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8.1  Introduction 
Predictors, filters and smoothers have previously been described for state recovery under 
the assumption that the parameters of the generating models are correct. More often than 
not, the problem parameters are unknown and need to be identified. This section describes 
some standard statistical techniques for parameter estimation. Paradoxically, the discussed 
parameter estimation methods rely on having complete state information available. 
Although this is akin to a chicken-and-egg argument (state availability obviates the need for 
filters along with their attendant requirements for identified models), the task is not 
insurmountable.  

The role of solution designers is to provide a cost benefit. That is, their objectives are to 
deliver improved performance at an acceptable cost. Inevitably, this requires simplifications 
so that the problems become sufficiently tractable and amenable to feasible solution. For 
example, suppose that speech emanating from a radio is too noisy and barely intelligible. In 
principle, high-order models could be proposed to equalise the communication channel, 
demodulate the baseband signal and recover the phonemes. Typically, low-order solutions 
tend to offer better performance because of the difficulty in identifying large numbers of 
parameters under low-SNR conditions. Consider also the problem of monitoring the output 
of a gas sensor and triggering alarms when environmental conditions become hazardous. 
Complex models could be constructed to take into account diurnal pressure variations, local 
weather influences and transients due to passing vehicles. It often turns out that low-order 
solutions exhibit lower false alarm rates because there are fewer assumptions susceptible to 
error.    

Thus, the absence of complete information need not inhibit solution development. Simple 
schemes may suffice, such as conducting trials with candidate parameter values and 
assessing the consequent error performance. 

In maximum-likelihood estimation [1] – [5], unknown parameters θ1, θ2, …, θM, are 
identified given states, xk, by maximising a log-likelihood function, log f(θ1, θ2, …, | )M kx . 
For example, the subject of noise variance estimation was studied by Mehra in [6], where 
maximum-likelihood estimates (MLEs) were updated using the Newton-Raphson method. 
Rife and Boorstyn obtained Cramér-Rao bounds for some MLEs, which “indicate the best 
estimation that can be made with the available data” [7]. Nayak et al used the pseudo-

                                                                 

“The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a 
model is meant a mathematical construct which, with the addition of certain verbal interpretations, 
describes observed phenomena. The justification of such a mathematical construct is solely and 
precisely that it is expected to work” John Von Neuman 
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inverse to estimate unknown parameters in [8]. Belangér subsequently employed a least-
squares approach to estimate the process noise and measurement noise variances [9]. A 
recursive technique for least-squares parameter estimation was developed by Strejc [10]. 
Dempster, Laird and Rubin [11] proved the convergence of a general purpose technique 
for solving joint state and parameter estimation problems, which they called the 
expectation-maximization (EM) algorithm. They addressed problems where complete 
(state) information is not available to calculate the log-likelihood and instead maximised 
the expectation of 1 2log ( , ,..., | )M kf z   , given incomplete measurements, zk. That is, by 
virtue of Jensen’s inequality the unknowns are found by using an objective function (also 
called an approximate log-likelihood function), 1 2{log ( , ,..., | )}M kE f z   , as a surrogate for 
log f(θ1, θ2, …, | )M kx .   

The system identification literature is vast and some mature techniques have evolved. It is 
acknowledged that subspace identification methods have been developed for general 
problems where a system’s stochastic inputs, deterministic inputs and outputs are available. 
The subspace algorithms [12] – [14] consist of two steps. First, the order of the system is 
identified from stacked vectors of the inputs and outputs. Then the unknown parameters 
are determined from an extended observability matrix.  

Continuous-time maximum-likelihood estimation has been mentioned previously. Here, the 
attention is focussed on the specific problem of joint state and parameter estimation 
exclusively from discrete measurements of a system’s outputs. The developments proceed 
as follows. Section 8.2 reviews the maximum-likelihood estimation method for obtaining 
unknown parameters. The same estimates can be found using the method of least squares, 
which was pioneered by Gauss for fitting astronomical observations. Well known (filtering) 
EM algorithms for variance and state matrix estimation are described in Section 8.3. 
Improved parameter estimation accuracy can be obtained via smoothing EM algorithms, 
which are introduced in Section 8.4.  

The filtering and smoothing EM algorithms discussed herein require caution. When 
perfect state information is available, the corresponding likelihood functions are exact. 
However, the use of imperfect state estimates leads to approximate likelihood functions, 
approximate Cramér-Rao bounds and biased MLEs. When the SNR is sufficiently high 
and the states are recovered exactly, the bias terms within the state matrix elements and 
process noise variances diminish to zero. Consequently, process noise variance and state 
matrix estimation is recommended only when the measurement noise is negligible. 
Conversely, measurement noise variance estimation is advocated when the SNR is 
sufficiently low. 
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8.2  Maximum-Likelihood Estimation 
 

8.2.1 General Method 
Let p(θ|xk) denote the probability density function of an unknown parameter θ, given 
samples of a discrete random variable xk. An estimate, ̂ , can be obtained by finding the 
argument θ that maximises the probability density function, that is, 

ˆ argmax ( | )kp x


   . (1) 

A solution can be found by setting ( | )kp x





 = 0 and solving for the unknown θ. Since the 

logarithm function is monotonic, a solution may be found equivalently by maximising 

ˆ argmax log ( | )kp x


    (2) 

and setting log ( | )kp x





 = 0. For exponential families of distributions, the use of (2) 

considerably simplifies the equations to be solved.  

Suppose that N mutually independent samples of xk are available, then the joint density 
function of all the observations is the product of the densities   

1 2( | ) ( | ) ( | ) ( | )k Nf x p x p x p x      
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which serves as a likelihood function. The MLE of θ may be found maximising the log-
likelihood 

ˆ argmax log ( | )kf x


   
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p x
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(4) 

by solving for a θ that satisfies log ( | )kf x





 = 1

log ( | )
N

k
k

p x









 = 0. The above maximum-

likelihood approach is applicable to a wide range of distributions. For example, the task of 
estimating the intensity of a Poisson distribution from measurements is demonstrated 
below. 

                                                                 

“Therefore I would not have it unknown to Your Holiness, the only thing which induced me to look for 
another way of reckoning the movements of the heavenly bodies was that I knew that mathematicians 
by no means agree in their investigation thereof.” Nicolaus Copernicus“ 
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Example 1. Suppose that N observations of integer xk have a Poisson distribution 

( )
!

kx

k
k

ef x
x


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 

   is negative for all μ and xk  ≥ 0, the stationary point (6) 

occurs at a maximum of (5). That is to say, ̂  is indeed a maximum-likelihood estimate. 
 

8.2.2  State Matrix Estimation 
From the Central Limit Theorem, which was mentioned in Chapter 6, the mean of a 
sufficiently large sample of independent identically distributed random variables will 
asymptotically approach a normal distribution. Consequently, in many maximum-
likelihood estimation applications it is assumed that random variables are normally 
distributed. Recall that the normal (or Gaussian) probability density function of a discrete 
random variable xk with mean μ and covariance Rxx is   
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in which xxR  denotes the determinant of xxR . A likelihood function for a sample of N 
independently identically distributed random variables is 
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In general, it is more convenient to work with the log-likelihood function 

                                                                 

“How wonderful that we have met with a paradox.  Now we have some hope of making progress.” 
Niels Henrik David Bohr 
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An example of estimating a model coefficient using the Gaussian log-likelihood approach is 
set out below. 

Example 2. Consider an autoregressive order-one process xk+1 = a0xk + wk in which it is 
desired to estimate a0    from samples of xk. It follows from xk+1 ~ 0( ,ka x  2

w ) that 
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Often within filtering and smoothing applications there are multiple parameters to be 
identified. Denote the unknown parameters by θ1, θ2, …, θM, then the MLEs may be found by 
solving the M equations  
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An vector parameter estimation example is outlined below. 

Example 3. Consider the third-order autoregressive model 

3 2 2 1 1 0k k k k kx a x a x a x w       (10) 

which can be written in the state-space form 

                                                                 

“If we all worked on the assumption that what is accepted as true is really true, there would be little 
hope of advance.” Orville Wright 
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8.2.3 Variance Estimation 
MLEs can be similarly calculated for unknown variances, as is demonstrated by the 
following example. 

Example 4. Consider a random variable generated by xk = μ + wk where μ    is fixed and 
wk    is assumed to be a zero-mean Gaussian white input sequence. Since xk ~ ( ,  
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If the random samples are taken from a population without replacement, the samples are 
not independent, the covariance between two different samples is nonzero and the MLE (14) 
is biased. If the sampling is done with replacement then the sample values are independent  
and the following correction applies 
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2 /w N  within (16) yields 2{ }wE   = 2
w  as required. Unless stated otherwise, it is assumed 

herein that the sample size is sufficiently large so that N-1 ≈ (N - 1)-1 and (15) may be 
approximated by (14). A caution about modelling error contributing bias is mentioned 
below.  

Example 5. Suppose that the states considered in Example 4 are actually generated by xk = μ 
+ wk + sk, where sk is an independent input that accounts for the presence of modelling error. 
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8.2.4 Cramér-Rao Lower Bound 
The Cramér-Rao Lower Bound (CRLB) establishes a limit of precision that can be achieved 
for any unbiased estimate of a parameter θ. It actually defines a lower bound for the 
variance 2
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  of ̂ . As is pointed out in [1], since ̂  is assumed to be unbiased, the variance 

2
̂
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The Cramér-Rao Lower Bound (CRLB) establishes a limit of precision that can be achieved 
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variance 2

̂
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variances is useful for model selection. Another way of selecting models involves comparing 
residual error variances [23]. A lucid introduction to Gaussian CRLBs is presented in [2]. An 
extensive survey that refers to the pioneering contributions of Fisher, Cramér and Rao 
appears in [4]. 

The bounds on the parameter variances are found from the inverse of the so-called Fisher 
information. A formal definition of the CRLB for scalar parameters is as follows. 

Theorem 1 (Cramér-Rao Lower Bound) [2] - [5]: Assume that ( | )kf x  satisfies the 
following regularity conditions: 

(i)  log ( | )kf x





 and 
2

2

log ( | )kf x





 exist for all θ, and 

(ii)  log ( | ) 0,kf xE 


 
 

 
 for all θ. 

Define the Fisher information by 

2

2

log ( | )( ) kf xF E 



     

  
, (17) 

where the derivative is evaluated at the actual value of θ. Then the variance 2
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estimate ̂  satisfies 
2 1
ˆ ( )F
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  . (18) 

Proofs for the above theorem appear in [2] – [5]. 

Example 6. Suppose that samples of xk = μ + wk are available, where wk is a zero-mean 
Gaussian white input sequence and μ    is unknown. Since wk ~ (0,  2

w ), 
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and therefore 
2 2
ˆ /w N  . (20) 

The above inequality suggests that a minimum of one sample is sufficient to bound the 
variance of the MLE (19). It is also apparent from (20) that the error variance of ̂  decreases 
withincreasing sample size. 

The CRLB is extended for estimating a vector of parameters θ1, θ2, …, θM by defining the 
M M  Fisher information matrix 
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for i, j = 1 … M. The parameter error variances are then bounded by the diagonal elements 
of Fisher information matrix inverse 
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ˆ ( )
i
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

  . (22) 

Formal vector CRLB theorems and accompanying proofs are detailed in [2] – [5]. 

Example 7. Consider the problem of estimating both μ and 2
w  from N samples of xk = μ + 

wk, with wk ~ (0,  2
w ). Recall from Example 6 that 
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residual error variances [23]. A lucid introduction to Gaussian CRLBs is presented in [2]. An 
extensive survey that refers to the pioneering contributions of Fisher, Cramér and Rao 
appears in [4]. 

The bounds on the parameter variances are found from the inverse of the so-called Fisher 
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It is found from (22) that the lower bounds for the MLE variances are  2 2
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  . The impact of modelling error on parameter estimation accuracy is examined 

below. 

Example 8. Consider the problem of estimating 2
w  given samples of states which are 

generated by xk = μ + wk + sk, where sk is an independent sequence that accounts for the 
presence of modelling error. From the assumption xk ~ ( ,  2 2
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“There are only two kinds of people who are really fascinating; people who know absolutely 
everything, and people who know absolutely nothing.” Oscar Fingal O’Flahertie Wills Wilde 

8.3  Filtering EM Algorithms 
 

8.3.1 Background 
The EM algorithm [3], [7], [11], [15] – [17], [19] – [22] is a general purpose technique for 
solving joint state and parameter estimation problems. In maximum-likelihood estimation, it 
is desired to estimate parameters θ1, θ2, …, θM, given states by maximising the log-likelihood 
log f(θ1, θ2, …, | )M kx . When complete state information is not available to calculate the log-
likelihood, the expectation of 1 2log ( , ,..., | )M kf x   , given incomplete measurements, zk, is 
maximised instead. This basic technique was in use prior to Dempster, Laird and Rubin 
naming it the EM algorithm 1977 [11]. They published a general formulation of the 
algorithm, which consists of iterating an expectation step and a maximization step. Their 
expectation step involves least squares calculations on the incomplete observations using 
the current parameter iterations to estimate the underlying states. In the maximization step, 
the unknown parameters are re-estimated by maximising a joint log likelihood function 
using state estimates from the previous expectation step. This sequence is repeated for either 
a finite number of iterations or until the estimates and the log likelihood function are stable. 
Dempster, Laird and Rubin [11] also established parameter map conditions for the 
convergence of the algorithm, namely that the incomplete data log likelihood function is 
monotonically nonincreasing. 

 Wu [16] subsequently noted an equivalence between the conditions for a map to be closed 
and the continuity of a function. In particular, if the likelihood function satisfies certain 
modality, continuity and differentiability conditions, the parameter sequence converges to 
some stationary value. A detailed analysis of Wu’s convergence results appears in [3]. 
Shumway and Stoffer [15] introduced a framework that is employed herein, namely, the use 
of a Kalman filter within the expectation step to recover the states. Feder and Weinstein [17] 
showed how a multiparameter estimation problem can be decoupled into separate 
maximum likelihood estimations within an EM algorithm. Some results on the convergence 
of EM algorithms for variance and state matrix estimation [19] – [20] are included within the 
developments below.  
 

8.3.2 Measurement Noise Variance Estimation 
 

8.3.2.1  EM Algorithm 
The problem of estimating parameters from incomplete information has been previously 
studied in [11] – [16]. It is noted in [11] that the likelihood functions for variance estimation 
do not exist in explicit closed form. This precludes straightforward calculation of the 
Hessians required in [3] to assert convergence. Therefore, an alternative analysis is 
presented here to establish the monotonicity of variance iterations. 

The expectation step described below employs the approach introduced in [15] and involves 
the use of a Kalman filter to obtain state estimates. The maximization step requires the 
calculation of decoupled MLEs similarly to [17]. Measurements of a linear time-invariant 
system are modelled by 

                                                                 

“I’m no model lady. A model is just an imitation of the real thing.” Mary (Mae) Jane West 

www.intechopen.com



Parameter Estimation 183
  

                                                                       2 2 2 2( ) ( )
2 w w
N N     

                                                                       4

2 w
N    , 

2 2

2

log ( , | )w k

w

f x 
 


 

 = 2 2

1
( ) ( )

N

w k
k

x 



   and 
2 2

2

log ( , | )w k

w

f xE  
 

  
 

   
= 0. 

The Fisher information matrix and its inverse are then obtained from (21) as 

2
2

4

0
( , )

0 0.5
w

w
w

N
F u

N









 
  
 

, 
2

1 2
4

/ 0
( , )

0 2 /
w

w
w

N
F u

N





  
  
 

. 

It is found from (22) that the lower bounds for the MLE variances are  2 2
ˆ /w N   and 

2
2 4
ˆ 2 /

w w N


  . The impact of modelling error on parameter estimation accuracy is examined 

below. 

Example 8. Consider the problem of estimating 2
w  given samples of states which are 

generated by xk = μ + wk + sk, where sk is an independent sequence that accounts for the 
presence of modelling error. From the assumption xk ~ ( ,  2 2

w s  ), the associated log 
likelihood function is 

2
2 2 1 2 2 2 2

2
1

log ( | ) 1( ) ( ) ( )
2 2

N
w k

w s w s k
kw

f x N x
    


 




     

  , 

which leads to 
2 2

2 2

log ( | )
( )

w k

w

f x





 = 2 2 2( )
2 w s
N     , that is, 2

2
ˆw

  ≥ 2 2 22( ) /w s N  . Thus, 

parameter estimation accuracy degrades as the variance of the modelling error increases. If 
2
s  is available a priori then setting  

2

2

log ( | )w k

w

f x





 = 0 leads to the improved estimate   

2ˆw  = 2
s  + 2

1

1 ( )
K

k
k

x
N




 . 

                                                                 

“There are only two kinds of people who are really fascinating; people who know absolutely 
everything, and people who know absolutely nothing.” Oscar Fingal O’Flahertie Wills Wilde 

8.3  Filtering EM Algorithms 
 

8.3.1 Background 
The EM algorithm [3], [7], [11], [15] – [17], [19] – [22] is a general purpose technique for 
solving joint state and parameter estimation problems. In maximum-likelihood estimation, it 
is desired to estimate parameters θ1, θ2, …, θM, given states by maximising the log-likelihood 
log f(θ1, θ2, …, | )M kx . When complete state information is not available to calculate the log-
likelihood, the expectation of 1 2log ( , ,..., | )M kf x   , given incomplete measurements, zk, is 
maximised instead. This basic technique was in use prior to Dempster, Laird and Rubin 
naming it the EM algorithm 1977 [11]. They published a general formulation of the 
algorithm, which consists of iterating an expectation step and a maximization step. Their 
expectation step involves least squares calculations on the incomplete observations using 
the current parameter iterations to estimate the underlying states. In the maximization step, 
the unknown parameters are re-estimated by maximising a joint log likelihood function 
using state estimates from the previous expectation step. This sequence is repeated for either 
a finite number of iterations or until the estimates and the log likelihood function are stable. 
Dempster, Laird and Rubin [11] also established parameter map conditions for the 
convergence of the algorithm, namely that the incomplete data log likelihood function is 
monotonically nonincreasing. 

 Wu [16] subsequently noted an equivalence between the conditions for a map to be closed 
and the continuity of a function. In particular, if the likelihood function satisfies certain 
modality, continuity and differentiability conditions, the parameter sequence converges to 
some stationary value. A detailed analysis of Wu’s convergence results appears in [3]. 
Shumway and Stoffer [15] introduced a framework that is employed herein, namely, the use 
of a Kalman filter within the expectation step to recover the states. Feder and Weinstein [17] 
showed how a multiparameter estimation problem can be decoupled into separate 
maximum likelihood estimations within an EM algorithm. Some results on the convergence 
of EM algorithms for variance and state matrix estimation [19] – [20] are included within the 
developments below.  
 

8.3.2 Measurement Noise Variance Estimation 
 

8.3.2.1  EM Algorithm 
The problem of estimating parameters from incomplete information has been previously 
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1k k kx Ax Bw   , 

k k ky Cx Dw  , 

k k kz y v  , 

(23) 

(24) 

(25) 

where A  n n , B  n m , C  p n , D  p m  and wk, vk are stationary processes with 
{ }kE w  = 0, { }T

j kE w w  = jkQ , { }kE v  = { }T
j kE w v  = 0 and { }T

j kE v v  = jkR . To simplify the 
presentation, it is initially assumed that the direct feed-through matrix, D, is zero. A nonzero 
D will be considered later.  

Suppose that it is desired to estimate R = diag( 2
1,v , 2

2,v , …, 2
,p v ) given N samples of zk and 

yk. Let zi,k , yi,k  and vi,k denote the ith element of the vectors zk , yk and vk, respectively. Then 
(25) may be written in terms of its i components, zi,k = yi,k + vi,k, that is, 

, , ,i k i k i kv z y  . (26) 

From the assumption vi,k ~ (0,  2
, )i v , an MLE for the unknown 2

,i v  is obtained from the 
sample variance formula 
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
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An EM algorithm for updating the measurement noise variance estimates is described as 
follows. Assume that there exists an estimate ( )ˆ uR  = diag( ( ) 2

1,ˆ( )u
v , ( ) 2

2,ˆ( )u
v , …, ( ) 2

,ˆ( )u
p v ) of R at 

iteration u. A Kalman filter designed with ( )ˆ uR  may then be employed to produce corrected 
output estimates ( )

/ˆ u
k ky . The filter’s design Riccati equation is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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ˆ( ) ( ) ( )u u u u T u u u T T
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where ( )u
kK  = ( ) ( )

/ 1 / 1(u T u T
k k k kAP C CP C   + ( ) 1ˆ )uR   is the predictor gain. The output estimates are 

calculated from 
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where ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1ˆ )uR   is the filter gain. 

Procedure 1 [19]. Assume that an initial estimate (1)R̂  of R is available. Subsequent estimates, 
( )ˆ uR , u > 1, are calculated by repeating the following two-step procedure. 

                                                                 

“There are known knowns. These are things we know that we know. There are known unknowns. That 
is to say, there are things that we know we don’t know. But there are also unknown unknowns. There 
are things we don’t know we don’t know.” Donald Henry Rumsfeld 

  

Step 1. Operate the Kalman filter (29) – (30) designed with ( )ˆ uR  to obtain corrected output 
estimates ( )

/ˆ u
k ky . 

Step 2. For i = 1, …, p, use ( )
/ˆ u

k ky  instead of yk within (27) to obtain ( 1)ˆ uR   = diag( ( 1) 2
1,ˆ( )u

v  , 
( 1) 2
2,ˆ( )u

v  , …, ( 1) 2
,ˆ( )u

p v  ). 
 

8.3.2.2  Properties 
The above EM algorithm involves a repetition of two steps: the states are deduced using the 
current variance estimates and then the variances are re-identified from the latest states. 
Consequently, a two-part argument is employed to establish the monotonicity of the 
variance sequence. For the expectation step, it is shown that monotonically non-increasing 
variance iterates lead to monotonically non-increasing error covariances. Then for the 
maximisation step, it is argued that monotonic error covariances result in a monotonic 
measurement noise variance sequence. The design Riccati difference equation (28) can be 
written as 
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where ( ) ( ) ( ) ( )ˆ( )( )u u u u T
k k kS K R R K   accounts for the presence of parameter error. Subtracting xk 

from ( )
/ˆ u

k kx  yields 
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respectively. The observed corrected error covariance is defined as ( )
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Hence, the observed predicted error covariance obeys the recursion  
( ) ( )

1/ /
u u T T

k k k kA A BQB    . (35) 

Some observations concerning the above error covariances are described below. These 
results are used subsequently to establish the monotonicity of the above EM algorithm. 

                                                                 

“I want minimum information given with maximum politeness.” Jacqueline (Jackie) Lee Bouvier Kennedy 
Onassis 

www.intechopen.com



Parameter Estimation 185
  

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

k k kz y v  , 

(23) 

(24) 

(25) 

where A  n n , B  n m , C  p n , D  p m  and wk, vk are stationary processes with 
{ }kE w  = 0, { }T

j kE w w  = jkQ , { }kE v  = { }T
j kE w v  = 0 and { }T

j kE v v  = jkR . To simplify the 
presentation, it is initially assumed that the direct feed-through matrix, D, is zero. A nonzero 
D will be considered later.  

Suppose that it is desired to estimate R = diag( 2
1,v , 2

2,v , …, 2
,p v ) given N samples of zk and 

yk. Let zi,k , yi,k  and vi,k denote the ith element of the vectors zk , yk and vk, respectively. Then 
(25) may be written in terms of its i components, zi,k = yi,k + vi,k, that is, 

, , ,i k i k i kv z y  . (26) 

From the assumption vi,k ~ (0,  2
, )i v , an MLE for the unknown 2

,i v  is obtained from the 
sample variance formula 

2 2
, , ,

1

1ˆ ( )
N

i v i k i k
k

z y
N




  . (27) 

An EM algorithm for updating the measurement noise variance estimates is described as 
follows. Assume that there exists an estimate ( )ˆ uR  = diag( ( ) 2

1,ˆ( )u
v , ( ) 2

2,ˆ( )u
v , …, ( ) 2

,ˆ( )u
p v ) of R at 

iteration u. A Kalman filter designed with ( )ˆ uR  may then be employed to produce corrected 
output estimates ( )

/ˆ u
k ky . The filter’s design Riccati equation is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1

ˆ( ) ( ) ( )u u u u T u u u T T
k k k k k k k kP A K C P A K C K R K BQB      , (28) 

where ( )u
kK  = ( ) ( )

/ 1 / 1(u T u T
k k k kAP C CP C   + ( ) 1ˆ )uR   is the predictor gain. The output estimates are 

calculated from 

( ) ( ) ( ) ( )
1/ 1/

( ) ( ) ( )
/

ˆ ˆ( )
ˆ ( )

u u u u
k k k k k k

u u u
k k k k k

x A K C K x
x I L C L z
      

     
     

, ( ) ( )
/ /ˆ ˆu u

k k k ky Cx , 
(29) 

(30) 

where ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1ˆ )uR   is the filter gain. 

Procedure 1 [19]. Assume that an initial estimate (1)R̂  of R is available. Subsequent estimates, 
( )ˆ uR , u > 1, are calculated by repeating the following two-step procedure. 

                                                                 

“There are known knowns. These are things we know that we know. There are known unknowns. That 
is to say, there are things that we know we don’t know. But there are also unknown unknowns. There 
are things we don’t know we don’t know.” Donald Henry Rumsfeld 

  

Step 1. Operate the Kalman filter (29) – (30) designed with ( )ˆ uR  to obtain corrected output 
estimates ( )

/ˆ u
k ky . 

Step 2. For i = 1, …, p, use ( )
/ˆ u

k ky  instead of yk within (27) to obtain ( 1)ˆ uR   = diag( ( 1) 2
1,ˆ( )u

v  , 
( 1) 2
2,ˆ( )u

v  , …, ( 1) 2
,ˆ( )u

p v  ). 
 

8.3.2.2  Properties 
The above EM algorithm involves a repetition of two steps: the states are deduced using the 
current variance estimates and then the variances are re-identified from the latest states. 
Consequently, a two-part argument is employed to establish the monotonicity of the 
variance sequence. For the expectation step, it is shown that monotonically non-increasing 
variance iterates lead to monotonically non-increasing error covariances. Then for the 
maximisation step, it is argued that monotonic error covariances result in a monotonic 
measurement noise variance sequence. The design Riccati difference equation (28) can be 
written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1( ) ( ) ( )u u u u T u u T u

k k k k k k k k kP A K C P A K C K R K Q S       , (31) 

where ( ) ( ) ( ) ( )ˆ( )( )u u u u T
k k kS K R R K   accounts for the presence of parameter error. Subtracting xk 

from ( )
/ˆ u

k kx  yields 

( ) ( ) ( ) ( )
/ / 1( )u u u u

k k k k k k kx I L C x L v    , (32) 

where ( )
/
u

k kx  = xk − ( )
/ˆ u

k kx  and ( )
/ 1
u

k kx 
  = xk − ( )

/ 1ˆ u
k kx   are the corrected and predicted state errors, 

respectively. The observed corrected error covariance is defined as ( )
/

u
k k  = ( ) ( )

/ /{ ( ) }u u T
k k k kE x x   and 

obtained from 
( ) ( ) ( ) ( ) ( ) ( )
/ / 1( ) ( ) ( )u u u u T u u T

k k k k k k k kI L C I L C L R L       

                                       ( ) ( ) ( ) 1 ( )
/ 1 / 1 / 1 / 1( )u u T u T u

k k k k k k k kC C C R C
          , 

(33) 

where ( )
/ 1

u
k k  = ( ) ( )

/ 1 / 1{ ( ) }u u T
k k k kE x x 

  . The observed predicted state error satisfies 

( ) ( )
1/ /

u u
k k k k kx Ax Bw    . (34) 

Hence, the observed predicted error covariance obeys the recursion  
( ) ( )

1/ /
u u T T

k k k kA A BQB    . (35) 

Some observations concerning the above error covariances are described below. These 
results are used subsequently to establish the monotonicity of the above EM algorithm. 
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Lemma 1 [19]: In respect of Procedure 1 for estimating R, suppose the following: 
(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 

= 1, …, n,  and the pair (A, C) is observable; 
(ii) there exist (2)

1/ 0P  ≤ (1)
1/ 0P  and R ≤ (2)R̂  ≤  (1)R̂  (or (1)

1/ 0P  ≤ (2)
1/ 0P  and (1)R̂  ≤  (2)R̂  ≤ R). 

Then: 

(i) ( )
1/

u
k k  ≤ ( )

1/
u

k kP  ; 

(ii) ( )
/

u
k k  ≤ ( )

/
u

k kP ; 

(iii) R ≤ ( 1)ˆ uR   ≤ ( )ˆ uR  implies ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   (or ( )ˆ uR  ≤ ( 1)ˆ uR   ≤ R  implies ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
 )  

for all u ≥ 1. 

Proof: 

(i) Condition (i) ensures that the problem is well-posed. Condition (ii) stipulates that (1)
kS  ≥ 0, 

which is the initialisation step for an induction argument. For the inductive step, 
subtracting (33) from (31) yields ( )

1/
u

k kP   – ( )
1/

u
k k  = (A  – ( ) ( )

/ 1)(u u
k k kK C P   – ( )

/ 1)(
u

k k A  – 
( ) )u T
kK C  + ( )u

kS  and thus ( )
/ 1

u
k k  ≤ ( )

/ 1
u

k kP    implies ( )
1/

u
k k  ≤ ( )

1/
u

k kP  . 
(ii) The result is immediate by considering A = I within the proof for (i). 

(iii) The condition ( 1)ˆ uR   ≤ ( )ˆ uR  ensures that 
( 1) 1 ( ) 1ˆ ˆ( ) ( )

T T

T m T m

Q A Q A

A C R C A C R C  

   
   

       
, 

which together with ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  within Theorem 2 of Chapter 7 results in  ( 1)
1/

u
k kP 
  ≤ 

( )
1/

u
k kP  .                                                                                                                                     ฀ 

Thus the sequences of observed prediction and correction error covariances are bounded 
above by the design prediction and correction error covariances. Next, it is shown that the 
observed error covariances are monotonically non-increasing (or non-decreasing). 

Lemma 2 [19]: Under the conditions of Lemma 1: 

i)  ( 1)
1/

u
k k

 ≤ ( )

1/
u

k k  (or ( )
1/

u
k k  ≤ ( 1)

1/
u

k k

 ) and 

ii) ( 1)
/

u
k k
  ≤ ( )

/
u

k k  (or ( )
/

u
k k  ≤ ( 1)

/
u

k k
 ). 

Proof: To establish that the solution of (33) is monotonic non-increasing, from Theorem 2 of Chapter 
7, it is required to show that 

                  
( 1) ( 1) ( 1)

( 1)

( ) ( )
0

u u T u T
k k k

u
k

Q K R K A K C
A K C

  



  
 

 
≤

( ) ( ) ( )

( )

( ) ( )
0

u u T u T
k k k

u
k

Q K R K A K C
A K C

  
 

 
. 
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Since A, Q and R are time-invariant, it suffices to show that 

( 1) ( 1) ( 1) ( ) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )
0 0

u u T u T u u T u T
k k k k k k

u u
k k

L L I L C L L I L C
I L C I L C

  



    
   

    
. (36) 

Note for an X and Y satisfying I ≥ Y ≥ X ≥ 0 that YYT - XXT ≥ (I – X)(I – X)T – (I – Y)(I – Y)T. 
Therefore, ( 1)ˆ uR   ≤ ( )ˆ uR  and ( 1)

1/
u

k kP 
  ≤ ( )

1/
u

k kP   (from Lemma 1) imply ( 1)uL C  ≤ ( )uL C  ≤  I and thus 
(36) follows.                                                                                                                                            ฀ 

It is established below that monotonic non-increasing error covariances result in a 
monotonic non-increasing measurement noise variance sequence. 

Lemma 3 [19]: In respect of Procedure 1 for estimating R, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 
= 1, …, n and the pair (A, C) is observable; 

(ii) there exist (1)R̂  ≥ R ≥ 0 and ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  (or ( )
1/ 0

uP  ≤ ( 1)
1/ 0

uP  ) for all u > 1. 

Then ( 1)ˆ uR   ≤ ( )ˆ uR  (or ( )ˆ uR  ≤ ( 1)ˆ uR  ) for all u > 1. 

Proof: Let Ci denote the ith row of C. The approximate MLE within Procedure 1 is written as 

( 1) 2 ( ) 2
, , /

1

1 ˆˆ( ) ( )
N

u u
i v i k i k k

k
z C x

N
 



   

                                                           ( ) 2
/ ,

1

1 ( )
N

u
i k k i k

k
C x v

N 

    

                                                           ( ) 2
/ ,

u T
i k k i i vC C     

(37) 

 

(38) 

 

(39) 

and thus ( 1)ˆ uR   = ( )
/

u T
k kC C  + R. Since ( 1)ˆ uR   is affine to ( )

/
u

k k , which from Lemma 2 is 

monotonically non-increasing, it follows that ( 1)ˆ uR   ≤ ( )ˆ uR .                                                                ฀ 

 

If the estimation problem is dominated by measurement noise, the measurement noise 
MLEs converge to the actual values. 
 
Lemma 4 [19]: Under the conditions of Lemma 3,  

1

( 1)

0, 0,

ˆlim u

Q R u
R R





  
 . (40) 
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Lemma 1 [19]: In respect of Procedure 1 for estimating R, suppose the following: 
(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 

= 1, …, n,  and the pair (A, C) is observable; 
(ii) there exist (2)

1/ 0P  ≤ (1)
1/ 0P  and R ≤ (2)R̂  ≤  (1)R̂  (or (1)

1/ 0P  ≤ (2)
1/ 0P  and (1)R̂  ≤  (2)R̂  ≤ R). 

Then: 

(i) ( )
1/

u
k k  ≤ ( )

1/
u

k kP  ; 

(ii) ( )
/

u
k k  ≤ ( )

/
u

k kP ; 

(iii) R ≤ ( 1)ˆ uR   ≤ ( )ˆ uR  implies ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   (or ( )ˆ uR  ≤ ( 1)ˆ uR   ≤ R  implies ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
 )  

for all u ≥ 1. 

Proof: 

(i) Condition (i) ensures that the problem is well-posed. Condition (ii) stipulates that (1)
kS  ≥ 0, 

which is the initialisation step for an induction argument. For the inductive step, 
subtracting (33) from (31) yields ( )

1/
u

k kP   – ( )
1/

u
k k  = (A  – ( ) ( )

/ 1)(u u
k k kK C P   – ( )

/ 1)(
u

k k A  – 
( ) )u T
kK C  + ( )u

kS  and thus ( )
/ 1

u
k k  ≤ ( )

/ 1
u

k kP    implies ( )
1/

u
k k  ≤ ( )

1/
u

k kP  . 
(ii) The result is immediate by considering A = I within the proof for (i). 

(iii) The condition ( 1)ˆ uR   ≤ ( )ˆ uR  ensures that 
( 1) 1 ( ) 1ˆ ˆ( ) ( )

T T

T m T m

Q A Q A

A C R C A C R C  

   
   

       
, 

which together with ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  within Theorem 2 of Chapter 7 results in  ( 1)
1/

u
k kP 
  ≤ 

( )
1/

u
k kP  .                                                                                                                                     ฀ 

Thus the sequences of observed prediction and correction error covariances are bounded 
above by the design prediction and correction error covariances. Next, it is shown that the 
observed error covariances are monotonically non-increasing (or non-decreasing). 

Lemma 2 [19]: Under the conditions of Lemma 1: 

i)  ( 1)
1/

u
k k

 ≤ ( )

1/
u

k k  (or ( )
1/

u
k k  ≤ ( 1)

1/
u

k k

 ) and 

ii) ( 1)
/

u
k k
  ≤ ( )

/
u

k k  (or ( )
/

u
k k  ≤ ( 1)

/
u

k k
 ). 

Proof: To establish that the solution of (33) is monotonic non-increasing, from Theorem 2 of Chapter 
7, it is required to show that 

                  
( 1) ( 1) ( 1)

( 1)

( ) ( )
0

u u T u T
k k k

u
k

Q K R K A K C
A K C

  



  
 

 
≤

( ) ( ) ( )

( )

( ) ( )
0

u u T u T
k k k

u
k

Q K R K A K C
A K C

  
 

 
. 

                                                                 

“Technology is so much fun but we can drown in our technology. The fog of information can drive out 
knowledge.” Daniel Joseph Boostin 

  

Since A, Q and R are time-invariant, it suffices to show that 

( 1) ( 1) ( 1) ( ) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )
0 0

u u T u T u u T u T
k k k k k k

u u
k k

L L I L C L L I L C
I L C I L C

  



    
   

    
. (36) 

Note for an X and Y satisfying I ≥ Y ≥ X ≥ 0 that YYT - XXT ≥ (I – X)(I – X)T – (I – Y)(I – Y)T. 
Therefore, ( 1)ˆ uR   ≤ ( )ˆ uR  and ( 1)

1/
u

k kP 
  ≤ ( )

1/
u

k kP   (from Lemma 1) imply ( 1)uL C  ≤ ( )uL C  ≤  I and thus 
(36) follows.                                                                                                                                            ฀ 

It is established below that monotonic non-increasing error covariances result in a 
monotonic non-increasing measurement noise variance sequence. 

Lemma 3 [19]: In respect of Procedure 1 for estimating R, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 
= 1, …, n and the pair (A, C) is observable; 

(ii) there exist (1)R̂  ≥ R ≥ 0 and ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  (or ( )
1/ 0

uP  ≤ ( 1)
1/ 0

uP  ) for all u > 1. 

Then ( 1)ˆ uR   ≤ ( )ˆ uR  (or ( )ˆ uR  ≤ ( 1)ˆ uR  ) for all u > 1. 

Proof: Let Ci denote the ith row of C. The approximate MLE within Procedure 1 is written as 

( 1) 2 ( ) 2
, , /

1

1 ˆˆ( ) ( )
N

u u
i v i k i k k

k
z C x

N
 



   

                                                           ( ) 2
/ ,

1

1 ( )
N

u
i k k i k

k
C x v

N 

    

                                                           ( ) 2
/ ,

u T
i k k i i vC C     

(37) 

 

(38) 

 

(39) 

and thus ( 1)ˆ uR   = ( )
/

u T
k kC C  + R. Since ( 1)ˆ uR   is affine to ( )

/
u

k k , which from Lemma 2 is 

monotonically non-increasing, it follows that ( 1)ˆ uR   ≤ ( )ˆ uR .                                                                ฀ 

 

If the estimation problem is dominated by measurement noise, the measurement noise 
MLEs converge to the actual values. 
 
Lemma 4 [19]: Under the conditions of Lemma 3,  

1

( 1)

0, 0,

ˆlim u

Q R u
R R





  
 . (40) 
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Proof: By inspection of ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1)uR  , it follows that 

1

( )

0, 0,
lim u

k
Q R u

L
  

 = 0. 

Therefore, 
1

( )
/

0, 0,
ˆlim u

k k
Q R u

x
  

 = 0 and 
10, 0

lim k
Q R

z
 

 = vk , which implies (40), since the MLE (37) is 

unbiased for large N.                                                                                                                              ฀ 

Example 9. In respect of the problem (23) – (25), assume A = 0.9, B = C = 1 and 2
w  = 0.1 are 

known. Suppose that 2
v  = 10 but is unknown. Samples zk and ( )

/ˆ u
k kx  were generated from N 

= 20,000 realisations of zero-mean Gaussian wk and vk. The sequence of MLEs obtained 
using Procedure 1, initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (i) and (ii) of 
Fig. 1, respectively. The variance sequences are monotonically decreasing, which is 
consistent with Lemma 3. The figure shows that the MLEs converge (to a local maximum of 
the approximate log-likelihood function), and are reasonably close to the actual value of 2

v  
= 10. This illustrates the high measurement noise observation described by Lemma 4. An 
alternative to the EM algorithm involves calculating MLEs using the Newton-Raphson 
method [5], [6]. The calculated Newton-Raphson measurement noise variance iterates, 
initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (iii) and (iv) of Fig. 1, respectively. 
It can be seen that the Newton-Raphson estimates converge to those of the EM algorithm, 
albeit at a slower rate.  
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m

V
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Figure 1. Variance MLEs (27) versus iteration number for Example 9: (i) EM algorithm with (1) 2ˆ( )v  = 14, 

(ii) EM algorithm with (1) 2ˆ( )v  = 12, (iii) Newton-Raphson with (1) 2ˆ( )v  = 14 and (iv) Newton-Raphson 

with (1) 2ˆ( )v  = 12. 
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8.3.3  Process Noise Variance Estimation 

8.3.3.1  EM Algorithm 
In respect of the model (23), suppose that it is desired to estimate Q given N samples of xk+1. 
The vector states within (23) can be written in terms of its i components, , 1 ,i k i k i kx A x w   , 
that is 

, , 1i k i k i kw A x x   , (41) 

where wi,k = Biwk, Ai and Bi refer the ith row of A and B, respectively. Assume that wi,k ~ 
(0,  2

, )i w , where 2
,i w     is to be estimated. An MLE for the scalar 2

,i w  = T
i iB QB  can be 

calculated from the sample variance formula 

2
, , ,

1

1 N
T

i w i k i k
k

w w
N




   

                                                             , 1 , 1
1

1 ( )( )
N

T
i k i k i k i k

k
x A x x A x

N  


    

                                                             
1

1 N
T T

i k k i
k

B w w B
N 

   

                                                             
1

1 N
T T

i k k i
k

B w w B
N 

 
  

 
 . 

(42) 

 
(43) 

 
(44) 

 
(45) 

Substituting wk = Axk – xk+1 into (45) and noting that 2
,i w  = T

i iB QB yields 

1 1
1

1ˆ ( )( )
N

T
k k k k

k
Q Ax x Ax x

N  


   , (46) 

which can be updated as follows. 

Procedure 2 [19]. Assume that an initial estimate (1)Q̂  of Q is available. Subsequent estimates 
can be found by repeating the following two-step algorithm. 

Step 1. Operate the filter recursions (29) designed with ( )ˆ uQ  on the measurements (25) 
over k  [1, N] to obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. For i = 1, …, n, use ( )
/ˆ u

k kx  and ( )
1/ 1ˆ u

k kx    instead of xk and xk+1 within (46) to obtain 
( 1)ˆ uQ   = diag( ( 1) 2

1,ˆ( )u
w  , ( 1) 2

2,ˆ( )u
w  , …, ( 1) 2

,ˆ( )u
n w  ). 
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Proof: By inspection of ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1)uR  , it follows that 

1

( )

0, 0,
lim u

k
Q R u

L
  

 = 0. 

Therefore, 
1

( )
/

0, 0,
ˆlim u

k k
Q R u

x
  

 = 0 and 
10, 0

lim k
Q R

z
 

 = vk , which implies (40), since the MLE (37) is 

unbiased for large N.                                                                                                                              ฀ 

Example 9. In respect of the problem (23) – (25), assume A = 0.9, B = C = 1 and 2
w  = 0.1 are 

known. Suppose that 2
v  = 10 but is unknown. Samples zk and ( )

/ˆ u
k kx  were generated from N 

= 20,000 realisations of zero-mean Gaussian wk and vk. The sequence of MLEs obtained 
using Procedure 1, initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (i) and (ii) of 
Fig. 1, respectively. The variance sequences are monotonically decreasing, which is 
consistent with Lemma 3. The figure shows that the MLEs converge (to a local maximum of 
the approximate log-likelihood function), and are reasonably close to the actual value of 2

v  
= 10. This illustrates the high measurement noise observation described by Lemma 4. An 
alternative to the EM algorithm involves calculating MLEs using the Newton-Raphson 
method [5], [6]. The calculated Newton-Raphson measurement noise variance iterates, 
initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (iii) and (iv) of Fig. 1, respectively. 
It can be seen that the Newton-Raphson estimates converge to those of the EM algorithm, 
albeit at a slower rate.  
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Figure 1. Variance MLEs (27) versus iteration number for Example 9: (i) EM algorithm with (1) 2ˆ( )v  = 14, 

(ii) EM algorithm with (1) 2ˆ( )v  = 12, (iii) Newton-Raphson with (1) 2ˆ( )v  = 14 and (iv) Newton-Raphson 

with (1) 2ˆ( )v  = 12. 

 

                                                                 

“The Internet is the world’s largest library. It’s just that all the books are on the floor.” John Allen Paulos 

  

8.3.3  Process Noise Variance Estimation 

8.3.3.1  EM Algorithm 
In respect of the model (23), suppose that it is desired to estimate Q given N samples of xk+1. 
The vector states within (23) can be written in terms of its i components, , 1 ,i k i k i kx A x w   , 
that is 

, , 1i k i k i kw A x x   , (41) 

where wi,k = Biwk, Ai and Bi refer the ith row of A and B, respectively. Assume that wi,k ~ 
(0,  2

, )i w , where 2
,i w     is to be estimated. An MLE for the scalar 2

,i w  = T
i iB QB  can be 

calculated from the sample variance formula 
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(43) 

 
(44) 

 
(45) 

Substituting wk = Axk – xk+1 into (45) and noting that 2
,i w  = T

i iB QB yields 

1 1
1

1ˆ ( )( )
N

T
k k k k

k
Q Ax x Ax x

N  


   , (46) 

which can be updated as follows. 

Procedure 2 [19]. Assume that an initial estimate (1)Q̂  of Q is available. Subsequent estimates 
can be found by repeating the following two-step algorithm. 

Step 1. Operate the filter recursions (29) designed with ( )ˆ uQ  on the measurements (25) 
over k  [1, N] to obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. For i = 1, …, n, use ( )
/ˆ u

k kx  and ( )
1/ 1ˆ u

k kx    instead of xk and xk+1 within (46) to obtain 
( 1)ˆ uQ   = diag( ( 1) 2

1,ˆ( )u
w  , ( 1) 2

2,ˆ( )u
w  , …, ( 1) 2

,ˆ( )u
n w  ). 

 

                                                                 

“Information on the Internet is subject to the same rules and regulations as conversations at a bar.” 
George David Lundberg 
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Figure 2. Variance MLEs (46) versus iteration number for Example 10: (i) EM algorithm with (1) 2ˆ( )w  = 

0.14, (ii) EM algorithm with (1) 2ˆ( )w  = 0.12, (iii) Newton-Raphson with (1) 2ˆ( )w  = 0.14 and (iv) Newton-

Raphson with (1) 2ˆ( )w  = 0.12. 
 

8.3.3.2 Properties 
Similarly to Lemma 1, it can be shown that a monotonically non-increasing (or non-
decreasing) sequence of process noise variance estimates results in a monotonically non-
increasing (or non-decreasing) sequence of design and observed error covariances, see [19]. 
The converse case is stated below, namely, the sequence of variance iterates is monotonically 
non-increasing, provided the estimates and error covariances are initialized appropriately. 
The accompanying proof makes use of  

( ) ( ) ( ) ( ) ( ) ( )
1/ 1 / 1/ 1 1 1/ /ˆ ˆ ˆ ˆ ˆ( )u u u u u u

k k k k k k k k k k k kx Ax x L z Cx Ax           

                                                     ( ) ( ) ( )
/ , 1 1 1/ /ˆ ˆ ˆ( )u u u
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1 / 1( )u u
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(47) 

The components of (47) are written as 
( ) ( ) ( ) ( )
, 1/ 1 / , 1 1/ 1ˆ ˆ ( )u u u u

i k k i k k i k k k kx a x L Cx v       , (48) 

where ( )
, 1
u

i kL   is the ith row of ( )
1

u
kL  . 

 

 

                                                                 

“I must confess that I’ve never trusted the Web. I’ve always seen it as a coward’s tool. Where does it 
live? How do you hold it personally responsible? Can you put a distributed network of fibre-optic cable 
on notice? And is it male or female? In other words, can I challenge it to a fight?” Stephen Tyrone Colbert 

  

Lemma 5 [19]: In respect of Procedure 2 for estimating Q, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which A, B, C, R are known, ( )i A  < 1, i 
= 1, ..., n and the pair (A, C) is observable; 

(ii) there exist (1)Q̂  ≥ Q  ≥ 0 and ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP   (or ( )
1/ 0

uP  ≤ ( 1)
1/ 0

uP  ) for all u > 1. 

Then ( 1)ˆ uQ   ≤ ( )ˆ uQ  (or ( )ˆ uQ  ≤ ( 1)ˆ uQ  ) for all u > 1. 

Proof: Using (47)within (46) gives 
2
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i k k k i kL C C R L      

(49) 

and thus ( 1)ˆ uQ   = ( ) ( )
1 1/(u u T

k k kL C C   + ( )
1)( )u T

kR L  . Since ( 1)ˆ uQ   varies with ( ) ( )
1 , 1( )u u T

k j kL L   and ( )
1/

u
k k , 

which from Lemma 2 are monotonically non-increasing, it follows that ( 1)ˆ uQ   ≤ ( )ˆ uQ .                                  ฀  

It is observed that the approximate MLEs asymptotically approach the actual values when 
the SNR is sufficiently high. 

Lemma 6 [19]: Under the conditions of Lemma 5,  

1

( 1)

0, 0,

ˆlim u

Q R u
Q Q
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

  
 . (50) 

Proof: It is straight forward to show that 
1 ,

0, 0
lim i k

Q R
L C

  
 = I and therefore 

1

( )
/

0, 0,
ˆlim u

k k
Q R u

x
   

 = xk , 

which implies (50), since the MLE (46) is unbiased for large N.                                                      ฀  

Example 10. For the model described in Example 8, suppose that 2
v  = 0.01 is known, and 

(1) 2ˆ( )w  = 0.1 but is unknown. Procedure 2 and the Newton-Raphson method [5], [6] were 
used to jointly estimate the states and the unknown variance. Some example variance 
iterations, initialised with (1) 2ˆ( )w  = 0.14 and 0.12, are shown in Fig. 2. The EM algorithm 
estimates are seen to be monotonically decreasing, which is in agreement with Lemma 5. At 
the final iteration, the approximate MLEs do not quite reach the actual value of (1) 2ˆ( )w  = 0.1, 
because the presence of measurement noise results in imperfect state reconstruction and 
introduces a small bias (see Example 5). The figure also shows that MLEs calculated via the 
Newton-Raphson method converge at a slower rate.  

                                                                 

“Four years ago nobody but nuclear physicists had ever heard of the Internet. Today even my cat, 
Socks, has his own web page. I’m amazed at that. I meet kids all the time, been talking to my cat on the 
Internet.” William Jefferson (Bill) Clinton 
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Figure 2. Variance MLEs (46) versus iteration number for Example 10: (i) EM algorithm with (1) 2ˆ( )w  = 

0.14, (ii) EM algorithm with (1) 2ˆ( )w  = 0.12, (iii) Newton-Raphson with (1) 2ˆ( )w  = 0.14 and (iv) Newton-

Raphson with (1) 2ˆ( )w  = 0.12. 
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estimates are seen to be monotonically decreasing, which is in agreement with Lemma 5. At 
the final iteration, the approximate MLEs do not quite reach the actual value of (1) 2ˆ( )w  = 0.1, 
because the presence of measurement noise results in imperfect state reconstruction and 
introduces a small bias (see Example 5). The figure also shows that MLEs calculated via the 
Newton-Raphson method converge at a slower rate.  
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Figure 3. (i) 2

1,ˆ w , (ii) 2
2,ˆ w , (iii) 2

3,ˆ w  and (iv) 2
4,ˆ w , normalised by their steady state values, versus EM 

iteration number for Example 11. 

Example 11. Consider the problem of calculating the initial alignment of an inertial 
navigation system. Alignment is the process of estimating the Earth rotation rate and 
rotating the attitude direction cosine matrix, so that it transforms the body-frame sensor 
signals to a locally-level frame, wherein certain components of accelerations and velocities 
approach zero when the platform is stationary. This can be achieved by a Kalman filter that 
uses the model (23), where xk  4  comprises the errors in earth rotation rate, tilt, velocity 
and position vectors respectively, and wk  4  is a deterministic signal which is a nonlinear 

function of the states (see [24]). The state matrix is calculated as A = I  +  sT  + 21 ( )
2! sT  + 

31 ( )
3! sT , where Ts is the sampling interval,   = 

0 0 0 0
1 0 0 0
0 0 0
0 0 1 0

g

 
 
 
 
 
  

 is a continuous-time state 

matrix and g is the universal gravitational constant. The output mapping within (24) is 
0 0 0 1C     . Raw three-axis accelerometer and gyro data was recorded from a 

stationary Litton LN270 Inertial Navigation System at a 500 Hz data rate. In order to 
generate a compact plot, the initial variance estimates were selected to be 10 times the  
steady state values. 

                                                                 

“On the Internet, nobody knows you’re a dog.” Peter Steiner 

  

 
Figure 4. Estimated magnitude of Earth rotation rate for Example 11. 

The estimated variances after 10 EM iterations are shown in Fig. 3. The figure demonstrates 
that approximate MLEs (46) approach steady state values from above, which is consistent 
with Lemma 5. The estimated Earth rotation rate magnitude versus time is shown in Fig. 4. 
At 100 seconds, the estimated magnitude of the Earth rate is 72.53 micro-radians per second, 
that is, one revolution every 24.06 hours. This estimated Earth rate is about 0.5% in error 
compared with the mean sidereal day of 23.93 hours [25].  Since the estimated Earth rate is 
in reasonable agreement, it is suggested that the MLEs for the unknown variances are 
satisfactory (see [19] for further details). 
 

8.3.4  State Matrix Estimation 

8.3.4.1 EM Algorithm 
The components of the states within (23) are now written as 

, 1 , , ,
1

n

i k i j i k i k
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x a x w
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  , (51) 

where ai,j denotes the element in row i and column j of A. Consider the problem of 
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“It’s important for us to explain to our nation that life is important. It’s not only the life of babies, but 
it’s life of children living in, you know, the dark dungeons of the internet.” George Walker Bush 
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in reasonable agreement, it is suggested that the MLEs for the unknown variances are 
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By setting , , 1

,

log ( ) | )i j j k

i j

f a x
a




 = 0, an MLE for ai,j is obtained as [20] 
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
. (53) 

Incidentally, the above estimate can also be found using the least-squares method [2], [10] 

and minimising the cost function 
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                                                   ,i ja , 

Since wi,k and  xi,k are independent. Hence, the MLE (53) is unbiased. 

Suppose that an estimate ( )ˆ uA  = ( )
,{ }u

i ja  of A is available at an iteration u. The predicted state 
estimates within (29) can be calculated from 
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An iterative procedure for re-estimating an unknown state matrix is proposed below. 

Procedure 3 [20]. Assume that there exists an initial estimate (1)Â  satisfying (1)ˆ| ( ) |i A  < 1, i = 
1, …, n. Subsequent estimates are calculated using the following two-step EM algorithm. 

Step 1. Operate the Kalman filter (29) using (54) on the measurements zk over k  [1, N] to 
obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. Copy ( )ˆ uA  to ( 1)ˆ uA  . Use ( )
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k kx  within (56) to obtain candidate estimates ( 1)
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i A   < 1, i = 1, …, n.  

The condition ( 1)ˆ| ( ) |u
i A   < 1 within Step 2 ensures that the estimated system is 

asymptotically stable. 
 

8.3.4.2 Properties 
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accounts for the presence of modelling error. In the following, the notation of Lemma 1 is 
employed to argue that a monotonically non-increasing state matrix estimate sequence 
results in monotonically non-increasing error covariance sequences. 

Lemma 7 [20]. In respect of Procedure 3 for estimating A, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which B, C, Q, R are known; 
(ii)  (1)ˆ| ( ) |i A  < 1, i = 1, …, n,  the pair (A, C) is observable; 
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employed to argue that a monotonically non-increasing state matrix estimate sequence 
results in monotonically non-increasing error covariance sequences. 

Lemma 7 [20]. In respect of Procedure 3 for estimating A, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which B, C, Q, R are known; 
(ii)  (1)ˆ| ( ) |i A  < 1, i = 1, …, n,  the pair (A, C) is observable; 

(iii) there exist (1)Â  ≥ A and  ( 1)
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The proof follows mutatis mutandis from that of Lemma 1. A heuristic argument is outlined 
below which suggests that non-increasing error variances lead to a non-increasing state 
matrix estimate sequence. Suppose that there exists a residual error ( )u

ks   n  at iteration u 
such that 
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where C# denotes the Moore-Penrose pseudo-inverse of C. It is shown in Lemma 2 under 
prescribed conditions that ( 1)uL C  ≤ ( )uL C  ≤  I. Since the non-increasing sequence ( )uL C  is a 
factor of the second term on the right-hand-side of (63), the sequence ( 1)
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i ja   is expected to be 
non-increasing.24 

Lemma 8 [20]: Under the conditions of Lemma 7, suppose that C is full rank, then 
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which implies (64) since the MLE (53) is unbiased.                                                                              ฀  
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An illustration is presented below.  
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Figure 5. Sequence of ( )ˆ uA  versus iteration number for Example 12. 

Example 12. In respect of the model (23) – (25), suppose that B = C = 1, 2
w    0.2 are known 

and A = 0.6 is unknown. Simulations were conducted with 100 realizations of Gaussian 
process noise and measurement noise of length N = 500,000 for R = 0.1, 0.01 and 0.001. The 
EM algorithms were initialised with (1)Â  = 0.9999. It was observed that the resulting 
estimate sequences were all monotonically decreasing, however, this becomes  
imperceptible at R = 0.001, due to the limited resolution of the plot. The mean estimates are 
shown in Fig. 5. As expected from Lemma 8, ( )ˆ uA  asymptotically approaches the true value 
of A = 0.6 when the measurement noise becomes negligible. 
 

8.4  Smoothing EM Algorithms 
 

8.4.1 Process Noise Variance Estimation 

8.4.1.1  EM Algorithm 
In the previous EM algorithms, the expectation step involved calculating filtered estimates.  
Similar EM procedures are outlined in [26] and here where smoothed estimates are used at 
iteration u within the expectation step. The likelihood functions described in Sections 8.2.2 
and 8.2.3 are exact, provided that the underlying assumptions are correct and actual random 
variables are available. Under these conditions, the ensuing parameter estimates maximise 
the likelihood functions and their limit of precision is specified by the associated CRLBs. 
However, the use of filtered or smoothed quantities leads to approximate likelihood 
functions, MLEs and CRLBs. It turns out that the approximate MLEs approach the true 
parameter values under prescribed SNR conditions. It will be shown that the use of 
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where C# denotes the Moore-Penrose pseudo-inverse of C. It is shown in Lemma 2 under 
prescribed conditions that ( 1)uL C  ≤ ( )uL C  ≤  I. Since the non-increasing sequence ( )uL C  is a 
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Example 12. In respect of the model (23) – (25), suppose that B = C = 1, 2
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EM algorithms were initialised with (1)Â  = 0.9999. It was observed that the resulting 
estimate sequences were all monotonically decreasing, however, this becomes  
imperceptible at R = 0.001, due to the limited resolution of the plot. The mean estimates are 
shown in Fig. 5. As expected from Lemma 8, ( )ˆ uA  asymptotically approaches the true value 
of A = 0.6 when the measurement noise becomes negligible. 
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Similar EM procedures are outlined in [26] and here where smoothed estimates are used at 
iteration u within the expectation step. The likelihood functions described in Sections 8.2.2 
and 8.2.3 are exact, provided that the underlying assumptions are correct and actual random 
variables are available. Under these conditions, the ensuing parameter estimates maximise 
the likelihood functions and their limit of precision is specified by the associated CRLBs. 
However, the use of filtered or smoothed quantities leads to approximate likelihood 
functions, MLEs and CRLBs. It turns out that the approximate MLEs approach the true 
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smoothed (as opposed to filtered) quantities results in smaller approximate CRLBs, which 
suggests improved parameter estimation accuracy.     

Suppose that the system   having the realisation (23) – (24) is non-minimum phase and D 
is of full rank. Under these conditions 1  exists and the minimum-variance smoother 
(described in Chapter 7) may be employed to produce input estimates. Assume that an 
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k k k k k k k
u uu T u T u T u T u

k N kk k k k k k k k

A C K C
C K A C

w Q D K Q B Q D

 
 












     
    

      
           

, 

(65) 

 

 
(66) 

where ( )u
kK = ( )

/ 1( u T
k k k kA P C  + ( ) ( ) 1ˆ )( )u T u

k k k kB Q D  , ( )u
k  = ( )

/ 1
u T

k k k kC P C  + ( )ˆ u T
k k kD Q D  + Rk and ( )

/ 1
u

k kP   
evolves from the Riccati difference equation ( )

1/
u

k kP   = ( )
/ 1
u T

k k k kA P A  − ( )
/ 1( u T

k k k kA P C  + 
( ) ( )

/ 1
ˆ )(u T u T

k k k k k k kB Q D C P C  + ( )ˆ u T
k k kD Q D  + 1 ( )

/ 1) ( u T
k k k k kR C P A

  + ( ) )u T
k k kD Q B  + ( )ˆ u T

k k kB Q B . A smoothing 

EM algorithm for iteratively re-estimating ( )ˆ uQ  is described below. 

Procedure 4. Suppose that an initial estimate (1)Q̂  = diag( (1) 2
1,ˆ( )w , (1) 2

2,ˆ( )w , …, (1) 2
,ˆ( )n w ) is 

available. Then subsequent estimates ( )ˆ uQ , u > 1, are calculated by repeating the following 
two steps.  

Step 1. Use ( )ˆ uQ  = diag( ( ) 2
1,ˆ( )u

w , ( ) 2
2,ˆ( )u

w , …, ( ) 2
,ˆ( )u

n w )) within (65) − (66) to calculate 

smoothed input estimates ( )
/ˆ u

k Nw . 

Step 2. Calculate the elements of ( 1)ˆ uQ   = diag( ( 1) 2
1,ˆ( )u

w  , ( 1) 2
2,ˆ( )u

w  , …, ( 1) 2
,ˆ( )u

n w  ) using  ( )
/ˆ u

k Nw  
from Step 1 instead of wk within the MLE formula (46). 

 

8.4.1.2 Properties 
In the following it is shown that the variance estimates arising from the above procedure 
result in monotonic error covariances. The additional term within the design Riccati 
difference equation (57) that accounts for the presence of parameter error is now given by 

( ) ( )ˆ( )u u T
kS B Q Q B  . Let ( )ˆ u  denote an approximate spectral factor arising in the design of a 
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smoother using ( )
/ 1
u

k kP   and ( )u
kK . Employing the notation and approach of Chapter 7, it is 

straightforward to show that 

( ) ( ) ( ) ( ) ( )
0 / 1 1/ 0

ˆ ˆ( ) ( )u u H H u u u H T
k k k k k kC P P S C         . (67) 

Define the stacked vectors v = 1[ Tv , …, ]T T
Kv , w = 1[ Tw , …, ]T T

Nw , ( )ˆ uw  = ( )
1/ˆ[( )u T

Nw , …, 
( )
/ˆ( ) ]u T T

N Nw  and ( )uw  = w – ( )ˆ uw  = ( )
1/[( )u T

Nw , …, ( )
/( ) ]u T T

N Nw . The input estimation error is 

generated by ( ) ( )u u v
w

w
 

  
 

  ฀ , where ( ) ( )( )u u H
ei ei   = ( ) ( )

1 1( )u u H
ei ei   + ( ) ( )

2 2( )u u H
ei ei  , in which 

 ( ) ( ) ( ) 1 1
2

ˆ ˆ( ( ) ) ( )u H u u H H
ei Q         , (68) 

and ( ) ( ) 1
1 1 2( ) ( )u u H H H H

ei ei Q Q Q       . It is shown in the lemma below that the 

sequence ( ) ( )

2
( )u u Tw w   = ( ) ( )

2
( )u u H

ei ei   is monotonically non-increasing or monotonically 

non-decreasing, depending on the initial conditions.   

Lemma 9: In respect of Procedure 4 for estimating Q, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which A, B, C, D, R are known, 
(1)ˆ| ( ) |i A  < 1, i = 1, …, n, the pair (A, C) is observable and D is of full rank; 

(ii) the solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for (2)Q̂  ≥ (1)Q̂  satisfy (2)
1/ 0P  ≤ (1)

1/ 0P  (or the solutions (1)
1/ 0P , 

(2)
1/ 0P  of (57) for (1)Q̂  ≥ (2)Q̂  satisfy (1)

1/ 0P  ≤ (2)
1/ 0P ).  

Then:  

(i) ( )
1/

u
k kP   ≤ ( )

/ 1
u

k kP   (or ( )
/ 1
u

k kP   ≤ ( )
1/

u
k kP  ) for all k, u ≥ 1; 

(ii) ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   and ( 1)
/ 1
u

k kP 
  ≤ ( )

/ 1
u

k kP   (or ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
  and ( )

/ 1
u

k kP   ≤ ( 1)
/ 1
u

k kP 
 ) for all k, u ≥ 1; 

(iii) ( 1) ( 1)

2
( )u u H

ei ei
    ≤ ( ) ( )

2
( )u u H

ei ei   (or ( ) ( )

2
( )u u H

ei ei   ≤ ( 1) ( 1)

2
( )u u H

ei ei
   ) for u ≥ 1.  

Proof: (i) and (ii) This follows from S(u+1) ≤ S(u) within condition (iii) of Theorem 2 of Chapter 8. 
Since ( ) ( )

1 1( )u u H
ei ei   is common to ( ) ( )( )u u H

ei ei   and ( 1) ( 1)( )u u H
ei ei

   , it suffices to show that    

( 1) ( 1)
2 2 2

( )u u H
ei ei

    ≤ ( ) ( )
2 2 2
( )u u H

ei ei  . (69) 

Substituting (67) into (68) yields 

 ( ) ( ) ( ) ( ) 1 1
2 0 / 1 1/ 0( ) ) ( )u H H u u u H T H

ei k k k k k kQ C P P S C  
            . (70) 
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smoothed (as opposed to filtered) quantities results in smaller approximate CRLBs, which 
suggests improved parameter estimation accuracy.     

Suppose that the system   having the realisation (23) – (24) is non-minimum phase and D 
is of full rank. Under these conditions 1  exists and the minimum-variance smoother 
(described in Chapter 7) may be employed to produce input estimates. Assume that an 
estimate ( )ˆ uQ  = diag( ( ) 2

1,ˆ( )u
w , ( ) 2

2,ˆ( )u
w , …, ( ) 2

,ˆ( )u
n w ) of Q is are available at iteration u. The 

smoothed input estimates, ( )
/ˆ u

k Nw , are calculated from 

( ) ( ) ( ) ( )
1/ / 1
( ) ( ) 1/ 2 ( ) 1/ 2( ) ( )

u u u u
k k k k k k k k

u u u
k k k k k

x A K C K x
C z

 
 

     
     

       
, 

( ) ( ) ( ) 1/ 2 ( )
1

( ) ( ) ( ) 1/ 2 ( )
1

( ) ( )( ) ( ) ( ) ( ) ( ) 1/ 2
1/

( ) 0 ( )
( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

u T T u T T u u
k k k k k k k

u T u T T T u u
k k k k k k k
u uu T u T u T u T u

k N kk k k k k k k k

A C K C
C K A C

w Q D K Q B Q D

 
 












     
    

      
           

, 

(65) 

 

 
(66) 

where ( )u
kK = ( )

/ 1( u T
k k k kA P C  + ( ) ( ) 1ˆ )( )u T u

k k k kB Q D  , ( )u
k  = ( )

/ 1
u T

k k k kC P C  + ( )ˆ u T
k k kD Q D  + Rk and ( )

/ 1
u

k kP   
evolves from the Riccati difference equation ( )

1/
u

k kP   = ( )
/ 1
u T

k k k kA P A  − ( )
/ 1( u T

k k k kA P C  + 
( ) ( )

/ 1
ˆ )(u T u T

k k k k k k kB Q D C P C  + ( )ˆ u T
k k kD Q D  + 1 ( )

/ 1) ( u T
k k k k kR C P A

  + ( ) )u T
k k kD Q B  + ( )ˆ u T

k k kB Q B . A smoothing 

EM algorithm for iteratively re-estimating ( )ˆ uQ  is described below. 

Procedure 4. Suppose that an initial estimate (1)Q̂  = diag( (1) 2
1,ˆ( )w , (1) 2

2,ˆ( )w , …, (1) 2
,ˆ( )n w ) is 

available. Then subsequent estimates ( )ˆ uQ , u > 1, are calculated by repeating the following 
two steps.  

Step 1. Use ( )ˆ uQ  = diag( ( ) 2
1,ˆ( )u

w , ( ) 2
2,ˆ( )u

w , …, ( ) 2
,ˆ( )u

n w )) within (65) − (66) to calculate 

smoothed input estimates ( )
/ˆ u

k Nw . 

Step 2. Calculate the elements of ( 1)ˆ uQ   = diag( ( 1) 2
1,ˆ( )u

w  , ( 1) 2
2,ˆ( )u

w  , …, ( 1) 2
,ˆ( )u

n w  ) using  ( )
/ˆ u

k Nw  
from Step 1 instead of wk within the MLE formula (46). 

 

8.4.1.2 Properties 
In the following it is shown that the variance estimates arising from the above procedure 
result in monotonic error covariances. The additional term within the design Riccati 
difference equation (57) that accounts for the presence of parameter error is now given by 

( ) ( )ˆ( )u u T
kS B Q Q B  . Let ( )ˆ u  denote an approximate spectral factor arising in the design of a 
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smoother using ( )
/ 1
u

k kP   and ( )u
kK . Employing the notation and approach of Chapter 7, it is 

straightforward to show that 

( ) ( ) ( ) ( ) ( )
0 / 1 1/ 0

ˆ ˆ( ) ( )u u H H u u u H T
k k k k k kC P P S C         . (67) 

Define the stacked vectors v = 1[ Tv , …, ]T T
Kv , w = 1[ Tw , …, ]T T

Nw , ( )ˆ uw  = ( )
1/ˆ[( )u T

Nw , …, 
( )
/ˆ( ) ]u T T

N Nw  and ( )uw  = w – ( )ˆ uw  = ( )
1/[( )u T

Nw , …, ( )
/( ) ]u T T

N Nw . The input estimation error is 

generated by ( ) ( )u u v
w

w
 

  
 

  ฀ , where ( ) ( )( )u u H
ei ei   = ( ) ( )

1 1( )u u H
ei ei   + ( ) ( )

2 2( )u u H
ei ei  , in which 

 ( ) ( ) ( ) 1 1
2

ˆ ˆ( ( ) ) ( )u H u u H H
ei Q         , (68) 

and ( ) ( ) 1
1 1 2( ) ( )u u H H H H

ei ei Q Q Q       . It is shown in the lemma below that the 

sequence ( ) ( )

2
( )u u Tw w   = ( ) ( )

2
( )u u H

ei ei   is monotonically non-increasing or monotonically 

non-decreasing, depending on the initial conditions.   

Lemma 9: In respect of Procedure 4 for estimating Q, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which A, B, C, D, R are known, 
(1)ˆ| ( ) |i A  < 1, i = 1, …, n, the pair (A, C) is observable and D is of full rank; 

(ii) the solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for (2)Q̂  ≥ (1)Q̂  satisfy (2)
1/ 0P  ≤ (1)

1/ 0P  (or the solutions (1)
1/ 0P , 

(2)
1/ 0P  of (57) for (1)Q̂  ≥ (2)Q̂  satisfy (1)

1/ 0P  ≤ (2)
1/ 0P ).  

Then:  

(i) ( )
1/

u
k kP   ≤ ( )

/ 1
u

k kP   (or ( )
/ 1
u

k kP   ≤ ( )
1/

u
k kP  ) for all k, u ≥ 1; 

(ii) ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   and ( 1)
/ 1
u

k kP 
  ≤ ( )

/ 1
u

k kP   (or ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
  and ( )

/ 1
u

k kP   ≤ ( 1)
/ 1
u

k kP 
 ) for all k, u ≥ 1; 

(iii) ( 1) ( 1)

2
( )u u H

ei ei
    ≤ ( ) ( )

2
( )u u H

ei ei   (or ( ) ( )

2
( )u u H

ei ei   ≤ ( 1) ( 1)

2
( )u u H

ei ei
   ) for u ≥ 1.  

Proof: (i) and (ii) This follows from S(u+1) ≤ S(u) within condition (iii) of Theorem 2 of Chapter 8. 
Since ( ) ( )

1 1( )u u H
ei ei   is common to ( ) ( )( )u u H

ei ei   and ( 1) ( 1)( )u u H
ei ei

   , it suffices to show that    

( 1) ( 1)
2 2 2

( )u u H
ei ei

    ≤ ( ) ( )
2 2 2
( )u u H

ei ei  . (69) 

Substituting (67) into (68) yields 

 ( ) ( ) ( ) ( ) 1 1
2 0 / 1 1/ 0( ) ) ( )u H H u u u H T H

ei k k k k k kQ C P P S C  
            . (70) 
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Note for linear time-invariant systems X, Y1 ≥ Y2, that 
1 1 1 1

1 2( ) ( ) ( ) ( )H H H HXX XX Y XX XX Y        . (71) 

Since ( 1) ( 1) ( 1)
0 / 1 1/ 0 2
( )u u u H

k k k kP P S  
     ≤ ( ) ( ) ( )

0 / 1 1/ 0 2
( )u u u H

k k k kP P S    , (69) follows from (70)  and 

(71).                                                                                                                                                         ฀ 

As is the case for the filtering EM algorithm, the process noise variance estimates 
asymptotically approach the exact values when the SNR is sufficiently high. 

Lemma 10: Under the conditions of Lemma 9,  

1

( )

0, 0,

ˆlim u

Q R u
Q Q

   
 . (72) 

Proof: By inspection of the input estimator, IE  = 1( )H HQ   = (H HQ Q    + 1)R  , it 
follows that 

1 0, 0,
lim IE

Q R u   
  =  1  and therefore 

1

( )
/

0, 0,
ˆlim u

k N
Q R u

w
   

 = wk, which implies (72), 

since the MLE (46) is unbiased for large N.                                                                                           ฀  

It is observed anecdotally that the variance estimates produced by the above smoothing EM 
algorithm are more accurate than those from the corresponding filtering procedure. This is 
consistent with the following comparison of approximate CRLBs.  

Lemma 11 [26]:  
1 12 2 2 2

, / , /
2 2 2 2
, ,

ˆ ˆlog ( | ) log ( | )
( ) ( )

i w k N i w k k

i w i w

f x f x 
 

 
    

            
. (73) 

Proof: The vector state elements within (23) can be written in terms of smoothed state estimates, 
, 1i kx   = /ˆi k NA x  + ,i kw  = i kA x  + ,i kw  –  /i k NA x , where /k Nx  = xk – /ˆ k Nx . From the approach of 

Example 8, the second partial derivative of the corresponding approximate log-likelihood function 
with respect to the process noise variance is 

2 2
, / 2 2

, / /2 2
,

ˆlog ( | )
( { } )

( ) 2
i w k N T T

i w i k N k N i
i w

f x N A E x x A






  


  . 

Similarly, the use of filtered state estimates leads to 
2 2

, / 2 2
, / /2 2

,

ˆlog ( | )
( { } )

( ) 2
i w k k T T

i w i k k k k i
i w

f x N A E x x A






  


  . 

The minimum-variance smoother minimizes both the causal part and the non-causal part of the 
estimation error, whereas the Kalman filter only minimizes the causal part. Therefore, / /{ }T

k N k NE x x   < 

/ /{ }T
k k k kE x x  . Thus, the claim (73) follows.                                                                                             ฀ 
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8.4.2 State Matrix Estimation  

8.4.2.1 EM Algorithm 
Smoothed state estimates are obtained from the smoothed inputs via 

( ) ( ) ( )
1/ / /ˆ ˆ ˆu u u

k N k k N k k Nx A x B w   . (74) 

The resulting ( )
/ˆ u

k Nx  are used below to iteratively re-estimate state matrix elements.  

Procedure 5. Assume that there exists an initial estimate (1)Â  of A such that (1)ˆ| ( ) |i A  < 1, i = 

1, …, n. Subsequent estimates, ( )ˆ uA , u > 1, are calculated using the following two-step EM 
algorithm. 

Step 1. Operate the minimum-variance smoother recursions (65), (66), (74) designed with 
( )ˆ uA  to obtain ( )

/ˆ u
k Nx . 

Step 2. Copy ( )ˆ uA  to ( 1)ˆ uA  . Use ( )
/ˆ u

k Nx  instead of xk within (53) to obtain candidate 

estimates ( 1)
,ˆ
u

i ja  , i, j = 1, …, n. Include ( 1)
,ˆ
u

i ja   within ( 1)ˆ uA   if ( 1)ˆ| ( ) |u
i A   < 1, i = 1, …, 

n. 
 

8.4.2.2 Properties 
Denote x = 1[ Tx , …, ]T T

Nx , ( )ˆ ux  = ( )
1/ˆ[( )u T

Nx , …, ( )
/ˆ( ) ]u T T

N Nx  and ( )ux  = x – ( )ˆ ux  = ( )
1/[( )u T

Nx , …, 

( )
/( ) ]u T T

N Nx . Let ( )u  be redefined as the system that maps the inputs 
v
w
 
 
 

 to smoother state 

estimation error ( )ux , that is, ( ) ( )u u v
x

w
 

  
 

  ฀ . It is stated below that the estimated state 

matrix iterates result in a monotonic sequence of state error covariances. 

Lemma 12: In respect of Procedure 5 for estimating A and x, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which B, C, D, Q, R are known, 
( 1)ˆ| ( ) |u

i A   < 1, the pair (A, C) is observable and D is of full rank; 

(ii) there exist solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for AAT ≤ (2) (2)( )TA A  ≤ (1) (1)( )TA A  satisfying (2)
1/ 0P  

≤ (1)
1/ 0P  (or the solutions (1)

1/ 0P , (2)
1/ 0P  of (31) for (1) (1)( )TA A  ≤ (2) (2)( )TA A  ≤ AAT satisfying (1)

1/ 0P  ≤ 
(2)
1/ 0P ).  

Then ( 1) ( 1)

2
( )u u H

ei ei
    ≤ ( ) ( )

2
( )u u H

ei ei   (or ( ) ( )

2
( )u u H

ei ei   ≤ ( 1) ( 1)

2
( )u u H

ei ei
   ) for u ≥ 1.  
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Note for linear time-invariant systems X, Y1 ≥ Y2, that 
1 1 1 1

1 2( ) ( ) ( ) ( )H H H HXX XX Y XX XX Y        . (71) 

Since ( 1) ( 1) ( 1)
0 / 1 1/ 0 2
( )u u u H

k k k kP P S  
     ≤ ( ) ( ) ( )

0 / 1 1/ 0 2
( )u u u H

k k k kP P S    , (69) follows from (70)  and 

(71).                                                                                                                                                         ฀ 

As is the case for the filtering EM algorithm, the process noise variance estimates 
asymptotically approach the exact values when the SNR is sufficiently high. 

Lemma 10: Under the conditions of Lemma 9,  

1

( )

0, 0,

ˆlim u

Q R u
Q Q

   
 . (72) 

Proof: By inspection of the input estimator, IE  = 1( )H HQ   = (H HQ Q    + 1)R  , it 
follows that 

1 0, 0,
lim IE

Q R u   
  =  1  and therefore 

1

( )
/

0, 0,
ˆlim u

k N
Q R u

w
   

 = wk, which implies (72), 

since the MLE (46) is unbiased for large N.                                                                                           ฀  

It is observed anecdotally that the variance estimates produced by the above smoothing EM 
algorithm are more accurate than those from the corresponding filtering procedure. This is 
consistent with the following comparison of approximate CRLBs.  

Lemma 11 [26]:  
1 12 2 2 2

, / , /
2 2 2 2
, ,

ˆ ˆlog ( | ) log ( | )
( ) ( )

i w k N i w k k

i w i w

f x f x 
 

 
    

            
. (73) 

Proof: The vector state elements within (23) can be written in terms of smoothed state estimates, 
, 1i kx   = /ˆi k NA x  + ,i kw  = i kA x  + ,i kw  –  /i k NA x , where /k Nx  = xk – /ˆ k Nx . From the approach of 

Example 8, the second partial derivative of the corresponding approximate log-likelihood function 
with respect to the process noise variance is 

2 2
, / 2 2

, / /2 2
,

ˆlog ( | )
( { } )

( ) 2
i w k N T T

i w i k N k N i
i w

f x N A E x x A






  


  . 

Similarly, the use of filtered state estimates leads to 
2 2

, / 2 2
, / /2 2

,

ˆlog ( | )
( { } )

( ) 2
i w k k T T

i w i k k k k i
i w

f x N A E x x A






  


  . 

The minimum-variance smoother minimizes both the causal part and the non-causal part of the 
estimation error, whereas the Kalman filter only minimizes the causal part. Therefore, / /{ }T

k N k NE x x   < 

/ /{ }T
k k k kE x x  . Thus, the claim (73) follows.                                                                                             ฀ 
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8.4.2 State Matrix Estimation  

8.4.2.1 EM Algorithm 
Smoothed state estimates are obtained from the smoothed inputs via 

( ) ( ) ( )
1/ / /ˆ ˆ ˆu u u

k N k k N k k Nx A x B w   . (74) 

The resulting ( )
/ˆ u

k Nx  are used below to iteratively re-estimate state matrix elements.  

Procedure 5. Assume that there exists an initial estimate (1)Â  of A such that (1)ˆ| ( ) |i A  < 1, i = 

1, …, n. Subsequent estimates, ( )ˆ uA , u > 1, are calculated using the following two-step EM 
algorithm. 

Step 1. Operate the minimum-variance smoother recursions (65), (66), (74) designed with 
( )ˆ uA  to obtain ( )

/ˆ u
k Nx . 

Step 2. Copy ( )ˆ uA  to ( 1)ˆ uA  . Use ( )
/ˆ u

k Nx  instead of xk within (53) to obtain candidate 

estimates ( 1)
,ˆ
u

i ja  , i, j = 1, …, n. Include ( 1)
,ˆ
u

i ja   within ( 1)ˆ uA   if ( 1)ˆ| ( ) |u
i A   < 1, i = 1, …, 

n. 
 

8.4.2.2 Properties 
Denote x = 1[ Tx , …, ]T T

Nx , ( )ˆ ux  = ( )
1/ˆ[( )u T

Nx , …, ( )
/ˆ( ) ]u T T

N Nx  and ( )ux  = x – ( )ˆ ux  = ( )
1/[( )u T

Nx , …, 

( )
/( ) ]u T T

N Nx . Let ( )u  be redefined as the system that maps the inputs 
v
w
 
 
 

 to smoother state 

estimation error ( )ux , that is, ( ) ( )u u v
x

w
 

  
 

  ฀ . It is stated below that the estimated state 

matrix iterates result in a monotonic sequence of state error covariances. 

Lemma 12: In respect of Procedure 5 for estimating A and x, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which B, C, D, Q, R are known, 
( 1)ˆ| ( ) |u

i A   < 1, the pair (A, C) is observable and D is of full rank; 

(ii) there exist solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for AAT ≤ (2) (2)( )TA A  ≤ (1) (1)( )TA A  satisfying (2)
1/ 0P  

≤ (1)
1/ 0P  (or the solutions (1)

1/ 0P , (2)
1/ 0P  of (31) for (1) (1)( )TA A  ≤ (2) (2)( )TA A  ≤ AAT satisfying (1)

1/ 0P  ≤ 
(2)
1/ 0P ).  

Then ( 1) ( 1)

2
( )u u H

ei ei
    ≤ ( ) ( )

2
( )u u H

ei ei   (or ( ) ( )

2
( )u u H

ei ei   ≤ ( 1) ( 1)

2
( )u u H

ei ei
   ) for u ≥ 1.  
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The proof is omitted since it follows mutatis mutandis from that of Lemma 9. Suppose that 
the smoother (65), (66) designed with the estimates ( )

,ˆ u
i ja  is employed to calculate input 

estimates ( )
/ˆ u

k Nw . An approximate log-likelihood function for the unknown ,i ja  given 

samples of ( )
/ˆ u

k Nw  is 

( ) ( ) 2 ( ) 2 ( ) ( )
, , / , , , / , /

1

1ˆ ˆ ˆlog ( | ) log 2 log( ) ( ) ( ) .
2 2 2

N
u u u u u T

i j i k K i w i w i k K i k N
k

N Nf a w w w   



      (75) 

Now let ( )u  denote the map from 
v
w
 
 
 

 to the smoother input estimation error ( )uw  = w – 

( )ˆ uw  at iteration u. It is argued below that the sequence of state matrix iterates maximises 
(75). 

Lemma 13: Under the conditions of Lemma 12, ( 1) ( 1)

2
( )u u H    ≤ ( ) ( )

2
( )u u H    for u ≥ 1. 

The proof follows mutatis mutandis from that of Lemma 9. The above Lemma implies 
( 1) ( 1) ( ) ( ){ ( ) } { ( ) }u u T u u TE w w E w w      . (76) 

It follows from ( )ˆ uw  = w − ( )uw  that ( ) ( ){ ( ) }u u TE w w   = {E w  + ( ) )(uw w  + ( )( ) }u Tw  = 
( ) ( ){ ( ) }u u TE w w   + Q, which together with (76) implies ( 1) ( 1)ˆ ˆ{ ( ) }u u TE w w   ≤ ( ) ( )ˆ ˆ{ ( ) }u u TE w w  and 

( 1)
, , /ˆlog ( | )u

i jw i k Nf a w   ≥ ( )
, , /ˆlog ( | )u

i jw i k Kf a w  for all u ≥ 1. Therefore, it is expected that the sequence 
of state matrix estimates will similarly vary monotonically. Next, it is stated that the state 
matrix estimates asymptotically approach the exact values when the SNR is sufficiently 
high. 

Lemma 14: Under the conditions of Lemma 9,  

1

( )

0, 0,

ˆlim u

Q R u
A A

   
 . (77) 

Proof: From the proof of Lemma 10, 
1

( )
/

0, 0,
ˆlim u

k N
Q R u

w
   

 = wk, therefore, the states within (74) are 

reconstructed exactly. Thus, the claim (77) follows since the MLE (53) is unbiased.                           ฀  

It is expected that the above EM smoothing algorithm offers improved state matrix 
estimation accuracy. 

Lemma 15:  
1 12 2

, / , /
2 2

, ,

ˆ ˆlog ( | ) log ( | )
( ) ( )

i j k N i j k k

i j i j

f a x f a x
a a

 
    
     
       

. (78) 
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Proof: Using smoothed states within (51) yields , 1i kx   = , , /
1

ˆ
n

i j i k N
j

a x

  + ,i kw   = , ,

1

n

i j i k
j

a x

  + ,i kw  – 

, , /
1

n

i j i k N
j

a x

  , where /k Nx  = xk – /ˆ k Nx . The second partial derivative of the corresponding log-

likelihood function with respect to ai,j is 

2
, / 2 1 2

, / / ,2
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ˆlog ( | )
( { } )
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N
i j k N T T
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
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Similarly, the use of filtered state estimates leads to 

2
, / 2 1 2

, / / ,2
1,

ˆlog ( | )
( { } )

( ) 2

N
i j k k T T

i w i k k k k i j k
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a
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


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The result (78) follows since / /{ }T
k N k NE x x   < / /{ }T

k k k kE x x  .                                                                   ฀ 

Example 13.: Consider a system where B = C = D = Q = 1, R = {0.0001, 0.0002, 0.0003} are 
known and A = 0.9 but is unknown. Simulations were conducted using 30 noise realizations 
with N = 500,000. The results of the above smoothing EM algorithm and the filtering EM 
algorithms, initialized with (0)Â  = 1.03A, are respectively shown by the dotted and dashed 
lines within Fig. 6. The figure shows that the estimates improve with increasing u, which is 
consistent with Lemma 15. The estimates also improve with increasing SNR which 
illustrates Lemmas 8 and 14. It is observed anecdotally that the smoother EM algorithm 
outperforms the filter EM algorithm for estimation of A at high signal-to-noise-ratios. 
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Fig. 6. State matrix estimates calculated by the smoother EM algorithm and filter EM algorithm for 
Example 13. It can be seen that the ( )ˆ uA  better approach the nominal A at higher SNR. 
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The proof is omitted since it follows mutatis mutandis from that of Lemma 9. Suppose that 
the smoother (65), (66) designed with the estimates ( )

,ˆ u
i ja  is employed to calculate input 

estimates ( )
/ˆ u

k Nw . An approximate log-likelihood function for the unknown ,i ja  given 

samples of ( )
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k Nw  is 
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Now let ( )u  denote the map from 
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w
 
 
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 to the smoother input estimation error ( )uw  = w – 

( )ˆ uw  at iteration u. It is argued below that the sequence of state matrix iterates maximises 
(75). 

Lemma 13: Under the conditions of Lemma 12, ( 1) ( 1)
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The proof follows mutatis mutandis from that of Lemma 9. The above Lemma implies 
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( ) ( ){ ( ) }u u TE w w   + Q, which together with (76) implies ( 1) ( 1)ˆ ˆ{ ( ) }u u TE w w   ≤ ( ) ( )ˆ ˆ{ ( ) }u u TE w w  and 
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, , /ˆlog ( | )u

i jw i k Nf a w   ≥ ( )
, , /ˆlog ( | )u

i jw i k Kf a w  for all u ≥ 1. Therefore, it is expected that the sequence 
of state matrix estimates will similarly vary monotonically. Next, it is stated that the state 
matrix estimates asymptotically approach the exact values when the SNR is sufficiently 
high. 

Lemma 14: Under the conditions of Lemma 9,  
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 = wk, therefore, the states within (74) are 

reconstructed exactly. Thus, the claim (77) follows since the MLE (53) is unbiased.                           ฀  

It is expected that the above EM smoothing algorithm offers improved state matrix 
estimation accuracy. 

Lemma 15:  
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Proof: Using smoothed states within (51) yields , 1i kx   = , , /
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Similarly, the use of filtered state estimates leads to 
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The result (78) follows since / /{ }T
k N k NE x x   < / /{ }T

k k k kE x x  .                                                                   ฀ 

Example 13.: Consider a system where B = C = D = Q = 1, R = {0.0001, 0.0002, 0.0003} are 
known and A = 0.9 but is unknown. Simulations were conducted using 30 noise realizations 
with N = 500,000. The results of the above smoothing EM algorithm and the filtering EM 
algorithms, initialized with (0)Â  = 1.03A, are respectively shown by the dotted and dashed 
lines within Fig. 6. The figure shows that the estimates improve with increasing u, which is 
consistent with Lemma 15. The estimates also improve with increasing SNR which 
illustrates Lemmas 8 and 14. It is observed anecdotally that the smoother EM algorithm 
outperforms the filter EM algorithm for estimation of A at high signal-to-noise-ratios. 
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Fig. 6. State matrix estimates calculated by the smoother EM algorithm and filter EM algorithm for 
Example 13. It can be seen that the ( )ˆ uA  better approach the nominal A at higher SNR. 
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8.4.3 Measurement Noise Variance Estimation  
The discussion of an EM procedure for measurement noise variance estimation is presented 
in a summary form because it follows analogously to the algorithms described previously.  

Procedure 6. Assume that an initial estimate (1)R̂  of R is available. Subsequent estimates 
( )ˆ uR , u > 1, are calculated by repeating the following two-step procedure. 

Step 1. Operate the minimum-variance smoother (7.66), (7.68), (7.69) designed with ( )ˆ uR  to 
obtain corrected output estimates ( )

/ˆ u
k Ny . 

Step 2. For i = 1, …, p, use ( )
/ˆ u

k Ny  instead of yk within (27) to obtain ( 1)ˆ uR   = diag( ( 1) 2
1,ˆ( )u

v  , 
( 1) 2
2,ˆ( )u

v  , …, ( 1) 2
,ˆ( )u

n v  ). 

It can be shown using the approach of Lemma 9 that the sequence of measurement noise 
variance estimates are either monotonically non-increasing or non-decreasing depending on 
the initial conditions. When the SNR is sufficiently low, the measurement noise variance 
estimates converge to the actual value. 

Lemma 16: In respect of Procedure 6,  

1

( )

0, 0,
lim u

R Q u
R R

   
 . (79)  

Proof: By inspection of the output, OE  = (H HQ Q     + 1)R  , it follows that 

1 0, 0,
lim IE

R Q u   
  =  0, which together with the observation 

1 0, 0,
lim { }T

R Q u
E zz

   
 = R implies (79), 

since the MLE (27) is unbiased for large N.                                                                                           ฀  

Once again, the variance estimates produced by the above procedure are expected to be 
more accurate than those relying on filtered estimates. 

Lemma 17:  
1 12 2 2 2

, / , /
2 2 2 2
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. (80) 

Proof: The second partial derivative of the corresponding log-likelihood function with respect to the 
process noise variance is 

2 2
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where ( )
/
u

k Ny  = y – ( )
/ˆ u

k Ny . Similarly, the use of filtered state estimates leads to  

2 2
, , / 2 2

, , / , /2 2
,

ˆlog ( | )
( { })

( ) 2
i v i k k T

i v i k k i k k
i v

f y N E y y






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
  , 

where ( )
/
u

k ky  = y – ( )
/ˆ u

k ky . The claim (80) follows since / /{ }T
k N k NE y y   < / /{ }T

k k k kE y y  .                             ฀ 
 

8.5  Conclusion 
From the Central Limit Theorem, the mean of a large sample of independent identically 
distributed random variables asymptotically approaches a normal distribution. 
Consequently, parameter estimates are often obtained by maximising Gaussian log-
likelihood functions.  

Unknown process noise variances and state matrix elements can be estimated by 

considering i single-input state evolutions of the form xi,k+1 = , , ,
1

n

i j i k i k
j

a x w


 , ai,j, xi,k, wi,k   . 

Similarly, unknown measurement noise variances can be estimated by considering i single-
output observations of the form zi,k =  yi,k + vi,k , where yi,k + vi,k   . The resulting MLEs are 
listed in Table 1 and are unbiased provided that the assumed models are correct and the 
number of samples is large.  

The above parameter estimates rely on the availability of complete xi,k and yi,k information. 
Usually, both states and parameters need to be estimated from measurements. The EM 
algorithm is a common technique for solving joint state and parameter estimation problems. 
It has been shown that the estimation sequences vary monotonically and depend on the 
initial conditions. However, the use of imperfect states from filters or smoothers within the 
MLE calculations leads to biased parameter estimates. An examination of the approximate 
Cramér-Rao lower bounds shows that the use of smoothed states as opposed to filtered 
states is expected to provide improved parameter estimation accuracy.  

When the SNR is sufficiently high, the states are recovered exactly and the bias terms 
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then 
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,i v . Thus, measurement noise estimation should only be attempted 

when the signal is absent. If parameter estimates are desired at intermediate SNRs then the 
subspace identification techniques such as [13], [14] are worthy of consideration. 

 

 

                                                                 

“If automobiles had followed the same development cycle as the computer, a Rolls-Royce would today 
cost $100, get a million miles per gallon, and explode once a year, killing everyone inside.” Mark 
Stephens 

www.intechopen.com



Parameter Estimation 205
  

8.4.3 Measurement Noise Variance Estimation  
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Table 1. MLEs for process noise variance, state matrix element and measurement noise variance. 
 

8.6  Problems 
 

Problem 1.  

(i) Consider the second order difference equation xk+2 + a1xk+1 + a0xk = wk. Assuming 
that wk ~ (0,  2

w ), obtain an equation for the MLEs of the unknown a1 and a0. 
(ii) Consider the nth order autoregressive system xk+n + an-1xk+n-1 + an-2xk+n-2 + … + a0xk = 
wk, where an-1, an-2, …, a0 are unknown. From the assumption wk ~ (0,  2

w ), obtain an 
equation for MLEs of the unknown coefficients. 

Problem 2. Suppose that N samples of xk+1 = Axk + wk are available, where wk ~ (0,  2
w ), 

in which 2
w  is an unknown parameter. 

(i) Write down a Gaussian log-likelihood function for the unknown parameter, given xk. 
(ii) Derive a formula for the MLE 2ˆw  of 2

w . 
(iii) Show that 2ˆ{ }wE   = 2

w  provided that N is large. 
(iv) Find the Cramér Rao lower bound for 2ˆw .  
(v) Replace the actual states kx  with filtered state /ˆ k kx  within the MLE formula. Obtain 
a high SNR asymptote for this approximate MLE. 
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Problem 3. Consider the state evolution 1k k kx Ax w   , where A  n n  is unknown and wk 
 n .  

(i) Write down a Gaussian log-likelihood function for the unknown components ai,j of 
A, given xk and xk+1. 
(ii) Derive a formula for the MLE ,ˆi ja  of ai,j. 

(iii) Show that ,ˆ{ }i jE a  = ai,j. Replace the actual states xk with the filtered state /ˆ k kx  
within the obtained formula to yield an approximate MLE for ai,j.  
(iv) Obtain a high SNR asymptote for the approximate MLE. 

Problem 4. Consider measurements of a sinusoidal signal modelled by yk = Acos(2πfk + φ) + 
vk, with amplitude A > 0, frequency 0 <  f < 0.5, phase φ and Gaussian white measurement 
noise vk.  

(i) Assuming that φ and f are known, determine the Fisher information and the 
Cramér Rao lower bound for an unknown A. 
(ii) Assuming that A and φ are known, determine the fisher information and the 
Cramér Rao lower bound for an unknown f0. 
(iii) Assuming that A and f are known, determine the Fisher information and the 
Cramér Rao lower bound . 
(iv) Assuming that the vector parameter [AT, Tf , φT]T is known, determine the Fisher 
information matrix and the Cramér Rao lower bound. (Hint: use small angle 
approximations for sine and cosine, see [2].)  

 

8.7 Glossary 
 

SNR Signal to noise ratio. 

MLE Maximum likelihood estimate. 

CRLB Cramér Rao Lower Bound 

F(θ) The Fisher information of a parameter θ. 

xk ~ (0,  2 ) The random variable xk is normally distributed with mean μ and variance 
2 . 

wi,k , vi,k , zi,k ith elements of vectors wk , vk , zk. 
( )
,ˆ
u

i w , ( )
,ˆ
u

i v  Estimates of variances of wi,k and vi,k  at iteration u. 

( )ˆ uA , ( )ˆ uR , ( )ˆ uQ  Estimates of state matrix A, covariances R and Q at iteration u. 

( )ˆ( )u
i A  The i eigenvalues of ( )ˆ uA . 

Ai , Ci ith row of state-space matrices A and C. 
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Ki,k, Li,k ith row of predictor and filter gain matrices Kk and Lk. 
( )u
kS  Additive term within the design Riccati difference equation to account for 

the presence of modelling error at time k and iteration u. 

ai,j Element in row i and column j of A. 
#
kC  Moore-Penrose pseudo-inverse of Ck. 

( )u  A system (or map) that operates on the filtering/smoothing problem inputs 
to produce the input, state or output estimation error at iteration u. It is 
convenient to make use of the factorisation ( ) ( )( )u u H

ei ei   = ( ) ( )
1 1( )u u H

ei ei   + 
( ) ( )
2 2( )u u H

ei ei  , where ( ) ( )
2 2( )u u H

ei ei   includes the filter or smoother solution 

and ( ) ( )
1 1( )u u H

ei ei   is a lower performance bound. 
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“The faithful duplication and repair exhibited by the double-stranded DNA structure would seem to be 
incompatible with the process of evolution. Thus, evolution has been explained by the occurrence of 
errors during DNA replication and repair.” Tomoyuki Shibata 
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