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Robust Prediction, Filtering and Smoothing 

1 
9.1  Introduction 
The previously-discussed optimum predictor, filter and smoother solutions assume that the 
model parameters are correct, the noise processes are Gaussian and their associated 
covariances are known precisely. These solutions are optimal in a mean-square-error sense, 
that is they provide the best average performance. If the above assumptions are correct, then 
the filter’s mean-square-error equals the trace of design error covariance. The underlying 
modelling and noise assumptions are a often convenient fiction. They do, however, serve to 
allow estimated performance to be weighed against implementation complexity. 

In general, robustness means “the persistence of a system’s characteristic behaviour under 
perturbations or conditions of uncertainty” [1]. In an estimation context, robust solutions 
refer to those that accommodate uncertainties in problem specifications. They are also 
known as worst-case or peak error designs. The standard predictor, filter and smoother 
structures are retained but a larger design error covariance is used to account for the 
presence of modelling error.  

Designs that cater for worst cases are likely to exhibit poor average performance. Suppose 
that a bridge designed for average loading conditions returns an acceptable cost benefit. 
Then a design that is focussed on accommodating infrequent peak loads is likely to provide 
degraded average cost performance. Similarly, a worst-case shoe design that accommodates 
rarely occurring large feet would provide poor fitting performance on average. That is, 
robust designs tend to be conservative. In practice, a trade-off may be desired between 
optimum and robust designs.  

The material canvassed herein is based on the H∞ filtering results from robust control. The 
robust control literature is vast, see [2] – [33] and the references therein. As suggested above, 
the H∞ solutions of interest here involve observers having gains that are obtained by solving 
Riccati equations. This Riccati equation solution approach relies on the Bounded Real 
Lemma – see the pioneering work by Vaidyanathan [2] and Petersen [3]. The Bounded Real 
Lemma is implicit with game theory [9] – [19]. Indeed, the continuous-time solutions 
presented in this section originate from the game theoretic approach of Doyle, Glover, 
Khargonekar, Francis Limebeer, Anderson, Khargonekar, Green, Theodore and Shaked, see 
[4], [13], [15], [21]. The discussed discrete-time versions stem from the results of Limebeer, 
Green, Walker, Yaesh, Shaked, Xie, de Souza and Wang, see [5], [11], [18], [19], [21]. In the 
parlance of game theory: “a statistician is trying to best estimate a linear combination of the 
states of a system that is driven by nature; nature is trying to cause the statistician’s estimate 

                                                                 

“On a huge hill, Cragged, and steep, Truth stands, and he that will Reach her, about must, and about 
must go.” John Donne 

www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future212

  

to be as erroneous as possible, while trying to minimize the energy it invests in driving the 
system” [19]. 

Pertinent state-space H∞ predictors, filters and smoothers are described in [4] – [19]. Some 
prediction, filtering and smoothing results are summarised in [13] and methods for 
accommodating model uncertainty are described in [14], [18], [19]. The aforementioned 
methods for handling model uncertainty can result in conservative designs (that depart far 
from optimality). This has prompted the use of linear matrix inequality solvers in [20], [23] 
to search for optimal solutions to model uncertainty problems.  

It is explained in [15], [19], [21] that a saddle-point strategy for the games leads to robust 
estimators, and the resulting robust smoothing, filtering and prediction solutions are 
summarised below. While the solution structures remain unchanged, designers need to 
tweak the scalar within the underlying Riccati equations. 

This chapter has two main parts. Section 9.2 describes robust continuous-time solutions and 
the discrete-time counterparts are presented in Section 9.3. The previously discussed 
techniques each rely on a trick. The optimum filters and smoothers arise by completing the 
square. In maximum-likelihood estimation, a function is differentiated with respect to an 
unknown parameter and then set to zero. The trick behind the described robust estimation 
techniques is the Bounded Real Lemma, which opens the discussions. 
 

9.2  Robust Continuous-time Estimation 
 

9.2.1 Continuous-Time Bounded Real Lemma 
First, consider the unforced system 

( ) ( ) ( )x t A t x t  (1)   

over a time interval t  [0, T], where A(t)  n n . For notational convenience, define the 
stacked vector x = {x(t), t  [0, T]}.  From Lyapunov stability theory [36], the system (1) is 
asymptotically stable if there exists a function V(x(t))  > 0 such that ( ( )) 0V x t . A possible 
Lyapunov function is V(x(t)) = ( ) ( ) ( )Tx t P t x t , where P(t) = ( )TP t   n n  is positive definite. 
To ensure x  2 it is required to establish that 

( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T TV x t x t P t x t x t P t x t x t P t x t      . (2) 

Now consider the output of a linear time varying system, y =  w, having the state-space 
representation 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , (3) 

                                                                 

“Uncertainty is one of the defining features of Science. Absolute proof only exists in mathematics. In the 
real world, it is impossible to prove that theories are right in every circumstance; we can only prove that 
they are wrong. This provisionality can cause people to lose faith in the conclusions of science, but it 
shouldn’t. The recent history of science is not one of well-established theories being proven wrong. 
Rather, it is of theories being gradually refined.” New Scientist vol. 212 no. 2835 

  

( ) ( ) ( )y t C t x t , (4)  

where w(t)  m , B(t)  n m  and C(t)   p n . Assume temporarily that { ( ) ( )}TE w t w   = 
( )I t  . The Bounded Real Lemma [13], [15], [21], states that w  2 implies y  2 if  

2( ( )) ( ) ( ) ( ) ( ) 0T TV x t y t y t w t w t    (5) 

for a γ   . Integrating (5) from t = 0 to t = T gives 

2

0 0 0
( ( )) ( ) ( ) ( ) ( ) 0    T T TT TV x t dt y t y t dt w t w t dt  (6) 

and noting that 
0

( ( )) T
V x t dt  = xT(T)P(T)x(T) – xT(0)P(0)x(0), another objective is  

20

0

( ) ( ) ( ) (0) (0) (0) ( ) ( )

( ) ( )


 




TT T T

T T

x T P T x T x P x y t y t dt

w t w t dt
. (7)  

Under the assumptions x(0) = 0 and P(T) = 0, the above inequality simplifies to 

2

202
2

2 0

( ) ( )( )

( ) ( ) ( )

T T

T T

y t y t dty t

w t w t w t dt
 


. (8)  

The ∞-norm of   is defined as  

2 2

2 2

y w

w w
 


 . (9)  

The Lebesgue ∞-space is the set of systems having finite ∞-norm and is denoted by ∞. That 
is,    ∞, if there exists a γ    such that 

2 2

2

0 0
2

sup sup
w w

y

w



 

  , (10)  

namely, the supremum (or maximum) ratio of the output and input 2-norms is finite. The 
conditions under which    ∞ are specified below. The accompanying sufficiency proof 
combines the approaches of [15], [31]. A further five proofs for this important result appear in [21]. 
 

Lemma 1: The continuous-time Bounded Real Lemma [15], [13], [21]: In respect of the above system 
 , suppose that the Riccati differential equation 

2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t P t A t A t P t C t C t P t B t B t P t       , (11) 

has a solution on [0, T]. Then 


  ≤  γ for any w  2. 

                                                                 

“Information is the resolution of uncertainty.” Claude Elwood Shannon 
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Proof: From (2) – (5), 

2( ) ( ) ( ) ( ) ( )T TV t y t y t w t w t   

                 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T Tx t C t C t x t w t w t x t P t x t     

                   ( ( ) ( ) ( ) ( )) ( ) ( )TA t x t B t w t P t x t  ( ) ( )( ( ) ( ) ( ) ( ))T Tx t P t A t x t B t w t   

                 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))T T Tx t P t B t B t P t x t w t w t   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T Tw t B t P t x t x t P t B t w t   

                 2 2 2( ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ))Tw t B t P t x t w t B t P t x t       ,4 
                      

which implies (6) and (7). Inequality (8) is established under the assumptions x(0) = 0 and P(T) = 0. 
฀ 

In general, where { ( ) ( )}TE w t w   = ( ) ( )Q t t  , the scaled matrix ( )B t  =  1/ 2( ) ( )B t Q t  may be 
used in place of B(t) above. When the plant   has a direct feedthrough matrix, that is, 

( ) ( ) ( ) ( ) ( )y t C t x t D t w t  , (12) 

D(t)   p m , the above Riccati differential equation is generalised to 

1
1 1( ) ( )( ( ) ( ) ( ) ( ) ( ))TP t P t A t B t M t D t C t   1

1( ( ) ( ) ( ) ( ) ( )) ( )T TA t B t M t D t C t P t   

                    2 1 1( ) ( ) ( ) ( )( ( ) ( ) ( )) ( )T T TB t M t B t C t I D t M t D t C t      ,  

(13) 

where M(t) = γ2I – DT(t)D(t) > 0. A proof is requested in the problems. 

Criterion (8) indicates that the ratio of the system’s output and input energies is bounded 
above by γ2 for any w  2, including worst-case w. Consequently, solutions satisfying (8) 
are often called worst-case designs. 
 

9.2.2 Continuous-Time H∞ Filtering 
 

9.2.2.1 Problem Definition 
Now that the Bounded Real Lemma has been defined, the H∞ filter can be set out. The 
general filtering problem is depicted in Fig. 1. It is assumed that the system   has the 
state-space realisation 

( ) ( ) ( ) ( ) ( ),x t A t x t B t w t   (0) 0,x   

2 2( ) ( ) ( )y t C t x t . 

(14) 

(15) 

Suppose that the system   has the realisation (14) and 

1 1( ) ( ) ( )y t C t x t . (16) 
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Figure 1. The general filtering problem. The objective is to estimate the output of   from 
noisy measurements of  . 

It is desired to find a causal solution   that produces estimates 1ˆ ( | )y t t  of y1(t) from the 
measurements, 

2( ) ( ) ( )z t y t v t  ,  (17) 

at time t so that the output estimation error, 

1 1ˆ( | ) ( ) ( | )e t t y t y t t  , (18) 

is in 2. The error signal (18) is generated by a system denoted by e = ei , where i = 
v
w
 
 
 

 

and ei = 2 1[ ]    . Hence, the objective is to achieve 
0

( | ) ( | )
T Te t t e t t dt  – 

2

0
( ) ( ) 

T Ti t i t dt  < 0 for some     .  For convenience, it is assumed here that w(t)  m , 

E{w(t)} = 0, { ( ) ( )}TE w t w   = ( ) ( )Q t t  , v(t)   p , E{v(t)} = 0, { ( ) ( )}TE v t v   = ( ) ( )R t t   
and { ( ) ( )}TE w t v   = 0. 
 

9.2.2.2 H∞ Solution 
A parameterisation of all solutions for the H∞ filter is developed in [21]. A minimum-
entropy filter arises when the contractive operator within [21] is zero and is given by 

 2ˆ ˆ( | ) ( ) ( ) ( ) ( | ) ( ) ( ),x t t A t K t C t x t t K t z t    ˆ(0) 0,x   

1 1ˆ ˆ( | ) ( | ) ( | ),y t t C t t x t t  

(19) 

(20) 

where 
1

2( ) ( ) ( ) ( )TK t P t C t R t  (21) 

                                                                 

“Uncertainty and expectation are the joys of life. Security is an insipid thing, through the overtaking 
and possessing of a wish discovers the folly of the chase.” William Congreve 
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Proof: From (2) – (5), 
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“Uncertainty and expectation are the joys of life. Security is an insipid thing, through the overtaking 
and possessing of a wish discovers the folly of the chase.” William Congreve 
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is the filter gain and P(t) = PT(t) > 0 is the solution of the Riccati differential equation 

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t B t Q t B t    

                                   1 2
2 2 1 1( )( ( ) ( ) ( ) ( ) ( )) ( )  T TP t C t R t C t C t C t P t , (0) 0.P   

(22)  

It can be seen that the H∞ filter has a structure akin to the Kalman filter. A point of difference 
is that the solution to the above Riccati differential equation solution depends on C1(t), the 
linear combination of states being estimated. 
 

9.2.2.3 Properties 
Define ( )A t  = A(t) – K(t)C2(t). Subtracting (19) – (20) from (14) – (15) yields the error system 
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( | )
[ ( ) ( )]( )( | ) ( )
[0 0]( )( | ) ( )

x t t
K t B tA tx t t v t

C te t t w t

 
            

          




, (0) 0,x   

                                        eii , 

(23) 

where ( | )x t t  = x(t) – ˆ( | )x t t  and ei  = 
1

[ ( ) ( )]( )
[0 0]( )
K t B tA t

C t
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 
  

. The adjoint of  ei  is given by 

H
ei  = 

1( ) ( )

0( )
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T T
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T

A t C t

K t
B t

 
 
    
        

. It is shown below that the estimation error satisfies the desired 

performance objective. 

Lemma 2: In respect of the H∞ problem (14) – (18), the solution (19) – (20) achieves the performance 

( ) ( ) ( )Tx T P T x T  –  (0) (0) (0)Tx P x  + 
0

( | ) ( | )
T Te t t e t t dt  – 2

0
( ) ( )

T Ti t i t dt   < 0. 

Proof: Following the approach in [15], [21], by applying Lemma 1 to the adjoint of (23), it is required 
that there exists a positive definite symmetric solution to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP A P P A B Q B K R K                
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1 1( ) ( ) ( )) ( )TP C C P     ,  ( )

T
P


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
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on [0, T] for some γ   , in which τ = T – t is a time-to-go variable. Substituting 
1

2( ) ( ) ( ) ( )TK P C R     into the above Riccati differential equation yields 

   1 2
2 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ) ( )( ( ) ( ) ( )) ( )T T T TP A P P A B Q B P C R C C C P                      , 

( ) 0
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P





 . 

Taking adjoints to address the problem (23) leads to (22), for which the existence of a positive define 

solution implies ( ) ( ) ( )Tx T P T x T  –  (0) (0) (0)Tx P x  + 
0

( | ) ( | )
T Te t t e t t dt  – 2

0
( ) ( )

T Ti t i t dt   < 0. 

Thus, under the assumption x(0) = 0, 
0

( | ) ( | )
T Te t t e t t dt  – 2

0
( ) ( )

T Ti t i t dt   < ( ) ( ) ( )Tx T P T x T  < 

0. Therefore, ei  ∞, that is, w, v  2 => e  2.                                                                         ฀ 
 

9.2.2.4 Trading-Off H∞ Performance 
In a robust filter design it is desired to meet an H∞ performance objective for a minimum 
possible γ. A minimum γ can be found by conducting a search and checking for the 
existence of positive definite solutions to the Riccati differential equation (22). This search is 

tractable because ( )P t  is a convex function of γ2, since 
2

2 2

( )P t






 = 6

1 1( ) ( ) ( )) ( )TP t C t C t P t   > 0. 

In some applications it may be possible to estimate a priori values for γ. Recall for output 
estimation problems that the error is generated by eie i , where ei  = 1[ ( ) ]I    . 
From the arguments of Chapters 1 – 2 and [28], for single-input-single-output plants 

2 0
lim

v 
  = 1 and 

2 0
lim
 


v
ei  = 1, which implies 

2 0
lim
 

 
v

H
ei ei  = 2

v . Since the H∞ filter 

achieves the performance H
ei ei 
   <  γ2, it follows that an a priori design estimate is γ = v  

at high signal-to-noise-ratios. 

When the problem is stationary (or time-invariant), the filter gain is precalculated as 
1TK PC R , where P is the solution of the algebraic Riccati equation  

1 2
2 2 1 10 ( )T T T TAP PA P C R C C C P BQB      .  (24) 

Suppose that 2  = 1  is a time-invariant single-input-single-output system and let Rei(s) 
denote the transfer function of ei . Then Parseval’s Theorem states that the average total 
energy of ( | )e t t  is 

2 2 2

2
( | ) ( | ) ( ) ( )

  

    
    

j jH
ei ei eij j

e t t e t t dt R R s ds R s ds ,  (25)  
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which equals the area under the error power spectral density, ( )H
ei eiR R s . Recall that the 

optimal filter (in which γ = ∞) minimises (25), whereas the H∞ filter minimises 

2 2

2

22
2

0 0
2

sup supH
ei ei

i i

e
R R

i


 
  . (26) 

In view of (25) and (26), it follows that the H∞ filter minimises the maximum magnitude of 
( )H

ei eiR R s . Consequently, it is also called a ‘minimax filter’. However, robust designs, which 
accommodate uncertain inputs tend to be conservative. Therefore, it is prudent to 
investigate using a larger γ to achieve a trade-off between H∞ and minimum-mean-square-
error performance criteria. 
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Figure 2.  R ( )H

ei eiR s  versus frequency for Example 1: optimal filter (solid line) and H∞ filter (dotted line). 

Example 1. Consider a time-invariant output estimation problem where A = -1, B = C2 = C1 = 
1, 2

w  = 10 and 2
v  = 0.1. The magnitude of the error spectrum exhibited by the optimal 

filter (designed with γ2 = 108) is indicated by the solid line of Fig. 2. From a search, a 
minimum of γ2 = 0.099 was found such that the algebraic Riccati equation (24) has a positive 
definite solution, which concurs with the a priori estimate of γ2 ≈ 2

v . The magnitude of the 
error spectrum exhibited by the H∞ filter is indicated by the dotted line of Fig. 2. The figure 
demonstrates that the filter achieves ( )H

ei eiR R s  < γ2. Although the H∞ filter reduces the peak 

of the error spectrum by 10 dB, it can be seen that the area under the curve is larger, that is, 
the mean square error increases. Consequently, some intermediate value of γ may need to be 
considered to trade off peak error (spectrum) and average error performance. 
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9.2.3 Accommodating Uncertainty 
The above filters are designed for situations in which the inputs v(t) and w(t) are uncertain. 
Next, problems in which model uncertainty is present are discussed. The described 
approaches involve converting the uncertainty into a fictitious noise source and solving an 
auxiliary H∞ filtering problem. 

 

 
 
 

Figure 3. Representation of additive model 
uncertainty.  

Figure 4. Input scaling in lieu of a problem 
that possesses an uncertainty. 

 

9.2.3.1 Additive Uncertainty 
Consider a time-invariant output estimation problem in which the nominal model is 2  + Δ, 
where 2  is known and Δ is unknown, as depicted in Fig. 3. The p(t) represents a fictitious 
signal to account for discrepancies due to the uncertainty. It is argued below that a solution 
to the H∞ filtering problem can be found by solving an auxiliary problem in which the input 
is scaled by ε    as shown in Fig. 4. In lieu of the filtering problem possessing the 
uncertainty Δ, an auxiliary problem is defined as 

( ) ( ) ( ) ( )x t Ax t Bw t Bp t   , (0) 0x  , 
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1 1 ˆ( | ) ( ) ( ) ( ) ( )e t t C t x t C t x t  , 

(27) 

(28) 

(29) 

where p(t) is an additional exogenous input satisfying 
2 22

22
p w ,     . (30) 

Consider the scaled H∞ filtering problem where 

( ) ( ) ( )x t Ax t B w t  , (0) 0x  , 

2( ) ( ) ( ) ( )z t C t x t v t  , 

1 1 ˆ( | ) ( ) ( ) ( ) ( )e t t C t x t C t x t  , 

(31) 

(32) 

(33) 

in which ε2 = (1 + δ2)-1. 

                                                                 

“A theory has only the alternative of being right or wrong. A model has a third possibility - it may be 
right but irrelevant.” Manfred Eigen 
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Lemma 3 [26]: Suppose for a γ ≠ 0 that the scaled H∞ problem (31) – (33) is solvable, that is, 2

2
e  < 

22 2
2

( w    + 2

2
)v . Then, this guarantees the performance 

22 2 22
2 2 22

( )e w p v    (34) 

for the solution of the auxiliary problem (27) – (29). 

Proof: From the assumption that problem (31) – (33) is solvable, it follows that 2

2
e  < 22 2

2
( w    + 

2

2
)v . Substituting for ε, using (30) and rearranging yields (34).                                                       ฀ 

 

9.2.4 Multiplicative Uncertainty 
Next, consider a filtering problem in which the model is G(I + Δ), as depicted in Fig. 5. It is 
again assumed that G and Δ are known and unknown transfer function matrices, 
respectively. This problem may similarly be solved using Lemma 3. Thus a filter that 
accommodates additive or multiplicative uncertainty simply requires scaling of an input. 
The above scaling is only sufficient for a H∞ performance criterion to be met. The design 
may well be too conservative and it is worthwhile to explore the merits of using values for δ 
less than the uncertainty’s assumed norm bound. 
 

9.2.5 Parametric Uncertainty 
Finally, consider a time-invariant output estimation problem in which the state matrix is 
uncertain, namely, 

( ) ( ) ( ) ( ),Ax t A x t Bw t     (0) 0,x   
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where ΔA  n n  is unknown. Define an auxiliary H∞ filtering problem by 

( ) ( ) ( ) ( ),x t Ax t Bw t p t    (0) 0,x   (38) 

(36) and (37), where p(t) = ΔAx(t) is a fictitious exogenous input.  A solution to this problem 
would achieve  
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( )e w p v    (39) 

for a γ ≠ 0. From the approach of [14], [18], [19], consider the scaled filtering problem 

( ) ( ) ( ),x t Ax t Bw t   (0) 0,x   (40) 
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( )

w t
p t

 
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 

 and 0 < ε < 1. Then the solution of this H∞ 

filtering problem satisfies 
22 2 22 2

2 2 22
( )e w p v    , (41) 

which implies (39). Thus, state matrix parameter uncertainty can be accommodated by 
including a scaled input in the solution of an auxiliary H∞ filtering problem. Similar 
solutions to problems in which other state-space parameters are uncertain appear in [14], 
[18], [19].  
 

9.2.6 Continuous-Time H∞ Smoothing 
 

9.2.6.1 Background 
There are three kinds of H∞ smoothers: fixed point, fixed lag and fixed interval (see the 
tutorial [13]). The next development is concerned with continuous-time H∞ fixed-interval 
smoothing. The smoother in [10] arises as a combination of forward states from an H∞ filter 
and adjoint states that evolve according to a Hamiltonian matrix. A different fixed-interval 
smoothing problem to [10] is found in [16] by solving for saddle conditions within 
differential games. A summary of some filtering and smoothing results appears in [13]. 
Robust prediction, filtering and smoothing problems are addressed in [22]; the H∞ predictor, 
filter and smoother require the solution of a Riccati differential equation that evolves 
forward in time, whereas the smoother additionally requires another to be solved in reverse-
time. Another approach for combining forward and adjoint estimates is described [32] 
where the Fraser-Potter formula is used to construct a smoothed estimate. 

Continuous-time, fixed-interval smoothers that differ from the formulations within [10], 
[13], [16], [22], [32] are reported in [34] –  [35]. A robust version of [34] – [35] appears in [33], 
which is described below. 
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22 2
2
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2
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22 2 22
2 2 22
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2
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2

2
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9.2.6.2 Problem Definition 
Once again, it is assumed that the data is generated by (14) – (17). For convenience, attention 
is confined to output estimation, namely 2  = 1  within Fig. 1. Input and state estimation 
problems can be handled similarly using the solution structures described in Chapter 6. It is 
desired to find a fixed-interval smoother solution   that produces estimates 1ˆ ( | )y t T  of 

1( )y t  so that the output estimation error 

1 1ˆ( | ) ( ) ( | )e t T y t y t T   (42) 

is in 2. As before, the map from the inputs i = 
v
w
 
 
 

  to the error is denoted by ei = 

1 1[ ]     and the objective is to achieve 
0

( | ) ( | )
T Te t T e t T dt  – 2

0
( ) ( ) 

T Ti t i t dt  < 0 

for some     . 
 

9.2.6.3  H∞ Solution 
The following H∞ fixed-interval smoother exploits the structure of the minimum-variance 
smoother but uses the gain (21) calculated from the solution of the Riccati differential equation 
(22) akin to the H∞ filter. An approximate Wiener-Hopf factor inverse, 1ˆ  , is given by  

1/ 2 1/ 2

ˆ( ) ( ) ( ) ( ) ( | )ˆ( | )
( ) ( ) ( ) ( )( )

A t K t C t K t x t tx t t
R t C t R t z tt  

     
          


. (43) 

An inspection reveals that the states within (43) are the same as those calculated by the H∞ 
filter (19). The adjoint of 1ˆ  , which is denoted by ˆ H , has the realisation 

1/ 2

1/ 2

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( )

T T T T

T

tA t C t K t C t R tt
tK t R tt








      
     

     


. (44) 

Output estimates are obtained as 

ˆ( | ) ( ) ( ) ( )y t T z t R t t  . (45) 

However, an additional condition requires checking in order to guarantee that the smoother 
actually achieves the above performance objective; the existence of a solution 2 ( )P t  = 2 ( )

TP t  
> 0 is required for the auxiliary Riccati differential equation 

     2
2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t K t R t K t     

                    2 1 1
2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t C t R t C t P t C t R t R t C t P t     , 2( ) 0P T  , 

 (46) 

where ( ) ( ) ( ) ( )A t A t K t C t  . 
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9.2.7 Performance 
It will be shown subsequently that the robust fixed-interval smoother (43) – (45) has the 
error structure shown in Fig. 6, which is examined below. 

Lemma 4 [33]: Consider the arrangement of two linear systems f = fii  and u = H
uj j  shown in 

Fig. 6, in which 
w

i
v

 
  
 

 and 
f

j
v
 

  
 

. Let ei  denote the map from i to e. Assume that w and v  

2.  If and only if: (i) fi   ∞ and (ii) H
uj   ∞, then (i) f, u, e  2 and (ii) ei   ∞. 

Proof: (i) To establish sufficiency, note that 
2

i  ≤ 
2

w    
2

v  => d  2, which with Condition 

(i) => f  2. Similarly, 
2

j  ≤ 
2

f    
2

v  => j  2, which with Condition (ii) => u  2. Also, 

2
e  ≤ 

2
f    

2
u  => e  2. The necessity of (i) follows from the assumption i  2 together with 

the property fi 2   2 => fi   ∞ (see [p. 83, 21]). Similarly, j  2 together with the 

property H
uj 2   2 => H

uj   ∞.  

(ii) Finally, i  2, e = ei i   2 together with the property ei 2   2 => ei   ∞.               ฀ 

It is easily shown that the error system, ei , for the model (14) – (15), the data (17) and the 
smoother (43) – (45), is given by 

1 1

( )
( ) ( ) 0 ( ) ( )

( )
( ) ) ( ) ( ) ( ) 0 ( ) ( )

( )
( | ) ( ) ( ) ( ) 0 0

( )

(T T T

T

x t
x t A t B t K t

t
t C t R t C t A t C t R t

w t
e t T C t R t K t

v t


  



   

                         


 , (0) 0x  , 

( ) 0T  , 

(47) 

where ( | )x t t  = x(t) – ˆ( | )x t t . The conditions for the smoother attaining the desired 
performance objective are described below. 15 
Lemma 5 [33]: In respect of the smoother error system (47), if there exist symmetric positive define 
solutions to (22) and (46) for  , 2  > 0, then the smoother (43) – (45) achieves ei   ∞, that is, i 
2  implies e  2. 

Proof: Since ( | )x t t  is decoupled from ξ(t), ei  is equivalent to the arrangement of two systems fi  

and H
uj  shown in Fig. 6. The fi  is defined by (23) in which C2(t) = C(t). From Lemma 2, the 

existence of a positive definite solution to (22) implies fi   ∞. The H
uj is given by the system 

1 1( ) ( ) ( ) ( ) ( ) ( | ) ( ) ( ) ( )T T TA C R y C R v                 , ( ) 0T  , 

( ) ( ) ( ) ( )Tu R K     . 

(48) 
(49) 
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is confined to output estimation, namely 2  = 1  within Fig. 1. Input and state estimation 
problems can be handled similarly using the solution structures described in Chapter 6. It is 
desired to find a fixed-interval smoother solution   that produces estimates 1ˆ ( | )y t T  of 

1( )y t  so that the output estimation error 
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9.2.6.3  H∞ Solution 
The following H∞ fixed-interval smoother exploits the structure of the minimum-variance 
smoother but uses the gain (21) calculated from the solution of the Riccati differential equation 
(22) akin to the H∞ filter. An approximate Wiener-Hopf factor inverse, 1ˆ  , is given by  
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An inspection reveals that the states within (43) are the same as those calculated by the H∞ 
filter (19). The adjoint of 1ˆ  , which is denoted by ˆ H , has the realisation 
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Output estimates are obtained as 
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However, an additional condition requires checking in order to guarantee that the smoother 
actually achieves the above performance objective; the existence of a solution 2 ( )P t  = 2 ( )
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> 0 is required for the auxiliary Riccati differential equation 
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1 1

( )
( ) ( ) 0 ( ) ( )

( )
( ) ) ( ) ( ) ( ) 0 ( ) ( )

( )
( | ) ( ) ( ) ( ) 0 0

( )

(T T T

T

x t
x t A t B t K t

t
t C t R t C t A t C t R t

w t
e t T C t R t K t

v t


  



   

                         


 , (0) 0x  , 

( ) 0T  , 

(47) 
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2  implies e  2. 

Proof: Since ( | )x t t  is decoupled from ξ(t), ei  is equivalent to the arrangement of two systems fi  

and H
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existence of a positive definite solution to (22) implies fi   ∞. The H
uj is given by the system 
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For the above system to be in ∞, from Lemma 4, it is required that there exists a solution to (46) for 
which the existence of a positive definite solution implies H

uj   ∞. The claim ei   ∞ follows 
from Lemma 4.                                                                                                                                        ฀ 
The H∞ solution can be derived as a solution to a two-point boundary value problem, which 
involves a trade-off between causal and noncausal processes (see [10], [15], [21]). This 
suggests that the H∞ performance of the above smoother would not improve on that of the 
filter. Indeed, from Fig. 6, e = f + u and the triangle rule yields 

2
e  ≤ 

2
f  + 

2
u , where f is 

the H∞ filter error. That is, the error upper bound for the H∞ fixed-interval smoother (43) – 
(45) is greater than that for the H∞ filter (19) – (20). It is observed below that compared to the 
minimum-variance case, the H∞ solution exhibits an increased mean-square error.  

Lemma 6 [33]: For the output estimation problem (14) – (18), in which C2(t) = C1(t) = C(t), the 
smoother solution (43) –  (45) results in 

2 22, 0 2, 0

H H
ei ei ei ei   

  . (50) 

Proof: By expanding H
ei ei  and completing the squares, it can be shown that H

ei ei  = 1 1
H

ei ei   + 

2 2
H

ei ei  , where 2 2
H

ei ei   = 1 1( ) HQ t     1
1 1 1 1( ) ( )H H HQ t Q t       and 1ei  =     

1 1( ) H HQ t    = [    I + 1( )( ) ]HR t   .  Substituting   = I   1ˆ ˆ( )( )HR t   into 1ei  yields 

1 1
1

ˆ ˆ( )[( ) ( ) ]H H
ei R t      ฀ , (51) 

which suggests ̂  = 1/ 2
0( ) ( ) ( )C t K t R t  + 1/ 2( )R t , where 0  denotes an operator having the state-

space realization 
( )

0
A t I

I
 
 
 

. Constructing ˆ ˆ H  = 0( ) [ ( ) ( ) ( )TC t K t R t K t   ( ) ( )TP t A t    

0( ) ( )] ( )H TA t P t C t  + R(t) and using (22) yields ˆ ˆ H  = 0( ) [ ( ) ( ) ( )TC t B t Q t B t    ( )P t  + 
2

0( ) ( ) ( ) ( )] ( )T H TP t C t C t P t C t    + R(t). Comparison with H  = 0 0( ) ( ) ( ) ( ) ( )T H TC t B t Q t B t C t   + 

R(t) leads to ˆ ˆ H  = H    0( ) ( ( )C t P t  + 2
0( ) ( ) ( ) ( )) ( )T H TP t C t C t P t C t   . Substituting for 

ˆ ˆ H  into (51) yields 
1 2 1

1 0 0( )[( ) ( ( ) ( ( ) ( ) ( ) ( ) ( )) ( )) ]H H T H T
ei R t C t P t P t C t C t P t C t           . (52) 

The observation (50) follows by inspection of (52).                                                                                ฀ 

Thus, the cost of designing for worst case input conditions is a deterioration in the mean 
performance. Note that the best possible average performance 2 22 2

H H
ei ei ei eiR R R R  can be 

attained in problems where there are no uncertainties present, 2 0    and the Riccati equation 

solution has converged, that is, ( ) 0P t  , in which case ˆ ˆ H  = H  and 1ei  is a zero matrix. 
 

                                                                 

“We know accurately only when we know little, with knowledge doubt increases.” Johann Wolfgang von Goethe 

  

9.2.8 Performance Comparison 
It is of interest to compare to compare the performance of (43) –  (45) with the H∞ smoother 
described in [10], [13], [16], namely, 

11

ˆˆ 0( | )( | ) ( ) ( ) ( ) ( )
( )

( ) ( )( )( ) ( ) ( ) '( )( )

T

TT

x t Tx t T A t B t Q t B t z t
C t R ttC t R t C t A tt 
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       
              




, 

ˆ ˆ( | ) ( ) ( ) ( )x t T x t P t t   

(53) 

 

(54) 

and (22). Substituting (54) and its differential into the first row of (53) together with (21) 
yields 

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ) ( ))x t A t x t K t z t C t x t   , (55) 

which reverts to the Kalman filter at 2   = 0. Substituting ( )t    1 ˆ( )( ( | )P t x t T   ˆ( ))x t  
into the second row of (53) yields 

ˆ ˆ ˆ ˆ( | ) ( ) ( ) ( )( ( | ) ( ))x t T A t x t G t x t T x t   , (56) 

where G(t)   1
2( ) ( ) ( ) ( )TB t Q t B t P t , which reverts to the maximum-likelihood smoother at 

2   = 0. Thus, the Hamiltonian form (53) – (54) can be realised by calculating the filtered 
estimate (55) and then obtaining the smoothed estimate from (56). 
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“Inquiry is fatal to certainty.” William James Durant 

Figure 7. Fixed-interval smoother performance 
comparison for Gaussian process noise: (i) 
Kalman filter; (ii) Maximum likelihood smoother; 
(iii) Minimum-variance smoother; (iv) H∞ filter; 
(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 

Figure 8. Fixed-interval smoother performance 
comparison for sinusoidal process noise: (i) 
Kalman filter; (ii) Maximum likelihood smoother; 
(iii) Minimum-variance smoother; (iv) H∞ filter; 
(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 

www.intechopen.com



Robust Prediction, Filtering and Smoothing 225
  

For the above system to be in ∞, from Lemma 4, it is required that there exists a solution to (46) for 
which the existence of a positive definite solution implies H

uj   ∞. The claim ei   ∞ follows 
from Lemma 4.                                                                                                                                        ฀ 
The H∞ solution can be derived as a solution to a two-point boundary value problem, which 
involves a trade-off between causal and noncausal processes (see [10], [15], [21]). This 
suggests that the H∞ performance of the above smoother would not improve on that of the 
filter. Indeed, from Fig. 6, e = f + u and the triangle rule yields 

2
e  ≤ 

2
f  + 

2
u , where f is 

the H∞ filter error. That is, the error upper bound for the H∞ fixed-interval smoother (43) – 
(45) is greater than that for the H∞ filter (19) – (20). It is observed below that compared to the 
minimum-variance case, the H∞ solution exhibits an increased mean-square error.  

Lemma 6 [33]: For the output estimation problem (14) – (18), in which C2(t) = C1(t) = C(t), the 
smoother solution (43) –  (45) results in 

2 22, 0 2, 0
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  . (50) 

Proof: By expanding H
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The observation (50) follows by inspection of (52).                                                                                ฀ 

Thus, the cost of designing for worst case input conditions is a deterioration in the mean 
performance. Note that the best possible average performance 2 22 2

H H
ei ei ei eiR R R R  can be 

attained in problems where there are no uncertainties present, 2 0    and the Riccati equation 

solution has converged, that is, ( ) 0P t  , in which case ˆ ˆ H  = H  and 1ei  is a zero matrix. 
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9.2.8 Performance Comparison 
It is of interest to compare to compare the performance of (43) –  (45) with the H∞ smoother 
described in [10], [13], [16], namely, 
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and (22). Substituting (54) and its differential into the first row of (53) together with (21) 
yields 

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ) ( ))x t A t x t K t z t C t x t   , (55) 

which reverts to the Kalman filter at 2   = 0. Substituting ( )t    1 ˆ( )( ( | )P t x t T   ˆ( ))x t  
into the second row of (53) yields 

ˆ ˆ ˆ ˆ( | ) ( ) ( ) ( )( ( | ) ( ))x t T A t x t G t x t T x t   , (56) 

where G(t)   1
2( ) ( ) ( ) ( )TB t Q t B t P t , which reverts to the maximum-likelihood smoother at 

2   = 0. Thus, the Hamiltonian form (53) – (54) can be realised by calculating the filtered 
estimate (55) and then obtaining the smoothed estimate from (56). 
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“Inquiry is fatal to certainty.” William James Durant 

Figure 7. Fixed-interval smoother performance 
comparison for Gaussian process noise: (i) 
Kalman filter; (ii) Maximum likelihood smoother; 
(iii) Minimum-variance smoother; (iv) H∞ filter; 
(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 

Figure 8. Fixed-interval smoother performance 
comparison for sinusoidal process noise: (i) 
Kalman filter; (ii) Maximum likelihood smoother; 
(iii) Minimum-variance smoother; (iv) H∞ filter; 
(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 
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Example: 2 [35]. Let A = 
1 0
0 1
 
  

, B = C = Q = 
1 0
0 1
 
 
 

, D = 
0 0
0 0
 
 
 

 and R = 
2

2

0
0

v

v




 
 
 

 

denote time-invariant parameters for an output estimation problem. Simulations were 
conducted for the case of T = 100 seconds, dt = 1 millisecond, using 500 realizations of zero-
mean, Gaussian process noise and measurement noise. The resulting mean-square-error 
(MSE) versus signal-to-noise ratio (SNR) are shown in Fig. 7. The H∞ solutions were 
calculated using a priori designs of 2    2

v   within (22). It can be seen from trace (vi) of 
Fig. 7 that the H∞ smoothers exhibit poor performance when the exogenous inputs are in 
fact Gaussian, which illustrates Lemma 6. The figure demonstrates that the minimum-
variance smoother out-performs the maximum-likelihood smoother.  However, at high 
SNR, the difference in smoother performance is inconsequential. Intermediate values for 

2   may be selected to realise a smoother design that achieves a trade-off between 
minimum-variance performance (trace (iii)) and H∞ performance (trace (v)). 

Example 3 [35]. Consider the non-Gaussian process noise signal w(t) = 1
sin( )sin( ) tt   , where 2

sin( )t  
denotes the sample variance of sin(t). The results of a simulation study appear in Fig. 8. It can 
be seen that the H∞ solutions, which accommodate input uncertainty, perform better than 
those relying on Gaussian noise assumptions. In this example, the developed H∞ smoother (43) 
– (45) exhibits the best mean-square-error performance. 
 

9.3 Robust Discrete-time Estimation 
 

9.3.1 Discrete-Time Bounded Real Lemma 
The development of discrete-time H∞ filters and smoothers proceeds analogously to the 
continuous-time case. From Lyapunov stability theory [36], for the unforced system 

1k k kx A x  , (57) 

Ak  n n , to be asymptotically stable over the interval k  [1, N], a Lyapunov function, 
Vk(xk), is required to satisfy ( ) 0k kV x  , where ΔVk(xk) = Vk+1(xk) – Vk(xk) denotes the first 
backward difference of Vk(xk). Consider the candidate Lyapunov function ( ) T

k k k k kV x x P x , 
where kP  = T

kP   n n  is positive definite. To guarantee xk  2 , it is required that 

1 1 1( ) 0T T
k k k k k k k kV x x P x x P x      . (58) 

Now let y =  w denote the output of the system 

1k k k k kx A x B w   , 

k k ky C x , 

(59) 

(60) 

where wk  m , Bk  n m  and Ck   p n .  

                                                                 

“Education is the path from cocky ignorance to miserable uncertainty.” Samuel Langhorne Clemens aka. 
Mark Twain 

  

The Bounded Real Lemma [18] states that w  2  implies y  2  if  
2

1 1 1 0T T T T
k k k k k k k k k kx P x x P x y y w w        (61) 

for a γ   . Summing (61) from k = 0 to k = N – 1 yields the objective 

1 1
2

0 0 0
0 0

0
 

 

    
N N

T T T
k k k k

k k
x P x y y w w , (62) 

that is, 
1

0 0 0
20

1

0

N
T T

k k
k

N
T
k k

k

x P x y y

w w









 





. (63) 

Assuming that x0 = 0, 
1

02 2
1

2 2

0

N
T
k k

k

N
T
k k

k

y yy w

w w w w






 



   





 . (64)  

Conditions for achieving the above objectives are established below. 

Lemma 7: The discrete-time Bounded Real Lemma [18]: In respect of the above system  , suppose 
that the Riccati difference equation 

2 2 1
1 1 1 1( )T T T T T

k k k k k k k k k k k k k k kP A P A A P B I B P B B P A C C   
       ,  (65) 

with PT = 0, has a positive definite symmetric solution on [0, N]. Then 


  ≤  γ for any w  2 . 

Proof: From the approach of Xie et al [18], define  
2 2 1

1 1( )T T
k k k k k k k k kp w I B P B B P A x   

    .  (66) 

It is easily verified that  
2 2 2 1

1 1 1 1 1( )T T T T T T T T
k k k k k k k k k k k k k k k k k k k kx P x x P x y y w w p I B P B p x A P A x    
           , 

which implies (61) – (62) and (63) under the assumption x0 = 0.                                                         ฀ 

The above lemma relies on the simplifying assumption { }T
j kE w w  = jkI . When { }T

j kE w w  = 

k jkQ  , the scaled matrix kB  =  1/ 2
k kB Q  may be used in place of Bk above. In the case where 

  possesses a direct feedthrough matrix, namely, yk = Ckxk + Dkwk, the Riccati difference 
equation within the above lemma becomes 

      1 T T
k k k k k kP A P A C C  

              2 2 2 1
1 1 1( )( ) ( )T T T T T T

k k k k k k k k k k k k k k kA P B C D I B P B D D B P A D C     
       . 

(67) 

                                                                 

“And as he thus spake for himself, Festus said with a loud voice, Paul, thou art beside thyself; much 
learning doth make thee mad.” Acts 26: 24 
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denote time-invariant parameters for an output estimation problem. Simulations were 
conducted for the case of T = 100 seconds, dt = 1 millisecond, using 500 realizations of zero-
mean, Gaussian process noise and measurement noise. The resulting mean-square-error 
(MSE) versus signal-to-noise ratio (SNR) are shown in Fig. 7. The H∞ solutions were 
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denotes the sample variance of sin(t). The results of a simulation study appear in Fig. 8. It can 
be seen that the H∞ solutions, which accommodate input uncertainty, perform better than 
those relying on Gaussian noise assumptions. In this example, the developed H∞ smoother (43) 
– (45) exhibits the best mean-square-error performance. 
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where wk  m , Bk  n m  and Ck   p n .  
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The Bounded Real Lemma [18] states that w  2  implies y  2  if  
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1 1
2

0 0 0
0 0

0
 

 

    
N N

T T T
k k k k

k k
x P x y y w w , (62) 

that is, 
1

0 0 0
20

1

0

N
T T

k k
k

N
T
k k

k

x P x y y

w w









 





. (63) 

Assuming that x0 = 0, 
1

02 2
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2 2

0
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y yy w

w w w w






 



   





 . (64)  

Conditions for achieving the above objectives are established below. 

Lemma 7: The discrete-time Bounded Real Lemma [18]: In respect of the above system  , suppose 
that the Riccati difference equation 

2 2 1
1 1 1 1( )T T T T T

k k k k k k k k k k k k k k kP A P A A P B I B P B B P A C C   
       ,  (65) 

with PT = 0, has a positive definite symmetric solution on [0, N]. Then 


  ≤  γ for any w  2 . 

Proof: From the approach of Xie et al [18], define  
2 2 1

1 1( )T T
k k k k k k k k kp w I B P B B P A x   

    .  (66) 

It is easily verified that  
2 2 2 1

1 1 1 1 1( )T T T T T T T T
k k k k k k k k k k k k k k k k k k k kx P x x P x y y w w p I B P B p x A P A x    
           , 

which implies (61) – (62) and (63) under the assumption x0 = 0.                                                         ฀ 

The above lemma relies on the simplifying assumption { }T
j kE w w  = jkI . When { }T

j kE w w  = 

k jkQ  , the scaled matrix kB  =  1/ 2
k kB Q  may be used in place of Bk above. In the case where 

  possesses a direct feedthrough matrix, namely, yk = Ckxk + Dkwk, the Riccati difference 
equation within the above lemma becomes 

      1 T T
k k k k k kP A P A C C  

              2 2 2 1
1 1 1( )( ) ( )T T T T T T

k k k k k k k k k k k k k k kA P B C D I B P B D D B P A D C     
       . 

(67) 

                                                                 

“And as he thus spake for himself, Festus said with a loud voice, Paul, thou art beside thyself; much 
learning doth make thee mad.” Acts 26: 24 
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A verification is requested in the problems. It will be shown that predictors, filters and 
smoothers satisfy a H∞ performance objective if there exist solutions to Riccati difference 
equations arising from the application of Lemma 7 to the corresponding error systems. A 
summary of the discrete-time results from [5], [11], [13] and the further details described in 
[21], [30], is presented below. 
 

9.3.2 Discrete-Time H∞ Prediction 
 

9.3.2.1 Problem Definition 
Consider a nominal system   

1 ,k k k k kx A x B w    

2, 2,k k ky C x , 

(68) 

(69) 

together with a fictitious reference system   realised by (68) and 

1, 1,k k ky C x , (70) 

where Ak, Bk, C2,k and C1,k are of appropriate dimensions. The problem of interest is to find a 
solution   that produces one-step-ahead predictions, 1, / 1ˆ k ky  , given measurements 

2,k k kz y v   (71) 

at time k – 1. The prediction error is defined as 

/ 1 1, 1, / 1ˆk k k k ke y y   . (72) 

The error sequence (72) is generated by e = ei i, where ei = 2 1[ ]    , i = 
v
w
 
 
 

 and 

the objective is to achieve 
1

/ 1 / 1
0

N
T
k k k k

k
e e



 

  – 

1
2

0

N
T
k k

k
i i




  < 0, for some γ   . For convenience, it 

is assumed that wk  m , { }kE w  = 0, { }T
j kE w w  = k jkQ  , vk  p , { }kE v  = 0, { }T

j kE v v  = k jkR   

and { }T
j kE w v  = 0. 

 

9.3.2.2 H∞ Solution 
The H∞ predictor has the same structure as the optimum minimum-variance (or Kalman) 
predictor. It is given by 

 1/ 2, / 1ˆ ˆ ,k k k k k k k k kx A K C x K z     

1, / 1 1, / 1ˆ ˆ ,k k k k ky C x   

(73) 

(74) 

 
                                                                 

“Why waste time learning when ignorance is instantaneous?” William Boyd Watterson II 

  

where 
1

/ 1 2, 2, / 1 2,( )T T
k k k k k k k k k kK A P C C P C R 

    (75) 

is the one-step-ahead predictor gain, 
1 2 1

/ 1 1, 1 1, 1( )T
k k k k kP M C C  

    , (76) 

and kM  = T
kM  > 0 satisfies the Riccati differential equation 

12
1,1, 1, 1, 2,

1 1, 2,
2,2, 1, 2, 2,

T T
kk k k k k kT T T T T

k k k k k k k k k k k k kT T
kk k k k k k k

CC M C I C M C
M A M A B Q B A M C C M A

CC M C R C M C






   
             

 

                                                                                                                                                             (77) 

such that 
2

1, 1, 1, 2,

2, 1, 2, 2,

0
T T

k k k k k k
T T

k k k k k k k

C M C I C M C
C M C R C M C

 
 

  
. The above predictor is also known as an a 

priori filter within [11], [13], [30]. 
 

9.3.2.3 Performance 
Following the approach in the continuous-time case, by subtracting (73) – (74) from (68), 
(70), the predictor error system is 

/ 1
2,1/

1,/ 1

[ ]
[0 0]

k k
k k kk k k k

k
kk k

k

x
A K Cx K B

v
Ce

w






 
    

      
        




, 0 0,x   

                                        eii , 

(78) 

where / 1k kx 
  = kx  – / 1ˆ k kx  , ei  = 2,

1,

[ ]
[0 0]

k k k k k

k

A K C K B
C
 

 
 

 and i = 
v
w
 
 
 

. It is shown below 

that the prediction error satisfies the desired performance objective. 

Lemma 8 [11], [13], [30]: In respect of the H∞ prediction problem (68) – (72), the existence of kM  = 
T
kM  > 0 for the Riccati differential equation (77) ensures that the solution (73) – (74) achieves the 

performance objective 
1

/ 1 / 1
0

N
T
k k k k

k
e e



 

  – 

1
2

0

N
T
k k

k
i i




  < 0. 

Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 

                                                                 

“Give me a fruitful error any time, full of seeds bursting with its own corrections. You can keep your 
sterile truth for yourself.” Vilfredo Federico Damaso Pareto 

www.intechopen.com



Robust Prediction, Filtering and Smoothing 229
  

A verification is requested in the problems. It will be shown that predictors, filters and 
smoothers satisfy a H∞ performance objective if there exist solutions to Riccati difference 
equations arising from the application of Lemma 7 to the corresponding error systems. A 
summary of the discrete-time results from [5], [11], [13] and the further details described in 
[21], [30], is presented below. 
 

9.3.2 Discrete-Time H∞ Prediction 
 

9.3.2.1 Problem Definition 
Consider a nominal system   

1 ,k k k k kx A x B w    

2, 2,k k ky C x , 

(68) 

(69) 

together with a fictitious reference system   realised by (68) and 

1, 1,k k ky C x , (70) 

where Ak, Bk, C2,k and C1,k are of appropriate dimensions. The problem of interest is to find a 
solution   that produces one-step-ahead predictions, 1, / 1ˆ k ky  , given measurements 

2,k k kz y v   (71) 

at time k – 1. The prediction error is defined as 

/ 1 1, 1, / 1ˆk k k k ke y y   . (72) 

The error sequence (72) is generated by e = ei i, where ei = 2 1[ ]    , i = 
v
w
 
 
 

 and 

the objective is to achieve 
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
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


  < 0, for some γ   . For convenience, it 

is assumed that wk  m , { }kE w  = 0, { }T
j kE w w  = k jkQ  , vk  p , { }kE v  = 0, { }T

j kE v v  = k jkR   

and { }T
j kE w v  = 0. 

 

9.3.2.2 H∞ Solution 
The H∞ predictor has the same structure as the optimum minimum-variance (or Kalman) 
predictor. It is given by 

 1/ 2, / 1ˆ ˆ ,k k k k k k k k kx A K C x K z     

1, / 1 1, / 1ˆ ˆ ,k k k k ky C x   

(73) 

(74) 

 
                                                                 

“Why waste time learning when ignorance is instantaneous?” William Boyd Watterson II 

  

where 
1

/ 1 2, 2, / 1 2,( )T T
k k k k k k k k k kK A P C C P C R 

    (75) 

is the one-step-ahead predictor gain, 
1 2 1

/ 1 1, 1 1, 1( )T
k k k k kP M C C  

    , (76) 

and kM  = T
kM  > 0 satisfies the Riccati differential equation 
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such that 
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1, 1, 1, 2,

2, 1, 2, 2,

0
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k k k k k k
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k k k k k k k

C M C I C M C
C M C R C M C

 
 

  
. The above predictor is also known as an a 

priori filter within [11], [13], [30]. 
 

9.3.2.3 Performance 
Following the approach in the continuous-time case, by subtracting (73) – (74) from (68), 
(70), the predictor error system is 

/ 1
2,1/

1,/ 1

[ ]
[0 0]

k k
k k kk k k k

k
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, 0 0,x   

                                        eii , 

(78) 

where / 1k kx 
  = kx  – / 1ˆ k kx  , ei  = 2,

1,

[ ]
[0 0]

k k k k k

k

A K C K B
C
 

 
 

 and i = 
v
w
 
 
 

. It is shown below 

that the prediction error satisfies the desired performance objective. 

Lemma 8 [11], [13], [30]: In respect of the H∞ prediction problem (68) – (72), the existence of kM  = 
T
kM  > 0 for the Riccati differential equation (77) ensures that the solution (73) – (74) achieves the 

performance objective 
1

/ 1 / 1
0

N
T
k k k k

k
e e



 

  – 

1
2

0

N
T
k k

k
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


  < 0. 

Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 

                                                                 

“Give me a fruitful error any time, full of seeds bursting with its own corrections. You can keep your 
sterile truth for yourself.” Vilfredo Federico Damaso Pareto 

www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future230

  

1 2, 2,( ) ( )T
k k k k k k k kP A K C P A K C     

           2 2 1
2, 1, 1, 1, 2, 2,( ) ( ) ( )T T T T T

k k k k k k k k k k k k k k k k k k kA K C P C I C P C C P A K C K R K B Q B          

       2 2 1
2, 1, 1, 1, 1, 2,( )( ( ) )( )T T T T T

k k k k k k k k k k k k k k k k k k k kA K C P P C I C P C C P A K C K R K B Q B           

       1 2 1
2, 1, 1, 2,( )( ) ( )T T T T

k k k k k k k k k k k k k k kA K C P C C A K C K R K B Q B                                           (79) 

in which use was made of the Matrix Inversion Lemma. Defining / 1k kP   = 1( kP  + 2 1
1, 1, )

T
k kC C    

leads to 
1 2 1
1/ 1, 1 1, 1 2, / 1 2,( ) ( ) ( )T T T T

k k k k k k k k k k k k k k k k k kP C C A K C P A K C K R K B Q B  
          

                                         1
/ 1 / 1 2, / 1 2, 2, / 1( ) .T T T T T

k k k k k k k k k k k k k k k k k k kA P A B Q B A P C R C P C C P A
        

and applying the Matrix Inversion Lemma gives 
1 2 1 1
1/ 1, 1 1, 1 / 1 / 1 2, 2, / 1 2, 2, / 1( ) ( )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k kP C C A P A B Q B A P C R C P C C P A   
            

                                         1 1
/ 1 2, 2,( )T T T

k k k k k k k k k kA P C R C A B Q B 
   . 

The change of variable (76), namely, 1
/ 1k kP
  = 1

kM  – 2
1, 1,

T
k kC C  , results in 

1 1 2 1
1 2, 2, 1, 1,( )T T T T

k k k k k k k k k k k kM A M C R C C C A B Q B   
      

                                1 1( )T T T
k k k k k k k k kA M C R C A B Q B    . 

(80) 

where 1,

2,

k
k

k

C
C

C
 

  
 

 and 
2 0

0k
k

I
R

R
  

  
 

. Applying the Matrix Inversion Lemma within (80) gives 

1
1 ( )T T T T T

k k k k k k k k k k k k k k k kM A MA A M C R C M C C M A B Q B
     , (81) 

Expanding (81) yields (77). The existence of Mk > 0 for the above Riccati differential equation implies 
Pk > 0 for (79). Thus, it follows from Lemma 7 that the stated performance objective is achieved.       ฀ 
 

9.3.3 Discrete-Time H∞ Filtering 
 

9.3.3.1 Problem Definition 
Consider again the configuration of Fig. 1. Assume that the systems   and   have the 
realisations (68) – (69) and (68), (70), respectively. It is desired to find a solution   that operates 
on the measurements (71) and produces the filtered estimates 1, /ˆ k ky . The filtered error sequence, 

/ 1, 1, /ˆk k k k ke y y  , (82) 

                                                                 

“Never interrupt your enemy when he is making a mistake.” Napoléon Bonaparte 

  

is generated by e = ei i, where ei = 2 1[ ]    , i = v
w
 
 
 

. The H∞ performance 

objective is to achieve 
1

/ /
0
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T
k k k k

k
e e




  – 

1
2

0

N
T
k k

k
i i




  < 0, for some γ   . 

 

9.3.3.2 H∞ Solution 
As explained in Chapter 4, filtered states can be evolved from 

/ 1 1/ 1 2, 1 1/ 1ˆ ˆ ˆ( ),k k k k k k k k k k kx A x L z C A x         (83) 

where Lk  n p  is a filter gain. The above recursion is called an a posteriori filter in [11], [13], 
[30]. Output estimates are obtained from 

1, 1/ 1 1, 1 1/ 1ˆ ˆk k k k ky C x     . (84) 

The filter gain is calculated as 
1( )T T

k k k k k k kL M C C M C R   , (85) 

where kM  = T
kM  > 0 satisfies the Riccati differential equation 

1 1 1 1 1 1 1 1 1, 1 2, 1
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(86) 

such that 
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9.3.3.3 Performance 
Subtracting from (83) from (68) gives /k kx  = 1 1/ 1ˆk k kA x    + 1 1k kB w   – 1 1/ 1ˆk k kA x    + 

2, 1 1/ 1ˆk k k k kL C A x    + 2, 1 1( (k k k kL C A x   + 1 1)k kB w   + )kv . Denote ik = 
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, then the filtered 

error system may be written as 
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“I believe the most solemn duty of the American president is to protect the American people. If America 
shows uncertainty and weakness in this decade, the world will drift toward tragedy. This will not 
happen on my watch.” George Walker Bush 
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k k k k k k k k k k k k k k k k k k k kA K C P P C I C P C C P A K C K R K B Q B           

       1 2 1
2, 1, 1, 2,( )( ) ( )T T T T

k k k k k k k k k k k k k k kA K C P C C A K C K R K B Q B                                           (79) 

in which use was made of the Matrix Inversion Lemma. Defining / 1k kP   = 1( kP  + 2 1
1, 1, )

T
k kC C    

leads to 
1 2 1
1/ 1, 1 1, 1 2, / 1 2,( ) ( ) ( )T T T T

k k k k k k k k k k k k k k k k k kP C C A K C P A K C K R K B Q B  
          

                                         1
/ 1 / 1 2, / 1 2, 2, / 1( ) .T T T T T

k k k k k k k k k k k k k k k k k k kA P A B Q B A P C R C P C C P A
        

and applying the Matrix Inversion Lemma gives 
1 2 1 1
1/ 1, 1 1, 1 / 1 / 1 2, 2, / 1 2, 2, / 1( ) ( )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k kP C C A P A B Q B A P C R C P C C P A   
            

                                         1 1
/ 1 2, 2,( )T T T

k k k k k k k k k kA P C R C A B Q B 
   . 

The change of variable (76), namely, 1
/ 1k kP
  = 1

kM  – 2
1, 1,

T
k kC C  , results in 

1 1 2 1
1 2, 2, 1, 1,( )T T T T

k k k k k k k k k k k kM A M C R C C C A B Q B   
      

                                1 1( )T T T
k k k k k k k k kA M C R C A B Q B    . 

(80) 

where 1,

2,

k
k

k

C
C

C
 

  
 

 and 
2 0

0k
k

I
R

R
  

  
 

. Applying the Matrix Inversion Lemma within (80) gives 

1
1 ( )T T T T T

k k k k k k k k k k k k k k k kM A MA A M C R C M C C M A B Q B
     , (81) 

Expanding (81) yields (77). The existence of Mk > 0 for the above Riccati differential equation implies 
Pk > 0 for (79). Thus, it follows from Lemma 7 that the stated performance objective is achieved.       ฀ 
 

9.3.3 Discrete-Time H∞ Filtering 
 

9.3.3.1 Problem Definition 
Consider again the configuration of Fig. 1. Assume that the systems   and   have the 
realisations (68) – (69) and (68), (70), respectively. It is desired to find a solution   that operates 
on the measurements (71) and produces the filtered estimates 1, /ˆ k ky . The filtered error sequence, 

/ 1, 1, /ˆk k k k ke y y  , (82) 

                                                                 

“Never interrupt your enemy when he is making a mistake.” Napoléon Bonaparte 

  

is generated by e = ei i, where ei = 2 1[ ]    , i = v
w
 
 
 

. The H∞ performance 

objective is to achieve 
1

/ /
0

N
T
k k k k

k
e e




  – 

1
2

0

N
T
k k

k
i i




  < 0, for some γ   . 

 

9.3.3.2 H∞ Solution 
As explained in Chapter 4, filtered states can be evolved from 

/ 1 1/ 1 2, 1 1/ 1ˆ ˆ ˆ( ),k k k k k k k k k k kx A x L z C A x         (83) 

where Lk  n p  is a filter gain. The above recursion is called an a posteriori filter in [11], [13], 
[30]. Output estimates are obtained from 

1, 1/ 1 1, 1 1/ 1ˆ ˆk k k k ky C x     . (84) 

The filter gain is calculated as 
1( )T T

k k k k k k kL M C C M C R   , (85) 

where kM  = T
kM  > 0 satisfies the Riccati differential equation 

1 1 1 1 1 1 1 1 1, 1 2, 1
T T T T

k k k k k k k k k k kM A M A B Q B A M C C                
12

1, 11, 1 1 1, 1 1, 1 1 2, 1
1 1

2, 12, 1 1 1, 1 1 2, 1 1 2, 1

T T
kk k k k k k T

k kT T
kk k k k k k k

CC M C I C M C
M A

CC M C R C M C




     
 

      

   
       

 

(86) 

such that 
2

1, 1 1 1, 1 1, 1 1 2, 1

2, 1 1 1, 1 1 2, 1 1 2, 1

0
T T

k k k k k k
T T

k k k k k k k

C M C I C M C
C M C R C M C

     

      

 
 

  
. 

 

9.3.3.3 Performance 
Subtracting from (83) from (68) gives /k kx  = 1 1/ 1ˆk k kA x    + 1 1k kB w   – 1 1/ 1ˆk k kA x    + 

2, 1 1/ 1ˆk k k k kL C A x    + 2, 1 1( (k k k kL C A x   + 1 1)k kB w   + )kv . Denote ik = 
1

k

k

v
w 

 
 
 

, then the filtered 

error system may be written as 

2, 1/ 1/ 12, 1

1,1/ 1

( ) [ ( ) ]
[0 0]

k k kk k k kk k k k

kk k k

I L C Ax xL I L C B
Ce i

  

 

     
     

    

   

eii , 

(87) 

                                                                 

“I believe the most solemn duty of the American president is to protect the American people. If America 
shows uncertainty and weakness in this decade, the world will drift toward tragedy. This will not 
happen on my watch.” George Walker Bush 
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with 0x  = 0, where ei  = 2, 1 2, 1

1,

( ) [ ( ) ]
[0 0]

k k k k k k k

k

I L C A L I L C B
C

   
 
 

. It is shown below that the 

filtered error satisfies the desired performance objective. 

Lemma 9 [11], [13], [30]: In respect of the H∞ problem (68) – (70), (82), the solution (83) – (84) 

achieves the performance 
1

/ /
0

N
T
k k k k

k
e e




  – 

1
2

0

N
T
k k

k
i i




  < 0. 

Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 

1 2, 1 1 2,( ) ( )T T T
k k k k k k k kP I L C A P A I C L      

          2 2 1
2, 1 1, 1, 1, 1, 1 2,( ) ( ) ( )T T T T

k k k k k k k k k k k k kI L C A P C I C P C C P A I L C   
      

          2, 1 1 1 2,( ) ( )T T T T
k k k k k k k k k kI L C B Q B I C L L R L       

       1 2
2, 1 1, 1, 1 2,( ) ( ) ( )T T T T

k k k k k k k k kI L C A P C C A I C L 
      

          2, 1 1 1 2,( ) ( )T T T T
k k k k k k k k k kI L C B Q B I C L L R L      , 

(88) 

in which use was made of the Matrix Inversion Lemma. Defining  
1 1 2
/ 1 1, 1,

T
k k k k kP P C C  

   , (89) 

 using (85) and applying the Matrix Inversion Lemma leads to 

1 2
1/ 1, 1, 2, 1 / 1 1 1 1 1 2,( ) ( )( )( )T T T T T T

k k k k k k k k k k k k k k k k k kP C C I L C A P A B Q B I C L L R L 
             

                     2, 2,( ) ( )T T T
k k k k k k k kI L C M I C L L R L     

                     1
2, 2, 2, 2,( )T T

k k k k k k k k kM M C R C M C C M    
                     1 1 1

2, 2,( )T
k k k kM C R C    , 

(90) 

where 

1 / 1 1 1 1 1
T T

k k k k k k k kM A P A B Q B       . (91) 

It follows from (90) that 1
1/k kP

  +  2
1, 1,
T

k kC C   = 1
kM  + 1

2, 2,
T

k k kC R C  and 

1 1 1 2
/ 1 1 2, 1 1 2, 1 1, 1 1, 1

T T
k k k k k k k kP M C R C C C   

          

                                           1 1
1 1 1 1

T
k k k kM C R C 
     , 

(92) 

where 1,

2,

k
k

k

C
C

C
 

  
 

 and 
2 0

0k
k

I
R

R
  

  
 

. Substituting (92) into (91) yields 

                                                                 

“Hell, there are no rules here – we’re trying to accomplish something.” Thomas Alva Edison 

  

1 1
1 1 1 1 1 1 1 1 1( )T T T

k k k k k k k k k kM A M C R C A B Q B 
           , (93) 

which is the same as (86). The existence of Mk > 0 for the above Riccati difference equation implies the 
existence of a Pk > 0 for (88). Thus, it follows from Lemma 7 that the stated performance objective is 
achieved.                                                                                                                               ฀ 
 

9.3.4 Solution to the General Filtering Problem 
Limebeer, Green and Walker express Riccati difference equations such as (86) in a compact 
form using J-factorisation [5], [21]. The solutions for the general filtering problem follow 
immediately from their results. Consider 

1 1,1,

/ 1,1, 1,1, 1,2,

2,1, 2,1, 1, /

0

ˆ0

k k k k

k k k k k k

k k k k k

x A B x
e C D D i
z C D y

     
          
          

. (94)   

Let kJ  = 2

{ } 0
0

T
k kE i i


 
 

 
, kC  = 1,1,

2,1,

k

k

C
C
 
 
 

, kD  = 1,1, 1,2,

2,1, 0
k k

k

D D
D
 
 
 

 and kB  = 1,1, 0kB   . From the 

approach of [5], [21], the Riccati difference equation corresponding to the H∞ problem (94) is 

           1
T T

k k k k k k kM A M A B J B    
                   1( )( ) ( )T T T T T T T

k k k k k k k k k k k k k k k k k kA M C B J D C M C D J D A M C B J D    . 
(95)  

Suppose in a general filtering problem that   is realised by (68), 2,ky  = 2,k kC x  + 2,k kD w ,   

is realised by (68) and 1,ky  = 1,k kC x  + 1,k kD w . Then substituting 1,1,kB  = 0 kB   , 1,1,kC  = 1,kC ,  

2,1,kC  = 2,kC ,  1,1,kD  = 1,0 kD   , 1,2,kD  = I  and 2,1,kD  = 2,kI D    into (95) yields 

         1, 1,
1

2, 2,

T T
k k k k k kT

k k k k T T
k k k k k k

A M C B Q D
M A M A

A M C B Q D

 
   

  
 

                      
12

1, 1, 1, 1, 1, 2, 1, 2,

2, 1, 2, 1, 2, 2, 2, 2,

T T T T
k k k k k k k k k k k k

T T T T
k k k k k k k k k k k k k

C M C D Q D I C M C D Q D
C M C D Q D R C M C D Q D




   
 

    
 

                      1, 1, 1, 2, 2,
T T T T

k k k k k k k k k k k kC M A D Q B C M A D Q B      T
k k kB Q B . 

(96)  

The filter solution is given by 

1/ / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 

1, / 1,1, / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x    , 

(97) 
(98) 

where Kk = 2,( T
k k kA M C  + 1

2, )
T

k k k kB Q D  , Lk = 1, 2,( T
k k kC M C  + 1

1, 2, )
T

k k k kD Q D   and Ωk = 2, 2,
T

k k kC M C  

+ 2, 2,
T

k k kD Q D  + Rk. 
 

                                                                 

“If we knew what it is we were doing, it would not be called research, would it?” Albert Einstein 
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with 0x  = 0, where ei  = 2, 1 2, 1

1,

( ) [ ( ) ]
[0 0]

k k k k k k k

k

I L C A L I L C B
C

   
 
 

. It is shown below that the 

filtered error satisfies the desired performance objective. 

Lemma 9 [11], [13], [30]: In respect of the H∞ problem (68) – (70), (82), the solution (83) – (84) 

achieves the performance 
1

/ /
0

N
T
k k k k

k
e e




  – 

1
2

0

N
T
k k

k
i i




  < 0. 

Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 

1 2, 1 1 2,( ) ( )T T T
k k k k k k k kP I L C A P A I C L      

          2 2 1
2, 1 1, 1, 1, 1, 1 2,( ) ( ) ( )T T T T

k k k k k k k k k k k k kI L C A P C I C P C C P A I L C   
      

          2, 1 1 1 2,( ) ( )T T T T
k k k k k k k k k kI L C B Q B I C L L R L       

       1 2
2, 1 1, 1, 1 2,( ) ( ) ( )T T T T

k k k k k k k k kI L C A P C C A I C L 
      

          2, 1 1 1 2,( ) ( )T T T T
k k k k k k k k k kI L C B Q B I C L L R L      , 

(88) 

in which use was made of the Matrix Inversion Lemma. Defining  
1 1 2
/ 1 1, 1,

T
k k k k kP P C C  

   , (89) 

 using (85) and applying the Matrix Inversion Lemma leads to 

1 2
1/ 1, 1, 2, 1 / 1 1 1 1 1 2,( ) ( )( )( )T T T T T T

k k k k k k k k k k k k k k k k k kP C C I L C A P A B Q B I C L L R L 
             

                     2, 2,( ) ( )T T T
k k k k k k k kI L C M I C L L R L     

                     1
2, 2, 2, 2,( )T T

k k k k k k k k kM M C R C M C C M    
                     1 1 1

2, 2,( )T
k k k kM C R C    , 

(90) 

where 

1 / 1 1 1 1 1
T T

k k k k k k k kM A P A B Q B       . (91) 

It follows from (90) that 1
1/k kP

  +  2
1, 1,
T

k kC C   = 1
kM  + 1

2, 2,
T

k k kC R C  and 

1 1 1 2
/ 1 1 2, 1 1 2, 1 1, 1 1, 1

T T
k k k k k k k kP M C R C C C   

          

                                           1 1
1 1 1 1

T
k k k kM C R C 
     , 

(92) 

where 1,

2,

k
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k

C
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 

  
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 and 
2 0

0k
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I
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R
  

  
 

. Substituting (92) into (91) yields 

                                                                 

“Hell, there are no rules here – we’re trying to accomplish something.” Thomas Alva Edison 

  

1 1
1 1 1 1 1 1 1 1 1( )T T T

k k k k k k k k k kM A M C R C A B Q B 
           , (93) 

which is the same as (86). The existence of Mk > 0 for the above Riccati difference equation implies the 
existence of a Pk > 0 for (88). Thus, it follows from Lemma 7 that the stated performance objective is 
achieved.                                                                                                                               ฀ 
 

9.3.4 Solution to the General Filtering Problem 
Limebeer, Green and Walker express Riccati difference equations such as (86) in a compact 
form using J-factorisation [5], [21]. The solutions for the general filtering problem follow 
immediately from their results. Consider 
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k k k k

k k k k k k

k k k k k
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e C D D i
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. (94)   

Let kJ  = 2

{ } 0
0

T
k kE i i


 
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, kC  = 1,1,
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 
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 
 

 and kB  = 1,1, 0kB   . From the 

approach of [5], [21], the Riccati difference equation corresponding to the H∞ problem (94) is 

           1
T T

k k k k k k kM A M A B J B    
                   1( )( ) ( )T T T T T T T

k k k k k k k k k k k k k k k k k kA M C B J D C M C D J D A M C B J D    . 
(95)  

Suppose in a general filtering problem that   is realised by (68), 2,ky  = 2,k kC x  + 2,k kD w ,   

is realised by (68) and 1,ky  = 1,k kC x  + 1,k kD w . Then substituting 1,1,kB  = 0 kB   , 1,1,kC  = 1,kC ,  

2,1,kC  = 2,kC ,  1,1,kD  = 1,0 kD   , 1,2,kD  = I  and 2,1,kD  = 2,kI D    into (95) yields 
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(96)  

The filter solution is given by 

1/ / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 

1, / 1,1, / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x    , 

(97) 
(98) 

where Kk = 2,( T
k k kA M C  + 1

2, )
T

k k k kB Q D  , Lk = 1, 2,( T
k k kC M C  + 1

1, 2, )
T

k k k kD Q D   and Ωk = 2, 2,
T

k k kC M C  

+ 2, 2,
T

k k kD Q D  + Rk. 
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9.3.5  Discrete-Time H∞ Smoothing 
 

9.3.5.1  Problem Definition 
Suppose that measurements (72) of a system (68) – (69) are available over an interval k  [1, 
N]. The problem of interest is to calculate smoothed estimates /ˆ k Ny  of ky  such that the error 
sequence 

/ /ˆk N k k Ne y y   (99) 

is in 2 . 
 

9.3.5.2  H∞ Solution 
The following fixed-interval smoother for output estimation [28] employs the gain for the 
H∞ predictor, 

1
/ 1 2,

T
k k k k k kK A P C 

  , (100) 

where Ωk = 2, / 1 2,
T

k k k kC P C  + Rk, in which / 1k kP   is obtained from (76) and (77). The gain (100) 
is used in the minimum-variance smoother structure described in Chapter 7, viz., 
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(103) 

It is argued below that this smoother meets the desired H∞ performance objective. 
 

9.3.5.3 H∞ Performance 
It is easily shown that the smoother error system is 
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(104) 

with 0 0,x   where / 1k kx 
  = kx  – / 1ˆ k kx  , i = 

v
w
 
 
 

 and 

                                                                 

“I have had my results for a long time: but I do not yet know how I am to arrive at them.” Karl Friedrich 
Gauss 
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Lemma 10:  In respect of the smoother error system (104), if there exists a symmetric positive definite 
solutions to (77) for   > 0, then the smoother (101) – (103) achieves ei    , that is, i  2  
implies e  2 . 

Outline of Proof: From Lemma 8, x  2 , since it evolves within the predictor error system. 
Therefore,    2 , since it evolves within the adjoint predictor error system. Then e  2 , since it is 
a linear combination of x ,   and i  2 .                                                                                              
 

9.3.5.4 Performance Comparison 
Example 4 [28]. A voiced speech utterance “a e i o u” was sampled at 8 kHz for the purpose 
of comparing smoother performance. Simulations were conducted with the zero-mean, 
unity-variance speech sample interpolated to a 16 kHz sample rate, to which 200 realizations 
of Gaussian measurement noise were added and the signal to noise ratio was varied from -5 
to 5 dB. The speech sample is modelled as a first-order autoregressive process 

1k k kx Ax w   , (105) 

where A   , 0 < A < 1. Estimates for 2
w  and A were calculated at 20 dB SNR using an EM 

algorithm, see Chapter 8. 

−5 0 5
−10

−5

0

5

SNR

M
S

E
 [d

B
]

(i)

(ii)

(iii)

(iv)
(v)

 
Fig. 9. Speech estimate performance comparison: (i) data (crosses), (ii) Kalman filter (dotted line), (iii) H   

filter (dashed line), (iv) minimum-variance smoother (dot-dashed line) and (v) H   smoother (solid line). 

                                                                                                                                                                   

“If I have seen further it is only by standing on the shoulders of giants.” Isaac Newton 

www.intechopen.com



Robust Prediction, Filtering and Smoothing 235
  

9.3.5  Discrete-Time H∞ Smoothing 
 

9.3.5.1  Problem Definition 
Suppose that measurements (72) of a system (68) – (69) are available over an interval k  [1, 
N]. The problem of interest is to calculate smoothed estimates /ˆ k Ny  of ky  such that the error 
sequence 

/ /ˆk N k k Ne y y   (99) 

is in 2 . 
 

9.3.5.2  H∞ Solution 
The following fixed-interval smoother for output estimation [28] employs the gain for the 
H∞ predictor, 
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Lemma 10:  In respect of the smoother error system (104), if there exists a symmetric positive definite 
solutions to (77) for   > 0, then the smoother (101) – (103) achieves ei    , that is, i  2  
implies e  2 . 

Outline of Proof: From Lemma 8, x  2 , since it evolves within the predictor error system. 
Therefore,    2 , since it evolves within the adjoint predictor error system. Then e  2 , since it is 
a linear combination of x ,   and i  2 .                                                                                              
 

9.3.5.4 Performance Comparison 
Example 4 [28]. A voiced speech utterance “a e i o u” was sampled at 8 kHz for the purpose 
of comparing smoother performance. Simulations were conducted with the zero-mean, 
unity-variance speech sample interpolated to a 16 kHz sample rate, to which 200 realizations 
of Gaussian measurement noise were added and the signal to noise ratio was varied from -5 
to 5 dB. The speech sample is modelled as a first-order autoregressive process 

1k k kx Ax w   , (105) 

where A   , 0 < A < 1. Estimates for 2
w  and A were calculated at 20 dB SNR using an EM 

algorithm, see Chapter 8. 
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Fig. 9. Speech estimate performance comparison: (i) data (crosses), (ii) Kalman filter (dotted line), (iii) H   

filter (dashed line), (iv) minimum-variance smoother (dot-dashed line) and (v) H   smoother (solid line). 
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Simulations were conducted in which a minimum-variance filter and a fixed-interval 
smoother were employed to recover the speech message from noisy measurements. The 
results are provided in Fig. 9. As expected, the smoother out-performs the filter. Searches 
were conducted for minimum values of γ such that solutions to the design Riccati difference 
equations were positive definite for each noise realisation. The performance of the resulting 
H∞ filter and smoother are indicated by the dashed line and solid line of the figure. It can be 
seen for this example that the H∞ filter out-performs the Kalman filter. The figure also 
indicates that the robust smoother provides the best performance and exhibits about 4 dB 
reduction in mean-square-error compared to the Kalman filter at 0 dB SNR. This 
performance benefit needs to be reconciled against the extra calculation cost of combining 
robust forward and backward state predictors within (101) – (103). 
 

9.3.5.5 High SNR and Low SNR Asymptotes 
An understanding of why robust solutions are beneficial in the presence of uncertainties can 
be gleaned by examining single-input-single-output filtering and equalisation. Consider a 
time-invariant plant having the canonical form 

0 1 1

0 1 0
0 0

n
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a a a 
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 
  


, 2 0 0C c    , 

a0, ... an-1, c   . Since the plant is time-invariant, the transfer function exists and is denoted 
by G(z). Some notation is defined prior to stating some observations for output estimation 
problems. Suppose that an H∞ filter has been constructed for the above plant.  Let the H∞ 
algebraic Riccati equation solution, predictor gain, filter gain, predictor, filter and smoother 
transfer function matrices be denoted by ( )P  , K ( ) , ( )L  , ( ) ( )PH z , ( ) ( )FH z  and ( ) ( )SH z  

respectively.  The H  filter transfer function matrix may be written as ( ) ( )FH z  = ( )L   + (I –  
( ) ( )) ( )PL H z   where ( )L   = I – ( ) 1( )R   .  The transfer function matrix of the map from the 

inputs to the filter output estimation error is 

( ) ( ) ( )( ) [ ( ) ( ( ) ) ( ) ]ei F v F wR z H z H z I G z      . (106) 

The H∞ smoother transfer function matrix can be written as ( ) ( )SH z

 
= I –  

( ) ( ) 1 ( )( ( ( )) )( ) ( ( ))H
P PR I H z I H z      . Similarly, let (2)P , (2)K , (2)L , (2) ( )FH z  and (2) ( )SH z  

denote the minimum-variance algebraic Riccati equation solution, predictor gain, filter gain, 
filter and smoother transfer function matrices respectively. 
 
 
 

                                                                 

“In computer science, we stand on each other's feet.” Brian K. Reid 

Proposition 1 [28]: In the above output estimation problem: 
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(iv) 
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Outline of Proof: (i) Let ( )
(1,1)p   denote the (1,1) component of  ( )P  .  The low measurement noise 

observation (107) follows from ( ) 2 2 ( ) 2 1
(1,1)1 ( )v vL c p     

 
 which implies 
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(ii) Observation (108) follows from ( ) (2)
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(iii) Observation (109) follows immediately from the application of (107) in (106). 

(iv) Observation (110) follows from 
2
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(v) Observation (111) follows from ( ) (2)
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An interpretation of (107) and (110) is that the maximum magnitudes of the filters and 
smoothers asymptotically approach a short circuit (or zero impedance) when 2

v  → 0.  From 
(108) and (111), as 2

v  → 0, the maximum magnitudes of the H∞ solutions approach the 
short circuit asymptote closer than the optimal minimum-variance solutions. That is, for low 
measurement noise, the robust solutions accommodate some uncertainty by giving greater 
weighting to the data.  Since 

2 0
lim
 v

eiR  →  v  and the H∞ filter achieves the performance 

eiR  <  , it follows from (109) that an a priori design estimate is   =  v . 
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Simulations were conducted in which a minimum-variance filter and a fixed-interval 
smoother were employed to recover the speech message from noisy measurements. The 
results are provided in Fig. 9. As expected, the smoother out-performs the filter. Searches 
were conducted for minimum values of γ such that solutions to the design Riccati difference 
equations were positive definite for each noise realisation. The performance of the resulting 
H∞ filter and smoother are indicated by the dashed line and solid line of the figure. It can be 
seen for this example that the H∞ filter out-performs the Kalman filter. The figure also 
indicates that the robust smoother provides the best performance and exhibits about 4 dB 
reduction in mean-square-error compared to the Kalman filter at 0 dB SNR. This 
performance benefit needs to be reconciled against the extra calculation cost of combining 
robust forward and backward state predictors within (101) – (103). 
 

9.3.5.5 High SNR and Low SNR Asymptotes 
An understanding of why robust solutions are beneficial in the presence of uncertainties can 
be gleaned by examining single-input-single-output filtering and equalisation. Consider a 
time-invariant plant having the canonical form 

0 1 1

0 1 0
0 0

n

A

a a a 

 
 
 
 
 
    





, 

0

0
1

B

 
 
 
 
 
  


, 2 0 0C c    , 

a0, ... an-1, c   . Since the plant is time-invariant, the transfer function exists and is denoted 
by G(z). Some notation is defined prior to stating some observations for output estimation 
problems. Suppose that an H∞ filter has been constructed for the above plant.  Let the H∞ 
algebraic Riccati equation solution, predictor gain, filter gain, predictor, filter and smoother 
transfer function matrices be denoted by ( )P  , K ( ) , ( )L  , ( ) ( )PH z , ( ) ( )FH z  and ( ) ( )SH z  

respectively.  The H  filter transfer function matrix may be written as ( ) ( )FH z  = ( )L   + (I –  
( ) ( )) ( )PL H z   where ( )L   = I – ( ) 1( )R   .  The transfer function matrix of the map from the 

inputs to the filter output estimation error is 

( ) ( ) ( )( ) [ ( ) ( ( ) ) ( ) ]ei F v F wR z H z H z I G z      . (106) 

The H∞ smoother transfer function matrix can be written as ( ) ( )SH z

 
= I –  

( ) ( ) 1 ( )( ( ( )) )( ) ( ( ))H
P PR I H z I H z      . Similarly, let (2)P , (2)K , (2)L , (2) ( )FH z  and (2) ( )SH z  

denote the minimum-variance algebraic Riccati equation solution, predictor gain, filter gain, 
filter and smoother transfer function matrices respectively. 
 
 
 

                                                                 

“In computer science, we stand on each other's feet.” Brian K. Reid 

Proposition 1 [28]: In the above output estimation problem: 

(i) 

2

( )

0 { , }
lim sup ( ) 1.

v

j
FH e 

   



  
  (107) 

(ii) 

2 2

(2) ( )

0 0{ , } { , }
lim sup ( ) lim sup ( ) .

v v

j j
F FH e H e 

      
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  (108) 

(iii) 

2 2

( ) ( ) ( ) ( ) 2

0 0{ , } { , }
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ei ei F F vR R e H H e 
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

 

(109) 

(iv) 
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(v) 

2 2

(2) ( )

0 0{ , } { , }
lim sup ( ) lim sup ( ) .
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S SH e H e 

      
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    
  (111) 

Outline of Proof: (i) Let ( )
(1,1)p   denote the (1,1) component of  ( )P  .  The low measurement noise 

observation (107) follows from ( ) 2 2 ( ) 2 1
(1,1)1 ( )v vL c p     

 
 which implies 

2

( )

0
lim

v

L





 = 1.  

(ii) Observation (108) follows from ( ) (2)
(1,1) (1,1)p p  , which results in  

2

( )

0
lim

v

L





 > 

2

(2)

0
lim

v

L
 

.     

(iii) Observation (109) follows immediately from the application of (107) in (106). 

(iv) Observation (110) follows from 
2

2 2 ( ) 2 1
(1,1)

0
lim ( )

v
v vc p


  


  = 0.  

(v) Observation (111) follows from ( ) (2)
(1,1) (1,1)p p   which results in 

2

( )
3

0
lim

v




  > 

2

(2)

0
lim

v 
 .                    ฀ 

An interpretation of (107) and (110) is that the maximum magnitudes of the filters and 
smoothers asymptotically approach a short circuit (or zero impedance) when 2

v  → 0.  From 
(108) and (111), as 2

v  → 0, the maximum magnitudes of the H∞ solutions approach the 
short circuit asymptote closer than the optimal minimum-variance solutions. That is, for low 
measurement noise, the robust solutions accommodate some uncertainty by giving greater 
weighting to the data.  Since 

2 0
lim
 v

eiR  →  v  and the H∞ filter achieves the performance 

eiR  <  , it follows from (109) that an a priori design estimate is   =  v . 

                                                                 

“All programmers are optimists.” Frederick P. Brooks, Jr 

www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future238

  

Suppose now that a time-invariant plant has the transfer function 1( ) ( )G z C zI A B D   , 
where A, B and C are defined above together with D   .  Consider an input estimation (or 
equalisation) problem in which the transfer function matrix of the causal H∞ solution that 
estimates the input of the plant is 

   1 1( ) ( ) ( ) ( )( ) ( )T T
F PH z QD QD H z

        . (112) 

The transfer function matrix of the map from the inputs to the input estimation error is 
( ) ( ) ( )( ) [ ( ) ( ( ) ) ]ei F v F wR z H z H G z I      . (113) 

The noncausal H   transfer function matrix of the input estimator can be written as ( ) ( )SH z  
= 

 
( ) ( ) 1 ( )

3( )( ( ( )) )( ) ( ( ))H H
P PQG z I H z I H z       .   

Proposition 2 [28]:  For the above input estimation problem:  

(i) 

2

( )

0 { , }
lim sup ( ) 0.
v

j
FH e 

   




  
  (114) 

(ii) 

2 2

(2) ( )

0 0{ , } { , }
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(iii) 
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(iv) 
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(v) 

2 2
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S SH e H e 
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Outline of Proof: (i) and (iv) The high measurement noise observations (114) and (117) follow from 
( ) 2 ( ) 2 2

(1,1) w vc p D     
 
which implies 

2

( ) 1
3

0
lim ( )
v


 


  = 0.   

(ii) and (v) The observations (115) and (118) follow from ( ) (2)
(1,1) (1,1)p p  , which results in 

2

( )
3

0
lim

v




  > 

2

(2)

0
lim

v 
 .     

                                                                 

“Always code as if the guy who ends up maintaining your code will be a violent psychopath who 
knows where you live.” Damian Conway 

  

(iii) The observation (116) follows immediately from the application of (114) in (113).                       ฀ 

An interpretation of (114) and (117) is that the maximum magnitudes of the equalisers 
asymptotically approach an open circuit (or infinite impedance) when 2

v
  → 0. From (115) 

and (118), as 2
v
  → 0, the maximum magnitude of the H∞ solution approaches the open 

circuit asymptote closer than that of the optimum minimum-variance solution.  That is, 
under high measurement noise conditions, robust solutions accommodate some uncertainty 
by giving less weighting to the data.  Since 

2 0
lim
v

eiR
  

 → w , the H∞ solution achieves the 

performance eiR 

 , it follows from (116) than an a priori design estimate is w  . 

Proposition 1 follows intuitively.  Indeed, the short circuit asymptote is sometimes referred 
to as the singular filter. Proposition 2 may appear counter-intuitive and warrants further 
explanation. When the plant is minimum phase and the measurement noise is negligible, the 
equaliser inverts the plant. Conversely, when the equalisation problem is dominated by 
measurement noise, the solution is a low gain filter; that is, the estimation error is minimised 
by giving less weighting to the data.  
 

9.4  Conclusion 
Uncertainties are invariably present within the specification of practical problems. 
Consequently, robust solutions have arisen to accommodate uncertain inputs and plant 
models. The H∞ performance objective is to minimise the ratio of the output energy to the 
input energy of an error system, that is, minimise 

2 2

2

0 0
2

sup supei
i i

e

i



 

   

for some γ   . In the time-invariant case, the objective is equivalent to minimising the 
maximum magnitude of the error power spectrum density.  

Predictors, filters and smoothers that satisfy the above performance objective are found by 
applying the Bounded Real Lemma. The standard solution structures are retained but larger 
design error covariances are employed to account for the presence of uncertainty. In 
continuous time output estimation, the error covariance is found from the solution of 

1 2( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )T T T TP t A t P t P t A t P t C t R t C t C t C t P t B t Q t B t      . 
Discrete-time predictors, filters and smoothers for output estimation rely on the solution of 
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kk k k k k k k
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CC P C R C P C






              
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Suppose now that a time-invariant plant has the transfer function 1( ) ( )G z C zI A B D   , 
where A, B and C are defined above together with D   .  Consider an input estimation (or 
equalisation) problem in which the transfer function matrix of the causal H∞ solution that 
estimates the input of the plant is 

   1 1( ) ( ) ( ) ( )( ) ( )T T
F PH z QD QD H z

        . (112) 

The transfer function matrix of the map from the inputs to the input estimation error is 
( ) ( ) ( )( ) [ ( ) ( ( ) ) ]ei F v F wR z H z H G z I      . (113) 

The noncausal H   transfer function matrix of the input estimator can be written as ( ) ( )SH z  
= 

 
( ) ( ) 1 ( )

3( )( ( ( )) )( ) ( ( ))H H
P PQG z I H z I H z       .   

Proposition 2 [28]:  For the above input estimation problem:  

(i) 
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(iii) 
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(iv) 
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Outline of Proof: (i) and (iv) The high measurement noise observations (114) and (117) follow from 
( ) 2 ( ) 2 2

(1,1) w vc p D     
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“Always code as if the guy who ends up maintaining your code will be a violent psychopath who 
knows where you live.” Damian Conway 

  

(iii) The observation (116) follows immediately from the application of (114) in (113).                       ฀ 

An interpretation of (114) and (117) is that the maximum magnitudes of the equalisers 
asymptotically approach an open circuit (or infinite impedance) when 2

v
  → 0. From (115) 

and (118), as 2
v
  → 0, the maximum magnitude of the H∞ solution approaches the open 

circuit asymptote closer than that of the optimum minimum-variance solution.  That is, 
under high measurement noise conditions, robust solutions accommodate some uncertainty 
by giving less weighting to the data.  Since 

2 0
lim
v

eiR
  

 → w , the H∞ solution achieves the 

performance eiR 

 , it follows from (116) than an a priori design estimate is w  . 

Proposition 1 follows intuitively.  Indeed, the short circuit asymptote is sometimes referred 
to as the singular filter. Proposition 2 may appear counter-intuitive and warrants further 
explanation. When the plant is minimum phase and the measurement noise is negligible, the 
equaliser inverts the plant. Conversely, when the equalisation problem is dominated by 
measurement noise, the solution is a low gain filter; that is, the estimation error is minimised 
by giving less weighting to the data.  
 

9.4  Conclusion 
Uncertainties are invariably present within the specification of practical problems. 
Consequently, robust solutions have arisen to accommodate uncertain inputs and plant 
models. The H∞ performance objective is to minimise the ratio of the output energy to the 
input energy of an error system, that is, minimise 
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


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for some γ   . In the time-invariant case, the objective is equivalent to minimising the 
maximum magnitude of the error power spectrum density.  

Predictors, filters and smoothers that satisfy the above performance objective are found by 
applying the Bounded Real Lemma. The standard solution structures are retained but larger 
design error covariances are employed to account for the presence of uncertainty. In 
continuous time output estimation, the error covariance is found from the solution of 
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Discrete-time predictors, filters and smoothers for output estimation rely on the solution of 
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It follows that the H∞ designs revert to the optimum minimum-variance solutions as  γ-2 → 0. 
Since robust solutions are conservative, the art of design involves finding satisfactory trade-
offs between average and worst-case performance criteria, namely, tweaking the γ. 

A summary of suggested approaches for different linear estimation problem conditions is 
presented in Table 1. When the problem parameters are known precisely then the optimum 
minimum-variance solutions cannot be improved upon. However, when the inputs or the 
models are uncertain, robust solutions may provide improved mean-square-error 
performance. In the case of low measurement noise output-estimation, the benefit arises 
because greater weighting is given to the data. Conversely, for high measurement noise input 
estimation, robust solutions accommodate uncertainty by giving less weighting to the data. 

PROBLEM CONDITIONS SUGGESTED APPROACHES 

Gaussian process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance (or Kalman) filter. 

2. Fixed-lag smoothers, which improve on filter performance 
(see Lemma 3 and Example 1 of Chapter 7). They suit on-line 
applications and have low additional complexity. A sufficiently 
large smoothing lag results in optimal performance  
(see Example 3 of Chapter 7).  

3. Maximum-likelihood (or Rauch-Tung-Striebel) smoothers, 
which also improve on filter performance (see Lemma 6 of 
Chapter 6 and Lemma 4 of Chapter 7). They can provide close 
to optimal performance (see Example 5 of Chapter 6). 

4. The minimum-variance smoother provides the best 
performance (see Lemma 12 of Chapter 6 and Lemma 8 of 
Chapter 7) at the cost of increased complexity (see Example 5 of 
Chapter 6 and Example 2 of Chapter 7). 

Uncertain process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance filter, which does not rely on 
Gaussian noise assumptions.   

2. Optimal minimum-variance smoother, which similarly does 
not rely on Gaussian noise assumptions (see Example 6 of 
Chapter 6). 

3. Robust filter which trades off H∞ performance (see Lemmas 
2, 9) and mean-square-error performance (see Example 3). 

4. Robust smoother which trades off H∞ performance (see 
Lemmas 5, 10) and mean-square-error performance (see 
Example 3).               

Uncertain processes and 
measurement noises. Uncertain 
system model parameters. 

1. Robust filter (see Example 4). 
2. Robust smoother (see Example 4). 
3. Robust filter or smoother with scaled inputs (see Lemma 3). 

Table 1. Suggested approaches for different linear estimation problem conditions. 
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exceptions of tequila and hand guns.” Mitch Ratcliffe 

  

9.5  Problems 
 

Problem 1 [31].  

(i) Consider a system   having the state-space representation ( )x t  = Ax(t) + 
Bw(t), y(t) = Cx(t). Show that if there exists a matrix P = PT > 0 such that 

2 0
T T

T

A P PA C C PB
B P I

  
 

 
 then ( ) ( )Tx T Px T  – (0) (0)Tx Px  + 

0
( ) ( )

T Ty t y t dt  ≤ 

2

0
( ) ( )

T Tw t w t dt  . 

(ii) Generalise (i) for the case where y(t) = Cx(t) + Dw(t). 

Problem 2. Consider a system   modelled by ( )x t  = A(t)x(t) + B(t)w(t), y(t) = C(t)x(t) + 
D(t)w(t). Suppose that the Riccati differential equation  

1( ) ( )( ( ) ( ) ( ) ( ) ( ))TP t P t A t B t M t D t C t   1( ( ) ( ) ( ) ( ) ( )) ( )T TA t B t M t D t C t P t   

                                 2 1 1( ) ( ) ( ) ( )( ( ) ( ) ( )) ( )T T TB t M t B t C t I D t M t D t C t      , 

M(t) = γ2I – DT(t)D(t) > 0, has a solution on [0, T]. Show that 


  ≤  γ for any w  2. (Hint: 

define V(x(t)) = xT(t)P(t) x(t) and show that ( ( ))V x t  + ( ) ( )Ty t y t  – 2 ( ) ( )Tw t w t  < 0.) 

Problem 3. For measurements z(t) = y(t) + v(t) of a system realised by ( )x t  = A(t)x(t) + 

B(t)w(t), y(t) = C(t)x(t), show that the map from the inputs i = 
v
w
 
 
 

 to the H∞ fixed-interval 

smoother error ( | )e t T  is 
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
  

Problem 4 [18].  

(i) For a   modelled by xk+1 = Akxk + Bkwk, yk = Ckxk Dkwk, show that the existence 
of a solution to the Riccati difference equation 
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It follows that the H∞ designs revert to the optimum minimum-variance solutions as  γ-2 → 0. 
Since robust solutions are conservative, the art of design involves finding satisfactory trade-
offs between average and worst-case performance criteria, namely, tweaking the γ. 

A summary of suggested approaches for different linear estimation problem conditions is 
presented in Table 1. When the problem parameters are known precisely then the optimum 
minimum-variance solutions cannot be improved upon. However, when the inputs or the 
models are uncertain, robust solutions may provide improved mean-square-error 
performance. In the case of low measurement noise output-estimation, the benefit arises 
because greater weighting is given to the data. Conversely, for high measurement noise input 
estimation, robust solutions accommodate uncertainty by giving less weighting to the data. 

PROBLEM CONDITIONS SUGGESTED APPROACHES 

Gaussian process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance (or Kalman) filter. 

2. Fixed-lag smoothers, which improve on filter performance 
(see Lemma 3 and Example 1 of Chapter 7). They suit on-line 
applications and have low additional complexity. A sufficiently 
large smoothing lag results in optimal performance  
(see Example 3 of Chapter 7).  

3. Maximum-likelihood (or Rauch-Tung-Striebel) smoothers, 
which also improve on filter performance (see Lemma 6 of 
Chapter 6 and Lemma 4 of Chapter 7). They can provide close 
to optimal performance (see Example 5 of Chapter 6). 

4. The minimum-variance smoother provides the best 
performance (see Lemma 12 of Chapter 6 and Lemma 8 of 
Chapter 7) at the cost of increased complexity (see Example 5 of 
Chapter 6 and Example 2 of Chapter 7). 

Uncertain process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance filter, which does not rely on 
Gaussian noise assumptions.   

2. Optimal minimum-variance smoother, which similarly does 
not rely on Gaussian noise assumptions (see Example 6 of 
Chapter 6). 

3. Robust filter which trades off H∞ performance (see Lemmas 
2, 9) and mean-square-error performance (see Example 3). 

4. Robust smoother which trades off H∞ performance (see 
Lemmas 5, 10) and mean-square-error performance (see 
Example 3).               

Uncertain processes and 
measurement noises. Uncertain 
system model parameters. 

1. Robust filter (see Example 4). 
2. Robust smoother (see Example 4). 
3. Robust filter or smoother with scaled inputs (see Lemma 3). 

Table 1. Suggested approaches for different linear estimation problem conditions. 

                                                                 

“A computer lets you make more mistakes than almost any invention in history, with the possible 
exceptions of tequila and hand guns.” Mitch Ratcliffe 

  

9.5  Problems 
 

Problem 1 [31].  

(i) Consider a system   having the state-space representation ( )x t  = Ax(t) + 
Bw(t), y(t) = Cx(t). Show that if there exists a matrix P = PT > 0 such that 

2 0
T T

T

A P PA C C PB
B P I

  
 

 
 then ( ) ( )Tx T Px T  – (0) (0)Tx Px  + 

0
( ) ( )

T Ty t y t dt  ≤ 

2

0
( ) ( )

T Tw t w t dt  . 

(ii) Generalise (i) for the case where y(t) = Cx(t) + Dw(t). 

Problem 2. Consider a system   modelled by ( )x t  = A(t)x(t) + B(t)w(t), y(t) = C(t)x(t) + 
D(t)w(t). Suppose that the Riccati differential equation  

1( ) ( )( ( ) ( ) ( ) ( ) ( ))TP t P t A t B t M t D t C t   1( ( ) ( ) ( ) ( ) ( )) ( )T TA t B t M t D t C t P t   

                                 2 1 1( ) ( ) ( ) ( )( ( ) ( ) ( )) ( )T T TB t M t B t C t I D t M t D t C t      , 

M(t) = γ2I – DT(t)D(t) > 0, has a solution on [0, T]. Show that 


  ≤  γ for any w  2. (Hint: 

define V(x(t)) = xT(t)P(t) x(t) and show that ( ( ))V x t  + ( ) ( )Ty t y t  – 2 ( ) ( )Tw t w t  < 0.) 

Problem 3. For measurements z(t) = y(t) + v(t) of a system realised by ( )x t  = A(t)x(t) + 

B(t)w(t), y(t) = C(t)x(t), show that the map from the inputs i = 
v
w
 
 
 

 to the H∞ fixed-interval 

smoother error ( | )e t T  is 

1 1

( )
( ) ( ) ( ) ( ) 0 ( ) ( )

( )
( ) ) ( ) ( ) ( ) ( ) ( ) 0 ( ) ( )

( )
( | ) ( ) ( ) ( ) 0 0

( )

( .T T T T T

T

x t
x t A t K t C t B t K t

t
t C t R t C t A t C t K t C t R t

w t
e t T C t R t K t

v t


  

 

    

                         


  

Problem 4 [18].  

(i) For a   modelled by xk+1 = Akxk + Bkwk, yk = Ckxk Dkwk, show that the existence 
of a solution to the Riccati difference equation 

2 2 1
1 1 1 1( )T T T T T

k k k k k k k k k k k k k k kP A P A A P B I B P B B P A C C   
        

is sufficient for 2
1 1 1 0T T T T

k k k k k k k k k kx P x x P x y y w w      . Hint: construct 

1 1 1
T T
k k k k k kx P x x P x     and show that  

2
1 1 1

T T T T
k k k k k k k k k kx P x x P x y y w w      2 2 1

1 1( )T T T T
k k k k k k k k k kp I B P B p x A P A x   

     , 
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where 2 2 1
1 1( )T T

k k k k k k k k kp w I B P B B P A x   
    . 

(ii) Show that 
1 1

2
0 0 0

0 0

0
N N

T T T
k k k k

k k
x P x y y w w

 

 

     . 

Problem 5. Now consider the model xk+1 = Akxk + Bkwk, yk = Ckxk + Dkwk and show that the 
existence of a solution to the Riccati difference equation 

2 2 2 1
1 1 1 1( )( ) ( )T T T T T T T T

k k k k k k k k k k k k k k k k k k k k kP A P A A P B C D I B P B D D B P A D C C C     
           

is sufficient for 2
1 1 1 0T T T T

k k k k k k k k k kx P x x P x y y w w      . Hint: define 

2 2 2 1
1 1( ) ( )T T T T

k k k k k k k k k k k kp w I B P B D D B P A D C     
      . 

Problem 6. Suppose that a predictor attains a H∞ performance objective, that is, the 
conditions of Lemma 8 are satisfied. Show that using the predicted states to construct 
filtered output estimates /ˆ k ky  results in /k ky  =  y – /ˆ k ky   2 . 
 

9.6  Glossary 
 

∞ The Lebesgue ∞-space defined as the set of continuous-time systems 
having finite ∞-norm. 

ei  ∞ The map ei  from the inputs i(t) to the estimation error e(t) satisfies 

0
( ) ( )

T Te t e t dt  – 2

0
( ) ( )

T Ti t i t dt   < 0. Therefore, i  2 implies e  2. 

  The Lebesgue ∞-space defined as the set of discrete-time systems 
having finite ∞-norm. 

ei    The map ei  from the inputs ik to the estimation error ek satisfies 
1 1

2

0 0

0
N N

T T
k k k k

k k
e e i i

 

 

   . Therefore, i  2  implies e  2 . 
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where 2 2 1
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Problem 5. Now consider the model xk+1 = Akxk + Bkwk, yk = Ckxk + Dkwk and show that the 
existence of a solution to the Riccati difference equation 
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Problem 6. Suppose that a predictor attains a H∞ performance objective, that is, the 
conditions of Lemma 8 are satisfied. Show that using the predicted states to construct 
filtered output estimates /ˆ k ky  results in /k ky  =  y – /ˆ k ky   2 . 
 

9.6  Glossary 
 

∞ The Lebesgue ∞-space defined as the set of continuous-time systems 
having finite ∞-norm. 

ei  ∞ The map ei  from the inputs i(t) to the estimation error e(t) satisfies 
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having finite ∞-norm. 
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