)

ε0
=

⎧
⎪⎨
⎪⎩

εc, y > d,

ε f (y) = ε0
f + εR(y) + iε I(y) +

aE2(y)
1+arE2(y)

, 0 < y < d,

εs, y < 0,

(2)

with real constants εc, εs, ε0
f , a ≥ 0, r ≥ 0 and real-valued continuously differentiable functions

εR(y), ε I(y) on [0, d]. A particular nonlinearity in (2) of cubic type (r = 0) can be met in the
context of a Kerr-like nonlinear dielectric film, while the case when r > 0 corresponds to the
saturation model in optics (see (Bang et al., 2002; Berge et al., 2003; Dreischuh et al., 1999;
Kartashov et al., 2003)).

The problem to be solved is to find a solution of Maxwell’s equations subject to (1) and (2).
With respect to the physical significance of (1) and (2) some remarks may be appropriate.
Though ansatz (1) widely has been used previously (Chen & Mills, 1987; 1988; Leung, 1985;
1988; Peschel, 1988; Schürmann & Schmoldt, 1993) it should be noted that it is based on
the assumption that the time-dependence of the optical response of the nonlinear film is
described by one frequency ω0. Phase matching is, e.g., assumed to be absent so that small
amplitudes of higher harmonics can be neglected. The permittivity function (2) also represents
an approximation. The dipole moment per unite volume and hence the permittivity is
not simply controlled by the instant value of the electric (macroscopic) field at the point
(x, y, z), due to the time lag of the medium’s response. Further more the response is nonlocal
in space. - The model permittivity (2) does not incorporate these features. Nevertheless,
experimental observations (cf., e.g. (Peschel, 1988)) indicate that (2) has physical significance
(with εR = ε I = r = 0). Finally, Maxwell’s equations, even for an isotropic material, imply
that all field components are coupled if the permittivity is nonlinear. The decomposition into
TE-and TM-polarization is an assumption motivated by mathematical simplicity. To apply the
results below to experiments it is necessary to make sure that TE-polarization is maintained.

2. Nonlinear Volterra integral equation

By inserting (1) and (2) into Maxwell’s equations we obtain the nonlinear Helmholtz
equations, valid in each of the three media (j = s, f , c),

∂2Ẽj(x, y)

∂x2
+

∂2Ẽj(x, y)

∂y2
+ k2

0
ε(y)

ε0
Ẽj(x, y) = 0, j = s, f , c, (3)

where Ẽj(x, y) denotes the time-independent part of E(x, y, t).

Scaling x, y, z, p, qc, qs by k0 and using the definition of ε
ε0

in equation (2), equation (3) reads

∂2Ẽj(x, y)

∂x2
+

∂2Ẽj(x, y)

∂y2
+ ε j(y)Ẽj(x, y) = 0, j = s, f , c, (4)

where the same symbols have been used for unscaled and scaled quantities. Using ansatz (1)
in equation (4) we get for the semi-infinite media

q2
j = ε j − p2, j = s, c. (5)
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4 Will-be-set-by-IN-TECH

For the film (j = f ), we obtain, omitting tildes,

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+

(
ε0

f + εR(y)− p2 +
aE2(y)

1 + arE2(y)

)
E(y) = 0 (6)

and

E(y)
d2ϑ(y)

dy2
+ 2

dϑ(y)

dy

dE(y)

dy
+ ε I(y)E(y) = 0. (7)

Equation (7) can be integrated leading to

E2(y)
dϑ(y)

dy
= c1 −

∫ y

0
ε I(τ)E2(τ)dτ, (8)

where c1 is a constant that is determined by means of the boundary conditions:

c1 = E2(0)
dϑ(0)

dy
= −qsE2(0) (9)

Insertion of dϑ(y)/dy according to equation (3) leads to

d2E(y)

dy2
+ (q2

f (y)− p2)E(y) +
aE3(y)

1 + arE2(y)
−

(c1 −
y∫

0

ε I(t)E2(t)dt)2

E3(y)
= 0, (10)

with
q2

f (y) = ε0
f + εR(y). (11)

As for real permittivity, real qs (transmission) implies c1 �= 0.

Setting I(y) = aE2(y), a �= 0, multiplying equation (10) by 4E3(y), and differentiating the
result with respect to y we obtain

d3 I(y)

dy3
+ 4

d
(
(q2

f (y)− p2)I(y)
)

dy
= 2

d(q2
f (y))

dy
I(y)

−
2I(y)

dI(y)
dy (3 + 2rI(y))

(1 + rI(y))2

−4ε I(y)(ac1 −
y∫

0

ε I(t)I(t)dt). (12)

Equation (12) can be integrated with respect to I(y) to yield

d2 I(y)

dy2
+ 4κ2 I(y) = −4εR(y)I(y) + 2

∫ y

0

dεR(t)

dt
I(t)dt

− 2

r2

(
2rI(y) +

1

1 + rI(y)
− ln(1 + rI(y))

)

+4
∫ y

0
ε I(t)

(∫ t

0
ε I(z)I(z)dz

)
dt − 4ac1

∫ y

0
ε I(t)dt + c2, (13)
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where κ2 = ε0
f − p2 and c2 is a constant of integration.

In the case a = 0 (it corresponds to the linear case with absorption in Eq. (2)) we obtain the
following analog of (13)

d2 I(y)

dy2
+ 4κ2 I(y) = −4εR(y)I(y) + 2

∫ y

0

dεR(t)

dt
I(t)dt

+4
∫ y

0
ε I(t)

(∫ t

0
ε I(z)I(z)dz

)
dt − 4c1

∫ y

0
ε I(t)dt + c2, (14)

where I(y) denotes E2(y). Later on for the case a = 0 under I(y) we always understand E2(y).

The homogeneous equation d2 I(y)/dy2 + 4κ2 I(y) = 0 which corresponds to Eq. (13) has the
solution that satisfies the boundary conditions at y = 0

Ĩ0(y) = a|E3|2 cos(2κy), (15)

so that the general solution of equation (13) reads (Stakgold, 1967)

I(y) = Ĩ0(y) +
∫ y

0
dt

sin 2κ(y − t)

2κ
·

(
−4εR(t)I(t) + 2

∫ t

0

dεR(τ)

dτ
I(τ)dτ

− 2

r2

(
2rI(t) +

1

1 + rI(t)
− ln(1 + rI(t))

)

+4
∫ t

0
ε I(τ)

(∫ τ

0
ε I(z)I(z)dz

)
dτ − 4ac1

∫ t

0
ε I(τ)dτ + c2

)
, (16)

where the constant c2 must be determined by the boundary conditions.

In the case a = 0 the general solution of equation (14) reads

I(y) = Ĩ0(y) +
∫ y

0
dt

sin 2κ(y − t)

2κ
·

(
−4εR(t)I(t) + 2

∫ t

0

dεR(τ)

dτ
I(τ)dτ

+4
∫ t

0
ε I(τ)

(∫ τ

0
ε I(z)I(z)dz

)
dτ − 4c1

∫ t

0
ε I(τ)dτ + c2

)
(17)

with Ĩ0(y) = |E3|2 cos(2κy).

The Volterra equations (16), (17) are equivalent to equation (3) for 0 < y < d for a �= 0 and
a = 0, respectively. According to equations (16) and (17) I(y) and Ĩ0(y) satisfy the boundary
conditions at y = 0. Evaluating some of the integrals on the right-hand side, equations (16)
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and (17) can be written as

I(y) = I0(y) +
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ

− 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ

− 2

rκ

∫ y

0
sin 2κ(y − τ)I(τ)dτ

− 1

κr2

∫ y

0
sin 2κ(y − τ)

1

1 + rI(τ)
dτ

+
1

κr2

∫ y

0
sin 2κ(y − τ) ln(1 + rI(τ))dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)

2κ

(∫ t

τ
ε I(z)dz

)
dt

)
I(τ)dτ, (18)

and

I(y) = I0(y) +
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ

− 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)

2κ

(∫ t

τ
ε I(z)dz

)
dt

)
I(τ)dτ, (19)

respectively, with [on the evaluation of c2 see Appendix B] (in the case a �= 0)

I0(y) = Ĩ0(y) +
c2 sin2 κy

2κ2

−4ac1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0
ε I(z)dzdt, (20)

ac1 = −qs I(0), (21)

c2 = 2I(0)(q2
s + q2

f (0)− p2)− 2I2(0)

1 + rI(0)

+
2

r2

(
2rI(0) +

1

1 + rI(0)
− ln(1 + rI(0))

)
, (22)

where Ĩ0(y) is given by equation (15), and with (in the case a = 0)

I0(y) = Ĩ0(y) +
c2 sin2 κy

2κ2

−4c1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0
ε I(z)dzdt, (23)

c1 = −qs I(0), (24)

c2 = 2I(0)(q2
s + q2

f (0)− p2), (25)
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where Ĩ0(y) = |E3|2 cos(2κy).

Iteration of the nonlinear integral equations (16) and (17) leads to a sequence of functions
Ij(y), 0 < y < d. Subject to certain conditions it can be shown that the limit

I(y) = lim
j→∞

Ij(y)

exists uniformly in 0 < y < d and represents the unique solution of (16) and (17). The error of
approximations can be expressed in terms of the parameters of the problem (see (68) and (69)
in Appendix A).

Iterating (16) and (17) once by inserting I0(y) according to (20) and (23), the first iteration I1(y)
reads (a �= 0)

I1(y) = I0(y) +
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I0(τ)dτ

− 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)I0(τ)dτ

− 2

rκ

∫ y

0
sin 2κ(y − τ)I0(τ)dτ

− 1

κr2

∫ y

0
sin 2κ(y − τ)

1

1 + rI0(τ)
dτ

+
1

κr2

∫ y

0
sin 2κ(y − τ) ln(1 + rI0(τ))dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)

2κ

(∫ t

τ
ε I(z)dz

)
dt

)
I0(τ)dτ, (26)

and (a = 0)

I1(y) = I0(y) +
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I0(τ)dτ

− 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)I0(τ)dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)

2κ

(∫ t

τ
ε I(z)dz

)
dt

)
I0(τ)dτ. (27)

I1(y) is used for numerical evaluation of the physical quantities defined in the following
section.

3. Reflectance, transmittance, absorptance, and phase shifts

Conservation of energy requires that absorptance A, transmittance T, and reflectance R are
related by

A = 1 − R − T, (28)
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with

T =
qs

qc

I(0)

aE2
0

, T =
qs

qc

I(0)

E2
0

, (29)

R =
|Er|2

E2
0

, (30)

for a �= 0 and a = 0, respectively.

Due to the continuity conditions at y = d

E0 + |Er|eiδr = E(d)eiϑ(d) (31)

2E0e−iϑ(d) =
i

qc

dE(y)

dy
|y=d +E(d)(1 − 1

qc

dϑ(y)

dy
|y=d) (32)

reflectance, transmittance, absorptance and the phase shift on reflection, δr, and on
transmission, δt, can be determined. Combination of equations (31) and (32) yields (for a �= 0)

aE2
0 =

1

4

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
dI(y)

dy |y=d

)2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 +

qs I(0) +
d∫

0

ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (33)

a|Er|2 =
1

4

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
dI(y)

dy |y=d

)2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 −

qs I(0) +
d∫

0

ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (34)

and (for a = 0)

E2
0 =

1

4

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
dI(y)

dy |y=d

)2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 +

qs I(0) +
d∫

0

ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (35)

|Er|2 =
1

4

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
dI(y)

dy |y=d

)2

4q2
c I(d)

+ I(d)

⎛
⎜⎜⎜⎝1 −

qs I(0) +
d∫

0

ε I(τ)I(τ)dτ

qc I(d)

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (36)

Inserting equations (33)-(36) into equation (28) and using equations (29), (33) we obtain

A =
1

qcaE2
0

d∫

0

ε I(τ)I(τ)dτ, A =
1

qcE2
0

d∫

0

ε I(τ)I(τ)dτ, (37)
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Reflection and Transmission of a Plane TE-Wave at a Lossy, Saturating, Nonlinear Dielectric Film 9

for a �= 0 and a = 0, respectively. The continuity conditions (31), (32) and equations (29), (33)
and (35) imply

δr = − arcsin

dI(y)
dy |y=d

4qcaE2
0

√
1 − T − A

, δr = − arcsin

dI(y)
dy |y=d

4qcE2
0

√
1 − T − A

(38)

for the phase shift on reflection (for a �= 0 and a = 0, respectively), and

δt = ϑ(0) =

d∫

0

qs I(0) + qcaE2
0 Ã(τ)

I(τ)
dτ + arcsin

⎛
⎝−

dI(y)
dy |y=d

4qc

√
aE2

0 I(d)

⎞
⎠ ,

δt = ϑ(0) =

d∫

0

qs I(0) + qcE2
0 Ã(τ)

I(τ)
dτ + arcsin

⎛
⎝−

dI(y)
dy |y=d

4qc

√
E2

0 I(d)

⎞
⎠ , (39)

with

Ã(τ) :=
1

qcaE2
0

τ∫

0

ε I(u)I(u) du, Ã(τ) :=
1

qcE2
0

τ∫

0

ε I(u)I(u) du, (40)

for the phase shift on transmission (for a �= 0 and a = 0, respectively).

4. Numerical evaluations

A numerical evaluation of the foregoing quantities is straightforward. It is useful to apply a
parametric-plot routine using the first approximation I1(y). If the parameters of the problem
(a, r, εR, ε I , εs, ε0

f , εc, p, d, ω0) satisfy the convergence conditions (48) and (49) (see Appendix A)

the results obtained for I1(y) are in good agreement with the purely numerical solution of
equation (13) and (14) (cf. figure 3).

Fig. 2. Dependence of the field intensity I1(y, aE2
0) inside the slab on the transverse

coordinate y and aE2
0 for

r = 1000, ε I = 0.1, εc = 1, εs = 1.7, ε0
f = 3.5, ϕ = 1.107, d = 1, γ = 0.033, b = 0.1.

For the numerical evaluations the following steps can be performed:
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Fig. 3. Dependence of the field intensity I1(y, aE2
0) inside the slab on the transverse

coordinate y for a|E3|2 = 0.1. The other parameters are as in figure 2. Solid curve
corresponds to the first iteration of equation (26) and dashed curve to the numerical solution
of the system of differential equations (6), (7).

(i) Prescribe the parameters of the problem such that (48) and (49) are satisfied.

(ii) Prescribe a certain upper bound (accuracy) of the right-hand side Rj (see (66) in Appendix
A) and perform a parametric plot of Rj (with I(0) as parameter) with j=1. If R1 is smaller (or

equal) than (to) the prescribed accuracy for all aE2
0 (or E2

0) of a certain interval, accept I1(y) as
a suitable approximation.

(iii) If R1 exceeds the prescribed accuracy calculate I2(y) according to (50) and check again
according to step (ii) or enlarge the accuracy so that R1 is smaller (or equal) than (to) the
prescribed accuracy.

The reason for the satisfactory agreement between the exact numerical solution and the first
approximation I1(y) (cf. figure 3) is due to the foregoing explanation.

If a|E3|2 (or |E3|2) is fixed (as in the numerical example below), and thus aE2
0 (or E2

0) according
to (33) (or (35)), the inequality (68) (or (69)) can be used to optimize the iteration approach
with respect to another free parameter, e.g., d or r or p, as indicated.

Using the first approximation the phase function can be evaluated according to equation (8)
as (for all values of a)

ϑ1(y) = ϑ1(d)− qs I(0)
∫ y

d

dτ

I1(τ)
−

∫ y

d

dτ

I1(τ)

∫ τ

0
ε I(ξ)I1(ξ)dξ, (41)

where

sin ϑ1(d) = −
dI1(y)

dy |y=d

4qc

√
aE2

0 I1(d)
,

sin ϑ1(d) = −
dI1(y)

dy |y=d

4qc

√
E2

0 I1(d)

(42)

for a �= 0 and a = 0, respectively.
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Thus, the approximate solution of the problem is represented by equations (26) or (27) and
(41). The appropriate parameter is I(0) = aE2(0) or I(0) = E2(0), since E0 in equation (42)
can be expressed in terms of I(0) as shown in (33) or (35).

For illustration we assume a permittivity according to (a �= 0)

ε f (y) = ε0
f + εR(y) + iε I +

I(y)

1 + rI(y)
, (43)

with

εR(y) = γ cos2 by

d
, (44)

where ε0
f , γ, b, d, r are real constants. For simplicity, ε I is also assumed to be constant. Results

for the first iterate solution I1(y, aE2
0) are depicted in figures 2, 3. Using I1(y, aE2

0), the

phase function ϑ1(y, aE2
0), absorptance A1(d, aE2

0) and phase shift on reflection δr1(y, aE2
0) are

shown in figures 4, 5 and 6, respectively. The left hand side of condition (48) is 0.572 for the
parameters selected in this example. Results for R, T and the phase shift on transmission can
be obtained similarly.

Fig. 4. Phase function ϑ1(y, aE2
0) according to equation (41) inside the slab. Parameters as in

figure 3.

5. Summary

Based on known mathematics we have proposed an iterative approach to the scattering of a
plane TE-polarized optical wave at a dielectric film with permittivities modeled by a complex
continuously differentiable function of the transverse coordinate.

The result is an approximate analytical expression for the field intensity inside the film that can
be used to express the physical relevant quantities (reflectivity, transmissivity, absorptance,
and phase shifts). Comparison with exact numerical solutions shows satisfactory agreement.

It seems appropriate to explain the benefits of the present approach:
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Fig. 5. Absorptance A1 depending on the layer thickness d and on the incident field intensity
aE2

0 for the same parameters as in figure 3.

Fig. 6. Phase shift on reflection δr1 depending on the layer thickness d and on the incident
field intensity aE2

0 for the same parameters as in figure 3.

(i) The approach yields (approximate) solutions in cases where the usual methods (cf. Refs.
(Chen & Mills, 1987; 1988; Leung, 1985; 1988; Peschel, 1988; Schürmann & Schmoldt, 1993))
fail or could not be applied till now.

(ii) The quality of the approximate solutions can be estimated in dependence on the
parameters of the problem.

On the other hand the conditions of convergence explicitly depend on the permittivity
functions in question and thus have to be derived for every permittivity anew (cf. (Serov
et al., 2004; 2010) and (65)).
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7. Appendix

7.1 Appendix A

We introduce in the Banach space C[0, d] bounded integral operators N1, N2, N3, N4, N5, N6 by

N1(I) =
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ,

N2(I) = − 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ,

N3(I) = − 2

κ

∫ y

0
sin 2κ(y − τ)I(τ)dτ,

N4(I) = − 1

κ

∫ y

0
sin 2κ(y − τ)

1

1 + rI(τ)
dτ,

N5(I) =
1

κ

∫ y

0
sin 2κ(y − τ) ln(1 + rI(τ))dτ,

N6(I) = 4
∫ y

0
ε I(s)ψ(y, s)I(s)ds, (45)

where

ψ(y, s) =
∫ y

s

sin2κ(y − t)

2κ

(∫ t

s
ε I(τ)dτ

)
dt, (46)

with the values ‖N1‖, ‖N2‖, ‖N3‖, ‖N4‖, ‖N5‖, ‖N6‖, ‖I0‖ which are defined as

‖N1‖ =
1

κ2
max

0≤y≤d

∫ y

0
| sin2 κ(y − τ)| · | dεR(τ)

dτ
|dτ,

‖N2‖ =
2

κ
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)| · |εR(τ)|dτ,

‖N3‖ =
2

κ
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ,

‖N4‖ =
1

κ
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ,

‖N5‖ =
1

κ
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ = ‖N4‖,

‖N6‖ = 4 max
0≤y≤d

∫ y

0
|ε I(z)| · |ψ(y, z)|dz,

‖I0‖ = max
0≤y≤d

|I0|. (47)

We are in the position now to show that if

‖N1‖+ ‖N2‖+ ‖N6‖+
‖N3‖+ 2‖N4‖

r
< 1 (48)

and
‖I0‖+ 1

r2 ‖N4‖
1 − (‖N1‖+ ‖N2‖+ ‖N6‖+ ‖N3‖+‖N4‖

r )
< ρ, (49)

109Reflection and Transmission of 
a Plane TE-Wave at a Lossy, Saturating, Nonlinear Dielectric Film

www.intechopen.com



14 Will-be-set-by-IN-TECH

then in any ball Sρ(0) there exists a unique solution of the nonlinear integral equation (18) and
this solution can be obtained as a uniform limit

I(y) = lim
j→∞

Ij(y)

of the iterations of (18). Indeed, let us introduce the iterations of (18) as follows:

Ij(y) = I0(y) +
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
Ij−1(τ)dτ

− 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)Ij−1(τ)dτ

− 2

rκ

∫ y

0
sin 2κ(y − τ)Ij−1(τ)dτ

− 1

κr2

∫ y

0
sin 2κ(y − τ)

1

1 + rIj−1(τ)
dτ

+
1

κr2

∫ y

0
sin 2κ(y − τ) ln(1 + rIj−1(τ))dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)

2κ

(∫ t

τ
ε I(z)dz

)
dt

)
Ij−1(τ)dτ, (50)

where j = 1, 2, ..., and I0(y) is given by equation (20). In order to prove that the sequence (50)
is uniformly convergent to the solution of (16) it suffices to check that all conditions of the
Banach Fixed-Point Theorem (see (Zeidler, 1995)) are fulfilled.

We consider the nonlinear operator F as

F(I) := I0(y) + N1(I) + N2(I) +
1

r
N3(I) +

1

r2
N4(I) +

1

r2
N5(I) + N6(I). (51)

Then equation (18) can be rewritten in operator form

I(y) = F(I)(y). (52)

We consider ρ such that ‖I‖ = max
0≤y≤d

I(y) ≤ ρ. First we must check whether this operator F

maps the ball Sρ(0) to itself. Indeed, if I(y) ∈ Sρ(0) then

‖F(I)‖ ≤ ‖I0‖+ ‖N1‖ · ‖I‖+ ‖N2‖ · ‖I‖+ ‖N6‖ · ‖I‖+ 1

r
‖N3‖ · ‖I‖

+
1

r2
‖N4‖ ·

1

1 + r min
0≤y≤d

I(y)
+

1

r2
‖N4‖ · r‖I‖

≤ ‖I0‖+ ‖N1‖ · ρ + ‖N2‖ · ρ + ‖N6‖ · ρ +
1

r
‖N3‖ · ρ +

1

r2
‖N4‖

+
1

r
‖N4‖ · ρ. (53)

Thus, the following inequality must be valid

‖I0‖+
1

r2
‖N4‖+ (‖N1‖+ ‖N2‖+ ‖N6‖+

1

r
(‖N3‖+ ‖N4‖)) · ρ < ρ. (54)
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This inequality holds if

‖I0‖+ 1
r2 ‖N4‖

1 − (‖N1‖+ ‖N2‖+ ‖N6‖+ ‖N3‖+‖N4‖
r )

< ρ, (55)

and thus if

‖N1‖+ ‖N2‖+ ‖N6‖+
‖N3‖+ ‖N4‖

r
< 1. (56)

It means that for this value of ρ continuous map F transfers ball Sρ(0) in itself. Hence, equation
(16) has at least one solution inside Sρ(0). For uniqueness of this solution it remains to prove
that F is contractive (see (Zeidler, 1995)). To prove the contraction of F we consider

F(I1)− F(I2) = N1(I1 − I2) + N2(I1 − I2) + N6(I1 − I2)

+
1

r
N3(I1 − I2) +

1

r2
(N4(I1)− N4(I2)) +

1

r2
(N5(I1)− N5(I2)). (57)

Hence

‖F(I1)− F(I2)‖ ≤ ‖N1‖‖I1 − I2‖+ ‖N2‖‖I1 − I2‖+ ‖N6‖‖I1 − I2‖

+‖N3‖‖
1

r
(I1 − I2)‖+ ‖ 1

r2
(N4(I1)− N4(I2))‖

+‖ 1

r2
(N5(I1)− N5(I2))‖. (58)

The following estimations hold

(i) ‖ 1
r2 (N4(I1)− N4(I2))‖ ≤ max

0≤y≤d

1
κr2

∫ y
0 | sin 2κ(y − τ)|·

∣∣∣ 1
1+rI1(τ)

− 1
1+rI2(τ)

∣∣∣ dτ =

max
0≤y≤d

1
κr2

∫ y
0 | sin 2κ(y − τ)| ·

∣∣∣ rI2(τ)−rI1(τ)
(1+rI1(τ))(1+rI2(τ))

∣∣∣ dτ

≤ 1
r max

0≤y≤d

1
κ

∫ y
0 | sin 2κ(y − τ)|dτ · ‖I1 − I2‖,

hence

‖ 1

r2
(N4(I1)− N4(I2))‖ ≤ ‖N4‖

r
· ‖I1 − I2‖. (59)

(ii) ‖ 1

r2
(N5(I1)− N5(I2))‖ ≤ max

0≤y≤d

1

κr2

∫ y

0
| sin 2κ(y − τ)| ·

|ln(1 + rI1(τ))− ln(1 + rI2(τ))| dτ. (60)

Using

|ln(1 + rI1)− ln(1 + rI2)| =
∣∣∣∣ln

1 + rI1

1 + rI2

∣∣∣∣

=

∣∣∣∣ln
(

1 +
r(I1 − I2)

1 + rI2

)∣∣∣∣ ≤ r‖I1 − I2‖, (61)
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equation (60) yields

‖ 1

r2
(N5(I1)− N5(I2))‖ ≤ 1

r2
· ‖N4‖ · r · ‖I1 − I2‖ =

‖N4‖
r

‖I1 − I2‖. (62)

Thus, from equation (58), one obtains

‖F(I1)− F(I2)‖ ≤ (‖N1‖+ ‖N2‖+ ‖N6‖+
‖N3‖

r
+

‖N4‖
r

+
‖N4‖

r
)

·‖I1 − I2‖

= (‖N1‖+ ‖N2‖+
‖N3‖+ 2‖N4‖

r
) · ‖I1 − I2‖, (63)

so that F is contractive if

‖N1‖+ ‖N2‖+ ‖N6‖+
‖N3‖+ 2‖N4‖

r
< 1. (64)

Thus, the uniform convergence follows.

If we denote by m the left-hand side of the inequality (48) the solution I(y) of (16) can be
approximated by the iterations Ij(y) as follows (see (Zeidler, 1995)):

‖I − Ij‖ ≤ mj

1 − m
‖I1 − I0‖

≤ mj

1 − m

(
1

κr2
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ + m‖I0‖

)

≤ mj

1 − m

(
d2

r2
+ m‖I0‖

)
, (65)

where j = 0, 1, 2, ... and I0 is defined in (20).

Let us remark that for the sufficient condition (48) to hold parameters must be chosen such
that (48) holds even if r is small (Equation (18) represents the exact solution I(y) if (48) and

(49) are satisfied). I(y) can be approximated by the first iteration I1(y) with the error d2

r2
m

1−m +
m2

1−m‖I0‖, where m denotes the left-hand side of (48). Condition (48) must hold for a particular
r > 0. In the limit r → 0 equation (18) transforms to equation

I(y) = I0(y) +
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
I(τ)dτ

− 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)I(τ)dτ − 3

2κ

∫ y

0
sin 2κ(y − τ)I2(τ)dτ

+ 4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)

2κ

(∫ t

τ
ε I(z)dz

)
dt

)
I(τ)dτ, (66)

where I0(y) is the same as (23) with the constant c2 which is equal to

c2 = I0(0)(q
2
s + q2

f (0)− p2)− 2I2(0).
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Equation (66) is equivalent to (in the case of lossless medium) (41) in (Serov et al., 2004).
Equation (66) is uniquely solvable in the ball of radius ρ if the following conditions are
satisfied (they are consistent with the corresponding conditions from (Serov et al., 2004; 2010)):

m + 3d2ρ < 1, m + d
√

6‖I0‖ < 1,

where m = ‖N1‖+ ‖N2‖+ ‖Nc‖ and the radius ρ is chosen so that

ρ ≥ 1 − m −
√
(1 − m)2 − 6d2‖I0‖

3d2
.

In order to obtain a condition of the type (48) for all 0 < r < 1 (uniformly) combination of
N3, N4, N5 and part of I0 within the estimations is necessary. It seems impossible to obtain a
condition of the type (48) uniformly with respect to all nonnegative r. It is possible only to
obtain such kind of condition uniformly for 0 < r < 1 or for 1 < r < ∞ independently. In this
respect, some mathematical complications arise that are not the main point of this paper.

Estimation of ‖I0‖ (cf. Appendix C) gives

‖I0‖ ≤ I(0) +
1

2
|c2|d2 +

2

3
a|c1|‖ε I‖d3,

‖I0‖ ≤ I(0) +
1

2
|c2|d2 +

2

3
|c1|‖ε I‖d3, (67)

where constants c1 and c2 are defined by (21) and (22) for a �= 0, and by (24) and (25) for a = 0,
respectively. Combining (65) and (67) we obtain the error of approximation (for a �= 0)

Rj := ‖I − Ij‖ ≤ d2

r2
· mj

1 − m
+

mj+1

1 − m

(
I(0) +

1

2
|c2|d2 +

2

3
a|c1|‖ε I‖d3

)
, (68)

where j = 0, 1, 2, ....

Since for linear case (a = 0) equation (17) is the linear Volterra integral equation this equation
has always a unique solution and the following error of approximation holds:

‖I − Ij‖ ≤ (‖I0‖md)j+1

(j + 1)!
e‖I0‖md, (69)

where j = 0, 1, 2, ..., ‖I0‖ is estimated in (67), m = ‖N1‖+ ‖N2‖+ ‖N6‖ and Ij are defined by

Ij(y) = I0(y) +
1

κ2

∫ y

0
sin2 κ(y − τ)

dεR(τ)

dτ
Ij−1(τ)dτ

− 2

κ

∫ y

0
sin 2κ(y − τ)εR(τ)Ij−1(τ)dτ

+4
∫ y

0
ε I(τ)

(∫ y

τ

sin2κ(y − t)

2κ

(∫ t

τ
ε I(z)dz

)
dt

)
Ij−1(τ)dτ. (70)
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7.2 Appendix B

The constant of integration c2 is determined by equations (13) and (14) for a �= 0 and for a = 0,
respectively with y = 0 as

c2 =
d2 I(y)

dy2

∣∣∣∣
y=0

+ 4(q2
f (0)− p2)I(0)

+
2

r2

(
2rI(0) +

1

1 + rI(0)
− ln(1 + rI(0))

)
, (71)

c2 =
d2 I(y)

dy2

∣∣∣∣
y=0

+ 4(q2
f (0)− p2)I(0). (72)

According to equation (10), the second derivative of the field intensity I(y) at y = 0 is given
by (for a �= 0)

d2 I(y)

dy2

∣∣∣∣
y=0

= 2q2
s I(0)− 2(q2

f (0)− p2)I(0)− 2I2(0)

1 + rI(0)
, (73)

and (for a = 0)
d2 I(y)

dy2

∣∣∣∣
y=0

= 2q2
s I(0)− 2(q2

f (0)− p2)I(0), (74)

leading to, taking into account boundary conditions, E(0) = E3e−iϑ(0) and
dE(y)

dy |y=0= 0,

c2 = 2q2
s I(0) + 2(q2

f (0)− p2)I(0)− 2I2(0)

1 + rI(0)

+
2

r2

(
2rI(0) +

1

1 + rI(0)
− ln(1 + rI(0))

)
, (75)

c2 = 2q2
s I(0) + 2(q2

f (0)− p2)I(0). (76)

for a �= 0 and a = 0, respectively.

7.3 Appendix C

With εR(x) ∈ C1[0, d] and ε I(x) ∈ C[0, d] one obtains

‖N1‖ =
1

κ2
max

0≤y≤d

∫ y

0
| sin2 κ(y − τ)| · |ε′R(τ)|dτ

≤ max
0≤y≤d

∫ y

0
(y − τ)2dτ · ‖ε′R‖ =

1

3
d3‖ε′R‖, (77)

‖N2‖ =
2

κ
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)| · |εR(τ)|dτ

≤ 4 max
0≤y≤d

∫ y

0
(y − τ)dτ · ‖εR‖ = 2d2‖εR‖, (78)
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‖N3‖ =
2

κ
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ ≤ 4 max

0≤y≤d

∫ y

0
(y − τ)dτ = 2d2, (79)

‖N4‖ = ‖N5‖ =
1

κ
max

0≤y≤d

∫ y

0
| sin 2κ(y − τ)|dτ

≤ 2 max
0≤y≤d

∫ y

0
(y − τ)dτ = d2, (80)

‖N6‖ = 4 max
0≤y≤d

∫ y

0
|ε I(z)| · |ψ(y, z)|dz

≤ 4‖ε I‖ max
0≤y≤d

∫ y

0

∫ y

z

| sin 2κ(y − τ)|
2κ

∫ t

z
|ε I(τ)|dτdtdz

≤ 4‖ε I‖2 max
0≤y≤d

∫ y

0

∫ y

z
(y − t)(t − z)dtdz =

d4

6
‖ε I‖2, (81)

‖I0‖ ≤ max
0≤y≤d

a|E3|2 · | cos 2κy|+ |c2| max
0≤y≤d

| sin2 κy|
2κ2

+4a|c1| max
0≤y≤d

∫ y

0

| sin 2κ(y − t)|
2κ

∫ t

0
|ε I(τ)|dτdt

≤ a|E3|2 +
1

2
|c2|d2 + 4a|c1| · ‖ε I‖ max

0≤y≤d

∫ y

0
(y − t)tdt

= a|E3|2 +
1

2
|c2|d2 +

2

3
a|c1| · ‖ε I‖d3, (82)

where a �= 0 and ε′R denotes the first derivative of εR.

For a = 0 the estimate of ‖I0‖ (82) transforms to the following one

‖I0‖ ≤ |E3|2 +
1

2
|c2|d2 +

2

3
|c1| · ‖ε I‖d3, (83)

with c1 and c2 from (24) and (25).

For εR, given by (44), we obtain

‖εR‖ ≤ γ, ‖ε′R‖ ≤
{

2γb2

d , 2b ≤ 1,
γb
d , 2b > 1.

(84)
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