
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Discrete-Time Smoothing 149

Chapter title

Author Name

7 
 

Discrete-Time Smoothing 

1 
7.1. Introduction 
Observations are invariably accompanied by measurement noise and optimal filters are the 
usual solution of choice. Filter performances that fall short of user expectations motivate the 
pursuit of smoother solutions. Smoothers promise useful mean-square-error improvement 
at mid-range signal-to-noise ratios, provided that the assumed model parameters and noise 
statistics are correct. 

In general, discrete-time filters and smoothers are more practical than the continuous-time 
counterparts. Often a designer may be able to value-add by assuming low-order discrete-
time models which bear little or no resemblance to the underlying processes. Continuous-
time approaches may be warranted only when application-specific performance 
considerations outweigh the higher overheads. 

This chapter canvasses the main discrete-time fixed-point, fixed-lag and fixed interval 
smoothing results [1] – [9]. Fixed-point smoothers [1] calculate an improved estimate at a 
prescribed past instant in time. Fixed-lag smoothers [2] – [3] find application where small 
end-to-end delays are tolerable, for example, in press-to-talk communications or receiving 
public broadcasts. Fixed-interval smoothers [4] – [9] dispense with the need to fine tune the 
time of interest or the smoothing lags. They are suited to applications where processes are 
staggered such as delayed control or off-line data analysis. For example, in underground 
coal mining, smoothed position estimates and control signals can be calculated while a 
longwall shearer is momentarily stationary at each end of the face [9]. Similarly, in 
exploration drilling, analyses are typically carried out post-data acquisition. 

The smoother descriptions are organised as follows. Section 7.2 sets out two prerequisites: 
time-varying adjoint systems and Riccati difference equation comparison theorems. Fixed-
point, fixed-lag and fixed-interval smoothers are discussed in Sections 7.3, 7.4 and 7.5, 
respectively. It turns out that the structures of the discrete-time smoothers are essentially the 
same as those of the previously-described continuous-time versions. Differences arise in the 
calculation of Riccati equation solutions and the gain matrices. Consequently, the treatment 

                                                                 

“An inventor is simply a person who doesn't take his education too seriously. You see, from the time a 
person is six years old until he graduates from college he has to take three or four examinations a year. 
If he flunks once, he is out. But an inventor is almost always failing. He tries and fails maybe a thousand 
times. If he succeeds once then he's in. These two things are diametrically opposite. We often say that 
the biggest job we have is to teach a newly hired employee how to fail intelligently. We have to train 
him to experiment over and over and to keep on trying and failing until he learns what will work.” 
Charles Franklin Kettering 
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is somewhat condensed. It is reaffirmed that the above-mentioned smoothers outperform 
the Kalman filter and the minimum-variance smoother provides the best performance. 
 

7.2. Prerequisites 
 

7.2.1 Time-varying Adjoint Systems 
Consider a linear time-varying system,  , operating on an input, w, namely, y =  w. 
Here, w denotes the set of wk over an interval k  [0, N]. It is assumed that :  p  → q  has 
the state-space realisation  

1k k k k kx A x B w   , 

k k k k ky C x D w  . 

(1) 

(2) 

As before, the adjoint system, H , satisfies 

<y,  w> =< H y, w> (3)  

for all y  q  and w   p . 

Lemma 1: In respect of the system   described by (1) – (2), with x0 = 0, the adjoint system H  
having the realisation 

1
T T

k k k k kA C u    , 
T T

k k k k kz B D u   , 

(4) 

(5) 

with 0N  , satisfies (3). 

A proof appears in [7] and proceeds similarly to that within Lemma 1 of Chapter 2. The 
simplification Dk = 0 is assumed below unless stated otherwise. 
 

7.2.2  Riccati Equation Comparison 
The ensuing performance comparisons of filters and smoothers require methods for 
comparing the solutions of Riccati difference equations which are developed below. 
Simplified Riccati difference equations which do not involve the Bk and measurement noise 
covariance matrices are considered initially. A change of variables for the more general case 
is stated subsequently. 

Suppose there exist 1t kA     n n , 1t kC  
    p n , 1t kQ  

  = 1
T
t kQ  

   n n  and 1t kP    = 1
T
t kP    

 n n  for a t ≥ 0 and k ≥ 0. Following the approach of Wimmer [10], define the Riccati 
operator 

       1 1 1 1 1 1 1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q                     

                                             1
1 1 1 1 1 1 1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                      . 

(6) 
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(Woody) Allen Stewart Konigsberg 

  

Let 1t k   = 1 1 1

1 1

T
t k t k t k

T
t k t k

A C C

Q A
     

   

 
 
   

 

  denote the Hamiltonian matrix corresponding to 

1 1 1 1( , , , )t k t k t k t kP A C Q           and define 
0

0
I

J
I

 
  
 

, in which I is an identity matrix of 

appropriate dimensions. It is known that solutions of (6) are monotonically dependent on 

1kJ   = 1 1

1 1 1

T
t k t k

T
t k t k t k

Q A

A C C
   

     

 
 

  



  . Consider a second Riccati operator employing the same 

initial solution 1t kP    but different state-space parameters 

         1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q               

                                                     1
1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                . 

(7) 

The following theorem, which is due to Wimmer [10], compares the above two Riccati 
operators. 

Theorem 1: [10]: Suppose that 

1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

     

for a t ≥ 0 and for all k ≥ 0. Then 

1 1 1 1 1( , , , ) ( , , , )t k t k t k t k t k t k t k t kP A C Q P A C Q                   (8)  

for all k ≥ 0. 

The above result underpins the following more general Riccati difference equation 
comparison theorem.  

Theorem 2: [11], [8]: With the above definitions, suppose for a t ≥ 0 and for all k ≥ 0 that: 

(i) there exists a tP  ≥ 1tP   and 

(ii) 1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

    . 

Then t kP   ≥ 1t kP     for all k ≥ 0. 

Proof: Assumption (i) is the k = 0 case for an induction argument.  For the inductive step, denote 

t kP   = 1 1 1 1( , , , )t k t k t k t kP A C Q           and 1t kP    = ( , , , )t k t k t k t kP A C Q      . Then 

                                                                 

“Although personally I am quite content with existing explosives, I feel we must not stand in the path 
of improvement.” Winston Leonard Spencer-Churchill 

www.intechopen.com



Discrete-Time Smoothing 151
  

is somewhat condensed. It is reaffirmed that the above-mentioned smoothers outperform 
the Kalman filter and the minimum-variance smoother provides the best performance. 
 

7.2. Prerequisites 
 

7.2.1 Time-varying Adjoint Systems 
Consider a linear time-varying system,  , operating on an input, w, namely, y =  w. 
Here, w denotes the set of wk over an interval k  [0, N]. It is assumed that :  p  → q  has 
the state-space realisation  

1k k k k kx A x B w   , 

k k k k ky C x D w  . 

(1) 

(2) 

As before, the adjoint system, H , satisfies 

<y,  w> =< H y, w> (3)  

for all y  q  and w   p . 

Lemma 1: In respect of the system   described by (1) – (2), with x0 = 0, the adjoint system H  
having the realisation 

1
T T

k k k k kA C u    , 
T T

k k k k kz B D u   , 

(4) 

(5) 

with 0N  , satisfies (3). 

A proof appears in [7] and proceeds similarly to that within Lemma 1 of Chapter 2. The 
simplification Dk = 0 is assumed below unless stated otherwise. 
 

7.2.2  Riccati Equation Comparison 
The ensuing performance comparisons of filters and smoothers require methods for 
comparing the solutions of Riccati difference equations which are developed below. 
Simplified Riccati difference equations which do not involve the Bk and measurement noise 
covariance matrices are considered initially. A change of variables for the more general case 
is stated subsequently. 

Suppose there exist 1t kA     n n , 1t kC  
    p n , 1t kQ  

  = 1
T
t kQ  

   n n  and 1t kP    = 1
T

t kP    
 n n  for a t ≥ 0 and k ≥ 0. Following the approach of Wimmer [10], define the Riccati 
operator 

       1 1 1 1 1 1 1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q                     

                                             1
1 1 1 1 1 1 1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                      . 

(6) 
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Let 1t k   = 1 1 1

1 1

T
t k t k t k

T
t k t k

A C C

Q A
     

   

 
 
   

 

  denote the Hamiltonian matrix corresponding to 

1 1 1 1( , , , )t k t k t k t kP A C Q           and define 
0

0
I

J
I

 
  
 

, in which I is an identity matrix of 

appropriate dimensions. It is known that solutions of (6) are monotonically dependent on 

1kJ   = 1 1

1 1 1

T
t k t k

T
t k t k t k

Q A

A C C
   

     

 
 

  



  . Consider a second Riccati operator employing the same 

initial solution 1t kP    but different state-space parameters 

         1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q               

                                                     1
1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                . 

(7) 

The following theorem, which is due to Wimmer [10], compares the above two Riccati 
operators. 

Theorem 1: [10]: Suppose that 

1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

     

for a t ≥ 0 and for all k ≥ 0. Then 

1 1 1 1 1( , , , ) ( , , , )t k t k t k t k t k t k t k t kP A C Q P A C Q                   (8)  

for all k ≥ 0. 

The above result underpins the following more general Riccati difference equation 
comparison theorem.  

Theorem 2: [11], [8]: With the above definitions, suppose for a t ≥ 0 and for all k ≥ 0 that: 

(i) there exists a tP  ≥ 1tP   and 

(ii) 1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

    . 

Then t kP   ≥ 1t kP     for all k ≥ 0. 

Proof: Assumption (i) is the k = 0 case for an induction argument.  For the inductive step, denote 

t kP   = 1 1 1 1( , , , )t k t k t k t kP A C Q           and 1t kP    = ( , , , )t k t k t k t kP A C Q      . Then 
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1 1 1 1 1 1( ( , , , ) ( , , , ))t k t k t k t k t k t k t k t k t k t kP P P A C Q P A C Q                       

         1( ( , , , ) ( , , , ))t k t k t k t k t k t k t k t kP A C Q P A C Q               

(9) 

The first term on the right-hand-side of (9) is non-negative by virtue of Assumption (ii) and Theorem 
1. By appealing to Theorem 2 of Chapter 5, the second term on the right-hand-side of (9) is non-
negative and thus t kP   − 1t kP    ≥ 0.                                                                                                      ฀ 

A change of variables [8] kC  = 1/ 2
k kR C  and kQ  = T

k k kB Q B , allows the application of Theorem 
2 to the more general forms of Riccati differential equations.   
 

7.3  Fixed-Point Smoothing 
 

7.3.1  Solution Derivation 
The development of a discrete-time fixed-point smoother follows the continuous-time case. 
An innovation by Zachrisson [12] involves transforming the smoothing problem into a 
filtering problem that possesses an augmented state. Following the approach in [1], consider 

an augmented state vector ( )a
kx  = k

k

x

 
 
 

 for the signal model 

( ) ( ) ( ) ( )
1

a a a a
k k k k kx A x B w   , 

( ) ( )a a
k k k kz C x v  , 

(10) 
 

(11) 

where ( )a
kA  = 

0
0

kA
I

 
 
 

, ( )a
kB  = 

0
kB 

 
 

 and ( )a
kC  = [Ck  0]. It can be seen that the first component 

of ( )a
kx  is xk, the state of the system xk+1 = Akxk + Bkwk, yk = Ckxk + vk. The second component, 

k , equals xk at time k = τ, that is, k  = xτ. The objective is to calculate an estimate k̂  of k  at 
time k = τ from measurements zk over k  [0, N]. A solution that minimises the variance of 
the estimation error is obtained by employing the standard Kalman filter recursions for the 
signal model (10) – (11). The predicted and corrected states are respectively obtained from 

( ) ( ) ( ) ( ) ( )
/ / 1ˆ ˆ( )a a a a a

k k k k k k k kx I L C x L z   , 

( ) ( ) ( )
1/ /ˆ ˆa a a

k k k k kx A x   

                                                                   ( ) ( ) ( ) ( ) ( )
/ 1ˆ( )a a a a a

k k k k k k kA K C x K z   , 

(12) 

(13) 

(14) 

where Kk = ( ) ( )a a
k kA L  is the predictor gain, ( )a

kL  = ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ( )a a T a a a T

k k k k k k kP C C P C   + Rk)-1 is the filter 
gain, 
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( ) ( ) ( ) ( ) ( )
/ / 1 / 1( ) ( )a a a a T a T

k k k k k k k kP P P C L    (15) 

is the corrected error covariance and 

                             ( ) ( ) ( ) ( ) ( ) ( )
1/ / ( ) ( )a a a a T a a T

k k k k k k k k kP A P A B Q B    

                                       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ) ( ) ( )a a a T a a a T a T a a T

k k k k k k k k k k k kA P A A P C K B Q B     

                                        ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) ( ) ( ) ( )a a a T a T a T a a T

k k k k k k k k kA P A C K B Q B    

(16) 

 

(17) 

is the predicted error covariance. The above Riccati difference equation is written in the 
partitioned form 

           ( ) 1/ 1/
1/

1/ 1/

T
a k k k k

k k
k k k k

P
P  


 

 
  

  
 

                     / 1 / 1

/ 1 / 1

0
0

T
k k k k k

k k k k

A P
I

 

 

   
        

                          

1
/ 1

0
( )

0 0

T T
T T Tk k
k k k k k k k

A C K K C P C R
I




    
              

0
0

k T
k k

B
Q B

        
,  

(18)  

in which the gains are given by 

( ) 1/ 1 / 1
/ 1

/ 1 / 1

0
( )

0 0

T T
ka Tk k k kk k

k k k k k k
k k k k k

K PA CK C P C R
L I

 


 

      
               

 

                          1/ 1
/ 1

/ 1

( )
T

Tk k k k
k k k k kT

k k k

A P C
C P C R

C





 
  

 
, 

(19)  

see also [1]. The predicted error covariance components can be found from (18), viz., 

1/ /
T T

k k k k k k k k kP A P A B Q B   , 

1/ / 1( )T T T
k k k k k k kA C K     , 

1/ / 1 / 1
T T

k k k k k k k kC L       . 

(20) 

(21) 

(22) 

The sequences (21) – (22) can be initialised with 1/   = /P   and 1/   = /P  . The state 
corrections are obtained from (12), namely, 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

/ / 1 / 1
ˆ ˆ ˆ( )k k k k k k k k kL z C x      . 

(23) 

(24) 

Similarly, the state predictions follow from (13), 
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1 1 1 1 1 1( ( , , , ) ( , , , ))t k t k t k t k t k t k t k t k t k t kP P P A C Q P A C Q                       

         1( ( , , , ) ( , , , ))t k t k t k t k t k t k t k t kP A C Q P A C Q               

(9) 

The first term on the right-hand-side of (9) is non-negative by virtue of Assumption (ii) and Theorem 
1. By appealing to Theorem 2 of Chapter 5, the second term on the right-hand-side of (9) is non-
negative and thus t kP   − 1t kP    ≥ 0.                                                                                                      ฀ 

A change of variables [8] kC  = 1/ 2
k kR C  and kQ  = T

k k kB Q B , allows the application of Theorem 
2 to the more general forms of Riccati differential equations.   
 

7.3  Fixed-Point Smoothing 
 

7.3.1  Solution Derivation 
The development of a discrete-time fixed-point smoother follows the continuous-time case. 
An innovation by Zachrisson [12] involves transforming the smoothing problem into a 
filtering problem that possesses an augmented state. Following the approach in [1], consider 

an augmented state vector ( )a
kx  = k

k

x

 
 
 

 for the signal model 

( ) ( ) ( ) ( )
1

a a a a
k k k k kx A x B w   , 

( ) ( )a a
k k k kz C x v  , 

(10) 
 

(11) 

where ( )a
kA  = 

0
0

kA
I

 
 
 

, ( )a
kB  = 

0
kB 

 
 

 and ( )a
kC  = [Ck  0]. It can be seen that the first component 

of ( )a
kx  is xk, the state of the system xk+1 = Akxk + Bkwk, yk = Ckxk + vk. The second component, 

k , equals xk at time k = τ, that is, k  = xτ. The objective is to calculate an estimate k̂  of k  at 
time k = τ from measurements zk over k  [0, N]. A solution that minimises the variance of 
the estimation error is obtained by employing the standard Kalman filter recursions for the 
signal model (10) – (11). The predicted and corrected states are respectively obtained from 

( ) ( ) ( ) ( ) ( )
/ / 1ˆ ˆ( )a a a a a

k k k k k k k kx I L C x L z   , 

( ) ( ) ( )
1/ /ˆ ˆa a a

k k k k kx A x   

                                                                   ( ) ( ) ( ) ( ) ( )
/ 1ˆ( )a a a a a

k k k k k k kA K C x K z   , 

(12) 

(13) 

(14) 

where Kk = ( ) ( )a a
k kA L  is the predictor gain, ( )a

kL  = ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ( )a a T a a a T

k k k k k k kP C C P C   + Rk)-1 is the filter 
gain, 
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( ) ( ) ( ) ( ) ( )
/ / 1 / 1( ) ( )a a a a T a T

k k k k k k k kP P P C L    (15) 

is the corrected error covariance and 

                             ( ) ( ) ( ) ( ) ( ) ( )
1/ / ( ) ( )a a a a T a a T

k k k k k k k k kP A P A B Q B    

                                       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ) ( ) ( )a a a T a a a T a T a a T

k k k k k k k k k k k kA P A A P C K B Q B     

                                        ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) ( ) ( ) ( )a a a T a T a T a a T

k k k k k k k k kA P A C K B Q B    

(16) 

 

(17) 

is the predicted error covariance. The above Riccati difference equation is written in the 
partitioned form 

           ( ) 1/ 1/
1/

1/ 1/

T
a k k k k

k k
k k k k

P
P  


 

 
  

  
 

                     / 1 / 1

/ 1 / 1

0
0

T
k k k k k

k k k k

A P
I

 

 

   
        

                          

1
/ 1

0
( )

0 0

T T
T T Tk k
k k k k k k k

A C K K C P C R
I




    
              

0
0

k T
k k

B
Q B

        
,  

(18)  

in which the gains are given by 

( ) 1/ 1 / 1
/ 1

/ 1 / 1

0
( )

0 0

T T
ka Tk k k kk k

k k k k k k
k k k k k

K PA CK C P C R
L I

 


 

      
               

 

                          1/ 1
/ 1

/ 1

( )
T

Tk k k k
k k k k kT

k k k

A P C
C P C R

C





 
  

 
, 

(19)  

see also [1]. The predicted error covariance components can be found from (18), viz., 

1/ /
T T

k k k k k k k k kP A P A B Q B   , 

1/ / 1( )T T T
k k k k k k kA C K     , 

1/ / 1 / 1
T T

k k k k k k k kC L       . 

(20) 

(21) 

(22) 

The sequences (21) – (22) can be initialised with 1/   = /P   and 1/   = /P  . The state 
corrections are obtained from (12), namely, 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

/ / 1 / 1
ˆ ˆ ˆ( )k k k k k k k k kL z C x      . 

(23) 

(24) 

Similarly, the state predictions follow from (13), 
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1/ /ˆ ˆk k k k kx A x  , 

1/ /
ˆ ˆ
k k k k   . 

(25) 

(26) 

In summary, the fixed-point smoother estimates for k ≥ τ are given by (24), which is 
initialised by /̂   = /x̂  . The smoother gain is calculated as 1

/ 1 / 1( )T T
k k k k k k k k kL C C P C R 

    , 
where / 1k k  is given by (21). 
 

7.3.2  Performance 
It follows from the above that 1/ /k k k k    and so 

1/ 1 / / 1
T T

k k k k k k k kC L       . (27)  

Next, it is argued that the discrete-time fixed-point smoother provides a performance 
improvement over the filter. 

Lemma 2 [1]: In respect of the fixed point smoother (24),  

/ /k kP    . (28)  
Proof: The recursion (22) may be written as the sum 

1
1/ 1 / / 1 / 1 / 1( )

k
T T

k k i i i i i i i i i i
i

C C P C R C 



    



       , (29) 

where /   = /P  . Hence, /P   − 1/ 1k k   = / 1 / 1(
k

T T
i i i i i i i

i
C C P C


 



 + 1
/ 1) i i iR C
  ≥ 0.                

Example 1. Consider a first-order time-invariant plant, in which A = 0.9, B = 1, C = 0.1 and Q 
= 1. An understanding of a fixed-point smoother’s performance can be gleaned by 
examining the plots of the /k k  and /k k  sequences shown in Fig. 1(a) and (b), respectively. 
The bottom lines of the figures correspond to measurement noise covariances of R = 0.01 
and the top lines correspond to R = 5. It can be seen for this example, that the /k k  have 
diminishing impact after about 15 samples beyond the point of interest. From Fig. 1(b), it 
can be seen that smoothing appears most beneficial at mid-range measurement noise power, 
such as R = 0.2, since the plots of /k k  become flatter for R ≥ 1 andR ≤ 0.05. 
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Figure 1(a). Smoother estimation variances /k k

versus k for Example 1. 

Figure 1(b). Smoother estimation variances 

1/ 1 k k  versus k for Example 1.  
 

7.4  Fixed-Lag Smoothing 
 

7.4.1  High-order Solution 
Discrete-time fixed-lag smoothers calculate state estimates, /ˆ k N kx  , at time k given a delay of 
N steps. The objective is to minimise {( k NE x   − / / 1ˆ )(k N k k Nx x   − /ˆ ) }T

k N kx  . A common 
solution approach is to construct an augmented signal model that includes delayed states 
and then apply the standard Kalman filter recursions, see [1] – [3] and the references therein. 
Consider the signal model  

1

1

1 2

1

0 0
0 0

0 0

0 0 0 0

k kk k

k kN

k kN

k N N k N

x xA B
x xI

x xI

x I x





 

  

       
       
       
        
       
       
             




   

 (30) 

and 

1

20 0 0

k

k

k k k k

k N

x
x

z C x v

x







 
 
 
     
 
  




. (31)  
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1/ /ˆ ˆk k k k kx A x  , 

1/ /
ˆ ˆ
k k k k   . 

(25) 

(26) 

In summary, the fixed-point smoother estimates for k ≥ τ are given by (24), which is 
initialised by /̂   = /x̂  . The smoother gain is calculated as 1

/ 1 / 1( )T T
k k k k k k k k kL C C P C R 

    , 
where / 1k k  is given by (21). 
 

7.3.2  Performance 
It follows from the above that 1/ /k k k k    and so 

1/ 1 / / 1
T T

k k k k k k k kC L       . (27)  

Next, it is argued that the discrete-time fixed-point smoother provides a performance 
improvement over the filter. 

Lemma 2 [1]: In respect of the fixed point smoother (24),  

/ /k kP    . (28)  
Proof: The recursion (22) may be written as the sum 

1
1/ 1 / / 1 / 1 / 1( )

k
T T

k k i i i i i i i i i i
i

C C P C R C 



    



       , (29) 

where /   = /P  . Hence, /P   − 1/ 1k k   = / 1 / 1(
k

T T
i i i i i i i

i
C C P C


 



 + 1
/ 1) i i iR C
  ≥ 0.                

Example 1. Consider a first-order time-invariant plant, in which A = 0.9, B = 1, C = 0.1 and Q 
= 1. An understanding of a fixed-point smoother’s performance can be gleaned by 
examining the plots of the /k k  and /k k  sequences shown in Fig. 1(a) and (b), respectively. 
The bottom lines of the figures correspond to measurement noise covariances of R = 0.01 
and the top lines correspond to R = 5. It can be seen for this example, that the /k k  have 
diminishing impact after about 15 samples beyond the point of interest. From Fig. 1(b), it 
can be seen that smoothing appears most beneficial at mid-range measurement noise power, 
such as R = 0.2, since the plots of /k k  become flatter for R ≥ 1 andR ≤ 0.05. 
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Figure 1(a). Smoother estimation variances /k k

versus k for Example 1. 

Figure 1(b). Smoother estimation variances 

1/ 1 k k  versus k for Example 1.  
 

7.4  Fixed-Lag Smoothing 
 

7.4.1  High-order Solution 
Discrete-time fixed-lag smoothers calculate state estimates, /ˆ k N kx  , at time k given a delay of 
N steps. The objective is to minimise {( k NE x   − / / 1ˆ )(k N k k Nx x   − /ˆ ) }T

k N kx  . A common 
solution approach is to construct an augmented signal model that includes delayed states 
and then apply the standard Kalman filter recursions, see [1] – [3] and the references therein. 
Consider the signal model  

1

1

1 2

1
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0 0

0 0

0 0 0 0

k kk k

k kN

k kN

k N N k N

x xA B
x xI

x xI
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


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       
       
        
       
       
             




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 (30) 

and 

1

20 0 0

k

k

k k k k

k N

x
x

z C x v

x







 
 
 
     
 
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


. (31)  
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By applying the Kalman filter recursions to the above signal model, the predicted states are 
obtained as 

0,1

1,1

2, / 11 2

,1

ˆ ˆ0 0
ˆ ˆ0

ˆˆ ˆ ( )0

ˆ ˆ0 0 0

kkk k

kNk k

k k k k kNk k

N kNk N k N

KAx x
KIx x
K z C xIx x

KIx x





 

  

     
     
     
       
     
     
           




  

, (32)  

where K0,k, K1,k, K2,k, …, KN,k denote the submatrices of the predictor gain. Two important 
observations follow from the above equation. First, the desired smoothed estimates 1/ˆ k kx   
… 1/ˆ k N kx    are contained within the one-step-ahead prediction (32). Second, the fixed lag-
smoother (32) inherits the stability properties of the original Kalman filter. 
 

7.4.2  Reduced-order Solution 
Equation (32) is termed a high order solution because the dimension of the above 
augmented state matrix is ( 2) ( 2)N n N n   . Moore [1] – [3] simplified (32) to obtain 
elegant reduced order solution structures as follows. Let  

(0,0) (0,1) (0, )
1/ 1/ 1/

(1,0) (1,1)
1/ 1/

( ,0) ( , )
1/ 1/

N
k k k k k k

k k k k

N N N
k k k k

P P P
P P

P P

  

 

 

 
 
 
 
 
  




 


, ( , ) ( , )
1/ 1 /( )i j j i T

k k k kP P  , 

denote the predicted error covariance matrix. For 0 ≤ i ≤ N, the smoothed states within (32) 
are given by 

/ / 1 1, / 1ˆ ˆ ˆ( )k i k k i k i k k k k kx x K z C x       , (33) 

where 
( ,0) (0,0) 1

1, 1/ 1/( )i T T
i k k k k k k k k kK P C C P C R 
    . (34) 

Recursions for the error covariance submatrices of interest are 
( 1,0) ( ,0)
1/ 1/ 0,( )i i T

k k k k k k kP P A K C
   , 

( 1, 1) ( , ) ( ,0)
1/ 1/ 1/ 1,

i i i i i T
k k k k k k k i kP P P C K 
     . 

(35) 

(36) 

Another rearrangement of (33) − (34) to reduce the calculation cost further is described in 
[1]. 
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7.4.3 Performance 
Two facts that stem from (36) are stated below. 

Lemma 3: In respect of the fixed-lag smoother (33) – (36), the following applies.  
(i) The error-performance improves with increasing smoothing lag. 
(ii) The fixed-lag smoothers outperform the Kalman filter. 

Proof:   
(i) The claim follows by inspection of (34) and (36). 
(ii) The observation follows by recognising that (1,1)

1/k kP   = {( kE x  − /ˆ )(k k kx x  − /ˆ ) }T
k kx  

within (i).                                                                                                                        

It can also be seen from the term ( ,0) (0,0)
1/ 1/(i T T

k k k k k k kP C C P C   + 1 ( ,0)
1/) i

k k k kR C P
  within (36) that the 

benefit of smoothing diminishes as Rk becomes large. 
 

7.5  Fixed-Interval Smoothing 
 

7.5.1  The Maximum-Likelihood Smoother 
 

7.5.1.1  Solution Derivation 
The most commonly used fixed-interval smoother is undoubtedly the solution reported by 
Rauch [5] in 1963 and two years later with Tung and Striebel [6]. Although this smoother 
does not minimise the error variance, it has two desirable attributes. First, it is a low-
complexity state estimator. Second, it can provide close to optimal performance whenever 
the accompanying assumptions are reasonable.  

The smoother involves two passes. In the first (forward) pass, filtered state estimates, /ˆ k kx , 
are calculated from  

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

1/ /ˆ ˆk k k k kx A x  , 

(37) 

(38) 

where Lk = / 1 / 1(T T
k k k k k k kP C C P C   + Rk)-1 is the filter gain, Kk = AkLk is the predictor gain, in 

which Pk/k = Pk/k-1  − / 1 / 1(T T
k k k k k k kP C C P C   + 1

/ 1)k k k kR C P
  and Pk+1/k = /

T
k k k kA P A  + T

k k kB Q B . In 
the second backward pass, Rauch, Tung and Striebel calculate smoothed state estimates, 

/ˆ k Nx , from the beautiful one-line recursion 

/ / 1/ 1/ˆ ˆ ˆ ˆ( )k N k k k k N k kx x G x x    , (39) 

where  
1

/ 1 1/
T

k k k k k kG P A P
   (40) 

is the smoother gain. The above sequence is initialised by /ˆ k Nx  = /ˆ k kx  at k = N. In the first 
public domain appearance of (39), Rauch [5] referred to a Lockheed Missile and Space 
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By applying the Kalman filter recursions to the above signal model, the predicted states are 
obtained as 
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where K0,k, K1,k, K2,k, …, KN,k denote the submatrices of the predictor gain. Two important 
observations follow from the above equation. First, the desired smoothed estimates 1/ˆ k kx   
… 1/ˆ k N kx    are contained within the one-step-ahead prediction (32). Second, the fixed lag-
smoother (32) inherits the stability properties of the original Kalman filter. 
 

7.4.2  Reduced-order Solution 
Equation (32) is termed a high order solution because the dimension of the above 
augmented state matrix is ( 2) ( 2)N n N n   . Moore [1] – [3] simplified (32) to obtain 
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denote the predicted error covariance matrix. For 0 ≤ i ≤ N, the smoothed states within (32) 
are given by 

/ / 1 1, / 1ˆ ˆ ˆ( )k i k k i k i k k k k kx x K z C x       , (33) 
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( ,0) (0,0) 1

1, 1/ 1/( )i T T
i k k k k k k k k kK P C C P C R 
    . (34) 

Recursions for the error covariance submatrices of interest are 
( 1,0) ( ,0)
1/ 1/ 0,( )i i T

k k k k k k kP P A K C
   , 

( 1, 1) ( , ) ( ,0)
1/ 1/ 1/ 1,

i i i i i T
k k k k k k k i kP P P C K 
     . 

(35) 

(36) 

Another rearrangement of (33) − (34) to reduce the calculation cost further is described in 
[1]. 
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7.4.3 Performance 
Two facts that stem from (36) are stated below. 

Lemma 3: In respect of the fixed-lag smoother (33) – (36), the following applies.  
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benefit of smoothing diminishes as Rk becomes large. 
 

7.5  Fixed-Interval Smoothing 
 

7.5.1  The Maximum-Likelihood Smoother 
 

7.5.1.1  Solution Derivation 
The most commonly used fixed-interval smoother is undoubtedly the solution reported by 
Rauch [5] in 1963 and two years later with Tung and Striebel [6]. Although this smoother 
does not minimise the error variance, it has two desirable attributes. First, it is a low-
complexity state estimator. Second, it can provide close to optimal performance whenever 
the accompanying assumptions are reasonable.  

The smoother involves two passes. In the first (forward) pass, filtered state estimates, /ˆ k kx , 
are calculated from  
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k k k k k k kP C C P C   + Rk)-1 is the filter gain, Kk = AkLk is the predictor gain, in 

which Pk/k = Pk/k-1  − / 1 / 1(T T
k k k k k k kP C C P C   + 1

/ 1)k k k kR C P
  and Pk+1/k = /
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k k k kA P A  + T

k k kB Q B . In 
the second backward pass, Rauch, Tung and Striebel calculate smoothed state estimates, 

/ˆ k Nx , from the beautiful one-line recursion 

/ / 1/ 1/ˆ ˆ ˆ ˆ( )k N k k k k N k kx x G x x    , (39) 

where  
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   (40) 

is the smoother gain. The above sequence is initialised by /ˆ k Nx  = /ˆ k kx  at k = N. In the first 
public domain appearance of (39), Rauch [5] referred to a Lockheed Missile and Space 
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Company Technical Report co-authored with Tung and Striebel. Consequently, (39) is 
commonly known as the Rauch-Tung-Striebel smoother. This smoother was derived in [6] 
using the maximum-likelihood method and an outline is provided below. 

The notation xk ~ ( ,  Rxx) means that a discrete-time random variable xk with mean μ 
and covariance Rxx has the normal (or Gaussian) probability density function   

 1
1/ 2/ 2

1( ) exp 0.5( ) ( )
(2 )

T
k k xx kn

xx

p x x R x
R

 


    . (41) 

Rauch, Tung and Striebel assumed that [6]:  

1/ /ˆ ˆ~ ( , ).T
k N k k N k k kx A x B Q B   

/ / /ˆ ˆ~ ( , ).k N k k k kx x P  

(42) 

(43) 

From the approach of [6], setting the partial derivative of the logarithm of the joint density 
function to zero results in 

 
1 11/ / / /

1/ / / / /
/ /

ˆ ˆ ˆ ˆ( ) ! ( )ˆ ˆ ˆ ˆ0 ( ) ( ) ( )
ˆ ˆ! !

T T
T Tk N k k N k N k N

k k k k N k k N k k k N k N
k N k N

x A x n x xB Q B x A x P x x
x r n r x

 


   
   

  
. 

Rearranging the above equation leads to 
1 1 1

/ / / / /ˆ ˆ ˆ( ( ) ) ( ) )T T T T T
k N k k k k k k k k N k k k k k k k Nx I P A B Q B A x P A B Q B x     . (44) 

From the Matrix Inversion Lemma  
1 1

/( ( ) )T T
k k k k k k k k kI P A B Q B A I G A    . (45) 

The solution (39) is found by substituting (45) into (44). Some further details of Rauch, Tung 
and Striebel’s derivation appear in [13].  
 

7.5.1.2  Alternative Forms 
The smoother gain (40) can be calculated in different ways. Assuming that Ak is non-
singular, it follows from 1/k kP   = /

T
k k k kA P A  + T

k k kB Q B  that 1
/ 1 1/

T
k k k k kP A P

   =  1(kA I  − 
1
1/ )

T
k k k k kB Q B P

  and 

1 1
1/( )T

k k k k k k kG A I B Q B P 
  . (46) 

In applications where difficulties exist with inverting 1/k kP  , it may be preferable to calculate  

1 1 1
/ 1 /

T
k k k k k k kP P C R C  

   . (47) 

It is shown in [15] that the filter (37) – (38) and the smoother (39) can be written in the 
following Hamiltonian form 
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C R zC R C A 






      
             

, 
(48) 

(49) 

where λk/N   n  is an auxiliary variable that proceeds backward in time k. The form (48) – 
(49) avoids potential numerical difficulties that may be associated with calculating 1

/ 1k kP
 . 

To confirm the equivalence of (39) and (48) – (49), use the Bryson-Frazier formula [15] 

1/ 1/ 1 1/ 1/ˆ ˆ      k N k k k k k Nx x P , (50) 

and (46) within (48) to obtain 
1 1

/ 1/ 1 1/ 1/ˆ ˆ ˆ 
     T

k N k k k k k k k k k k kx G x A B Q B P x . (51) 

Employing (46) within (51) and rearranging leads to (39). 

In time-invariant problems, steady state solutions for /k kP  and 1/k kP   can be used to 
precalculate the gain (40) before running the smoother. For example, the application of a 
time-invariant version of the Rauch-Tung-Striebel smoother for the restoration of blurred 
images is described in [14]. 
 

7.5.1.3  Performance 
An expression for the smoother error covariance is developed below following the approach 
of [6], [13]. Define the smoother and filter error states as /k Nx  = xk – /ˆ k Nx  and /k kx  = xk – 

/ˆ k kx , respectively. It is assumed that  

/ /ˆ{ } 0T
k k k kE x x  , 

1/ 1/ˆ{ } 0T
k N k NE x x   , 

1/ /ˆ{ } 0T
k N k NE x x  . 

(52) 

(53) 

(54) 

It is straightforward to show that (52) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k k k k k k k kE x x E x x P      . (55) 

Denote Σk/N = 1/ 1/ˆ ˆ{ }T
k N k NE x x  . The assumption (53) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k N k N k k k NE x x E x x       . (56) 

Subtracting xk from both sides of (39) gives  

/ 1/ / /ˆ ˆk N k k N k k k k k kx G x x G A x    . (57) 

By simplifying 
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Company Technical Report co-authored with Tung and Striebel. Consequently, (39) is 
commonly known as the Rauch-Tung-Striebel smoother. This smoother was derived in [6] 
using the maximum-likelihood method and an outline is provided below. 

The notation xk ~ ( ,  Rxx) means that a discrete-time random variable xk with mean μ 
and covariance Rxx has the normal (or Gaussian) probability density function   
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Rauch, Tung and Striebel assumed that [6]:  
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From the approach of [6], setting the partial derivative of the logarithm of the joint density 
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Rearranging the above equation leads to 
1 1 1

/ / / / /ˆ ˆ ˆ( ( ) ) ( ) )T T T T T
k N k k k k k k k k N k k k k k k k Nx I P A B Q B A x P A B Q B x     . (44) 

From the Matrix Inversion Lemma  
1 1

/( ( ) )T T
k k k k k k k k kI P A B Q B A I G A    . (45) 

The solution (39) is found by substituting (45) into (44). Some further details of Rauch, Tung 
and Striebel’s derivation appear in [13].  
 

7.5.1.2  Alternative Forms 
The smoother gain (40) can be calculated in different ways. Assuming that Ak is non-
singular, it follows from 1/k kP   = /
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It is shown in [15] that the filter (37) – (38) and the smoother (39) can be written in the 
following Hamiltonian form 
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where λk/N   n  is an auxiliary variable that proceeds backward in time k. The form (48) – 
(49) avoids potential numerical difficulties that may be associated with calculating 1

/ 1k kP
 . 

To confirm the equivalence of (39) and (48) – (49), use the Bryson-Frazier formula [15] 
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and (46) within (48) to obtain 
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Employing (46) within (51) and rearranging leads to (39). 

In time-invariant problems, steady state solutions for /k kP  and 1/k kP   can be used to 
precalculate the gain (40) before running the smoother. For example, the application of a 
time-invariant version of the Rauch-Tung-Striebel smoother for the restoration of blurred 
images is described in [14]. 
 

7.5.1.3  Performance 
An expression for the smoother error covariance is developed below following the approach 
of [6], [13]. Define the smoother and filter error states as /k Nx  = xk – /ˆ k Nx  and /k kx  = xk – 

/ˆ k kx , respectively. It is assumed that  
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k N k NE x x  . The assumption (53) implies 
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Subtracting xk from both sides of (39) gives  
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By simplifying 
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/ 1/ / 1/ / / / /ˆ ˆ ˆ ˆ{( )( ) } {( )( ) }T T
k N k k N k N k k N k k k k k k k k k k k kE x G x x G x E x G A x x G A x          (58) 

and using (52), (54) – (56) yields 

/ / 1/ 1/( ) T
k N k k k k k k N kP G P G      . (59) 

It can now be shown that the smoother performs better than the Kalman filter. 

Lemma 4: Suppose that the sequence (59) is initialised with 

1/ 1/N N N NP   , (60) 

Then /k N  ≤ /k kP  for 1 ≤ k ≤ N.  

Proof: The condition (60) implies /N N  = /N NP , which is the initial step for an induction argument. 
For the induction step, (59) is written as 

/ / 1 / 1 / 1 / 1 1/ 1/( ) ( )T T T
k N k k k k k k k k k k k k k k k k N kP P C C P C R C P G P G             (61) 

and thus 1/k N  ≤ 1/k kP  implies /k N  ≤ / 1k kP   and /k N  ≤ /k kP .                                                     ฀ 
 

7.5.2  The Fraser-Potter Smoother 
Forward and backward estimates may be merged using the data fusion formula described in 
Lemma 7 of Chapter 6. A variation of the Fraser-Potter discrete-time fixed-interval smoother 
[4] derived by Monzingo [16] is advocated below. 

In the first pass, a Kalman filter produces corrected state estimates /ˆ k kx  and corrected error 
covariances /k kP  from the measurements. In the second pass, a Kalman filter is employed to 
calculate predicted “backward” state estimates 1/k k   and predicted “backward” error 
covariances 1/k k  from the time-reversed measurements. The smoothed estimate is given 
by [16] 

1 1 1 1 1
/ / / 1 / / / 1 / 1ˆ ˆ( ) ( )k N k k k k k k k k k k k kx P P x     

       . (62) 

Alternatively, Kalman filters could be used to derive predicted quantities, / 1ˆ k kx   and / 1k kP  , 
from the measurements, and backward corrected quantities /k k  and /k k . Smoothed 
estimates may then be obtained from the linear combination 

1 1 1 1 1
/ / 1 / / 1 / 1 / /ˆ ˆ( ) ( )k N k k k k k k k k k k k kx P P x     

       . (63) 

It is observed that the fixed-point smoother (24), the fixed-lag smoother (32), maximum-
likelihood smoother (39), the smoothed estimates (62) − (63) and the minimum-variance 
smoother (which is described subsequently) all use each measurement zk once. 

Note that Fraser and Potter’s original smoother solution [4] and Monzingo’s variation [16] 
are ad hoc and no claims are made about attaining a prescribed level of performance. 

                                                                 

“No great discovery was ever made without a bold guess.” Isaac Newton 
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“Life is pretty simple. You do stuff. Most fails. Some works. You do more of what works. If it works big, 
others quickly copy it. Then you do something else. The trick is the doing something else.” Leonardo da 
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where Kk = / 1( T
k k k kA P C  + 1)T
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k k kD Q D  + Rk 
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  + )Tk k kD Q B  + T

k k kB Q B . The inverse of the 

system (65), denoted by 1ˆ  , is obtained using the Matrix Inversion Lemma 
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The optimal output estimation smoother can be approximated as 

1  HOE I R ˆ ˆ( )  

                                                             1    ˆ ˆHI R . 

(67) 

A state-space realisation of (67) is given by (66), 
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and  

/ˆ k N k k ky z R   . (69) 

Note that Lemma 1 is used to obtain the realisation (68) of ˆ H  = 1ˆ( )H   from (66). A block 
diagram of this smoother is provided in Fig. 2. The states / 1ˆ k kx   within (66) are immediately 
recognisable as belonging to the one-step-ahead predictor. Thus, the optimum realisable 
solution involves a cascade of familiar building blocks, namely, a Kalman predictor and its 
adjoint.  

Procedure 1. The above output estimation smoother can be implemented via the following 
three-step procedure. 
Step 1. Operate 1ˆ   on zk using (66) to obtain αk. 
Step 2. In lieu of the adjoint system (68), operate (66) on the time-reversed transpose of αk. 

Then take the time-reversed transpose of the result to obtain βk. 
Step 3. Calculate the smoothed output estimate from (69).  

It is shown below that /ˆ k Ny  is an unbiased estimate of yk. 

                                                                 

“When I am working on a problem, I never think about beauty but when I have finished, if the solution 
is not beautiful, I know it is wrong.” Richard Buckminster Fuller 

  

 
Figure 2. Block diagram of the output estimation smoother 
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The first term on the right-hand-side of (70) is zero since it pertains to the prediction error of the 
Kalman filter. The second term is zero since it is assumed that E{vk} = 0. Thus { }kE   = 0. Since the 
recursion (68) is initialized with ζN = 0, it follows that E{ζk} = 0, which implies E{ζk} = − KkE{ζk} + 

1/ 2 { }k kE   = 0. Thus, from (69), /ˆ{ }k NE y  = E{zk} = E{yk}, since it is assumed that E{vk} = 0.          ฀ 
 

7.5.3.3  Causal Output Estimation 
The minimum-variance (Kalman) filter is obtained by taking the causal part of the optimum 
minimum-variance smoother (67) 
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“The practical success of an idea, irrespective of its inherent merit, is dependent on the attitude of the 
contemporaries. If timely it is quickly adopted; if not, it is apt to fare like a sprout lured out of the 
ground by warm sunshine, only to be injured and retarded in its growth by the succeeding frost.” Nicola 
Tesla 
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                                                             1/ 2 1ˆ
k kI R      . 

To confirm this linkage between the smoother and filter, denote Lk = / 1( T
k k k kC P C  + 

1)T
k k k kD Q D   and use (71) to obtain  

1/ 2
/ˆ k k k k k ky z R     

                                                            1 1/ 2( )k k k k k k kR C x I R z       

                                                            ( )k k k k k kC L C x L z   , 

(72) 

which is identical to (34) of Chapter 4. 
 

7.5.3.4  Input Estimation 
As discussed in Chapter 6, the optimal realisable smoother for input estimation is 

1
2
ˆ ˆH H

IE Q      . (73) 

The development of a state-space realisation for /ˆ k Nw  = 2
ˆH H

kQ   makes use of the 
formula for the cascade of two systems described in Chapter 6. The smoothed input estimate 
is realised by 
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          

, (74) 

in which k   n  is an auxiliary state.  

Procedure 2. The above input estimator can be implemented via the following three steps. 
Step 1. Operate 1ˆ   on the measurements zk using (66) to obtain αk.  
Step 2. Operate the adjoint of (74) on the time-reversed transpose of αk. Then take the time-

reversed transpose of the result.  
 

7.5.3.5  State Estimation 
Smoothed state estimates can be obtained by defining the reference system 1  = I which 
yields 

1/ / /ˆ ˆ ˆk N k k N k k Nx A x B w    

                                                            / 2
ˆˆ H H

k k N k kA x B Q    . 
(75) 

                                                                 

“Doubt is the father of invention.” Galileo Galilei 

  

Thus, the minimum-variance smoother for state estimation is given by (66) and (74) − (75). 
As remarked in Chapter 6, some numerical model order reduction may be required. In the 
special case of Ck being of rank n and Dk = 0, state estimates can be calculated from (69) and 

#
/ /ˆ ˆk N k k Nx C y . (76) 

where # 1( )T T
k k k kC C C C  is the Moore-Penrose pseudo-inverse. 

 

7.5.3.6  Performance 
The characterisation of smoother performance requires the following additional notation. 
Let γ = 0 w denote the output of the linear time-varying system having the realisation  

1  k k k kx A x w , 

k kx  , 

(77) 

(78) 

where Ak  n n . By inspection of (77) – (78), the output of the inverse system w = 1
0
 y is 

given by 

1k k k kw A   . (79) 

Similarly, let ε = 0
H u denote the output of the adjoint system 0

H , which from Lemma 1 
has the realisation 

1
T

k k k kA u    , 

k k   . 

(80) 

(81) 

It follows that the output of the inverse system u = 0
H  is given by  

1
T

k k k ku A   . (82)  

The exact Wiener-Hopf factor may now be written as  

0 0
H T H T

k k k k k kC B Q B C R    . (83)  

The subsequent lemma, which relates the exact and approximate Wiener-Hopf factors, 
requires the identity  

1 1
0 0 0 0

T H T H
k k k k k k k k kP A P A A P P A P          , (84)  

in which Pk is an arbitrary matrix of appropriate dimensions. A verification of (84) is 
requested in the problems. 
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                                                             1/ 2 1ˆ
k kI R      . 

To confirm this linkage between the smoother and filter, denote Lk = / 1( T
k k k kC P C  + 

1)T
k k k kD Q D   and use (71) to obtain  

1/ 2
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which is identical to (34) of Chapter 4. 
 

7.5.3.4  Input Estimation 
As discussed in Chapter 6, the optimal realisable smoother for input estimation is 
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          
          

, (74) 

in which k   n  is an auxiliary state.  

Procedure 2. The above input estimator can be implemented via the following three steps. 
Step 1. Operate 1ˆ   on the measurements zk using (66) to obtain αk.  
Step 2. Operate the adjoint of (74) on the time-reversed transpose of αk. Then take the time-

reversed transpose of the result.  
 

7.5.3.5  State Estimation 
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1/ / /ˆ ˆ ˆk N k k N k k Nx A x B w    

                                                            / 2
ˆˆ H H

k k N k kA x B Q    . 
(75) 

                                                                 

“Doubt is the father of invention.” Galileo Galilei 

  

Thus, the minimum-variance smoother for state estimation is given by (66) and (74) − (75). 
As remarked in Chapter 6, some numerical model order reduction may be required. In the 
special case of Ck being of rank n and Dk = 0, state estimates can be calculated from (69) and 

#
/ /ˆ ˆk N k k Nx C y . (76) 

where # 1( )T T
k k k kC C C C  is the Moore-Penrose pseudo-inverse. 

 

7.5.3.6  Performance 
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 y is 

given by 
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Similarly, let ε = 0
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H , which from Lemma 1 
has the realisation 
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k k   . 

(80) 

(81) 

It follows that the output of the inverse system u = 0
H  is given by  
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k k k ku A   . (82)  

The exact Wiener-Hopf factor may now be written as  

0 0
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The subsequent lemma, which relates the exact and approximate Wiener-Hopf factors, 
requires the identity  
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in which Pk is an arbitrary matrix of appropriate dimensions. A verification of (84) is 
requested in the problems. 
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Lemma 6 [7]: In respect of the signal model (1) – (2) with Dk = 0, E{wk} = E{vk} = 0, { }T
j kE w w  

= k jkQ  , { }T
j kE v v  = k jkR  , { }T

k kE w v  = 0 and the quantities defined above, 

0 / 1 1/ 0
ˆ ˆ ( )H H H T

k k k k k kC P P C       . (85) 

Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1/ 2
0k k kC K   + 1/ 2

k . Using 

/ 1k kP   − / 1
T

k k k kA P A  = − / 1 / 1(T T
k k k k k k k kA P C C P C   + 1

/ 1) T
k k k k kR C P A

  + T
k k kB Q B  + / 1k kP   − 1/k kP   

within (84) and simplifying leads to (85).                                                                                              □ 

It can be seen from (85) that the approximate Wiener-Hopf factor approaches the exact 
Wiener-Hopf factor whenever the estimation problem is locally stationary, that is, when the 
model and noise parameters vary sufficiently slowly so that / 1k kP     1/k kP  . Under these 
conditions, the smoother (69) achieves the best-possible performance, as is shown below. 

Lemma 7 [7]: The smoother (67) satisfies 
1 1

2 0 / 1 1/ 0[( ) ( ( ) ) ]H H H T
ei k k k k k k kR C P P C 

          , (86) 

Proof: Substituting (67) into (64) yields 

1 1
2

ˆ ˆ[( ) ( ) ]H H
ei kR       . (87) 

The result (86) is now immediate from (85) and (87).                                                                            □ 

Some conditions under which 1/k kP   asymptotically approaches / 1k kP   and the smoother (67) 
attaining optimal performance are set out below. 

 Lemma 8 [8]: Suppose  
(i) for a t > 0 that there exist solutions Pt ≥ Pt+1 ≥ 0 of the Riccati difference equation 
(ii) 1/k kP   = / 1

T
k k k kA P A  − / 1 / 1(T T

k k k k k k k kA P C C P C   + 1
/ 1) T

k k k k kR C P A
  + T

k k kB Q B ; and 

(iii) 1 1 1 1
1 1

1 1 1 1

T T T T
t k t k t k t k t k t k t k t k

T T
t k t k t k t k t k t k t k t k

B Q B A B Q B A
A C R C A C R C

           
 

           

   
   

    
  for all k ≥ 0. 

Then the smoother (67) achieves 

2 2 2
lim 0H

ei eit
  . (88) 

Proof: Conditions i) and ii) together with Theorem 1 imply / 1k kP   ≥  1/k kP   for all k ≥ 0 and  

/ 1k kP   = 0. The claim (88) is now immediate from Theorem 2.                                                              □ 

An example that illustrates the performance benefit of the minimum-variance smoother (67) 
is described below. 

                                                                 

“Whoever, in the pursuit of science, seeks after immediate practical utility may rest assured that he 
seeks in vain.” Hermann Ludwig Ferdinand von Helmholtz 

  

Example 2 [9]. The nominal drift rate of high quality inertial navigation systems is around 
one nautical mile per hour, which corresponds to position errors of about 617 m over a 
twenty minute period. Thus, inertial navigation systems alone cannot be used to control 
underground mining equipment. An approach which has been found to be successful in 
underground mines is called dead reckoning, where the Euler angles, k , k  and k , 
reported by an inertial navigation system are combined with external odometer 
measurements, dk. The dead reckoning position estimates in the x-y-z plane are calculated as 

1

1 1

1

sin( )
( ) sin( )

sin( )

k k k

k k k k k

k k k

x x
y y d d
z z







 



     
            
          

. (89) 

A filter or a smoother may then be employed to improve the noisy position estimates 

calculated from (89). Euler angles were generated using 

(1)
1

(2)
1

(3)
1

k k k

k k k

k k k

w
A w

w

 
 
 







    
          
         

,with 

0.95 0 0
0 0.95 0
0 0 0.95

A
 
   
  

 and ( )i
kw  ~ (0 , 0.01), i = 1…3. Simulations were conducted with 

1000 realisations of Gaussian measurement noise added to position estimates calculated 
from (89). The mean-square error exhibited by the minimum-variance filter and smoother 
operating on the noisy dead reckoning estimates are shown in Fig. 3. It can be seen that 
filtering the noisy dead reckoning positions can provide a significant mean-square-error 
improvement. The figure also demonstrates that the smoother can offer a few dB of further 
improvement at mid-range signal-to-noise ratios.  
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Figure 3.  Mean-square-error of the position estimate versus input signal to noise ratio for Example 2: (i) 
noisy dead reckoning data, (ii) Kalman filter, and (iii) minimum-variance smoother (69). 

                                                                 

“I do not think that the wireless waves that I have discovered will have any practical application.” 
Heinrich Rudolf Hertz 

www.intechopen.com



Discrete-Time Smoothing 167
  

Lemma 6 [7]: In respect of the signal model (1) – (2) with Dk = 0, E{wk} = E{vk} = 0, { }T
j kE w w  

= k jkQ  , { }T
j kE v v  = k jkR  , { }T

k kE w v  = 0 and the quantities defined above, 

0 / 1 1/ 0
ˆ ˆ ( )H H H T

k k k k k kC P P C       . (85) 

Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1/ 2
0k k kC K   + 1/ 2

k . Using 

/ 1k kP   − / 1
T

k k k kA P A  = − / 1 / 1(T T
k k k k k k k kA P C C P C   + 1

/ 1) T
k k k k kR C P A

  + T
k k kB Q B  + / 1k kP   − 1/k kP   

within (84) and simplifying leads to (85).                                                                                              □ 

It can be seen from (85) that the approximate Wiener-Hopf factor approaches the exact 
Wiener-Hopf factor whenever the estimation problem is locally stationary, that is, when the 
model and noise parameters vary sufficiently slowly so that / 1k kP     1/k kP  . Under these 
conditions, the smoother (69) achieves the best-possible performance, as is shown below. 

Lemma 7 [7]: The smoother (67) satisfies 
1 1

2 0 / 1 1/ 0[( ) ( ( ) ) ]H H H T
ei k k k k k k kR C P P C 

          , (86) 

Proof: Substituting (67) into (64) yields 

1 1
2

ˆ ˆ[( ) ( ) ]H H
ei kR       . (87) 

The result (86) is now immediate from (85) and (87).                                                                            □ 

Some conditions under which 1/k kP   asymptotically approaches / 1k kP   and the smoother (67) 
attaining optimal performance are set out below. 

 Lemma 8 [8]: Suppose  
(i) for a t > 0 that there exist solutions Pt ≥ Pt+1 ≥ 0 of the Riccati difference equation 
(ii) 1/k kP   = / 1

T
k k k kA P A  − / 1 / 1(T T

k k k k k k k kA P C C P C   + 1
/ 1) T

k k k k kR C P A
  + T

k k kB Q B ; and 

(iii) 1 1 1 1
1 1

1 1 1 1

T T T T
t k t k t k t k t k t k t k t k
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t k t k t k t k t k t k t k t k

B Q B A B Q B A
A C R C A C R C
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 
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   
   

    
  for all k ≥ 0. 

Then the smoother (67) achieves 

2 2 2
lim 0H

ei eit
  . (88) 

Proof: Conditions i) and ii) together with Theorem 1 imply / 1k kP   ≥  1/k kP   for all k ≥ 0 and  

/ 1k kP   = 0. The claim (88) is now immediate from Theorem 2.                                                              □ 

An example that illustrates the performance benefit of the minimum-variance smoother (67) 
is described below. 

                                                                 

“Whoever, in the pursuit of science, seeks after immediate practical utility may rest assured that he 
seeks in vain.” Hermann Ludwig Ferdinand von Helmholtz 

  

Example 2 [9]. The nominal drift rate of high quality inertial navigation systems is around 
one nautical mile per hour, which corresponds to position errors of about 617 m over a 
twenty minute period. Thus, inertial navigation systems alone cannot be used to control 
underground mining equipment. An approach which has been found to be successful in 
underground mines is called dead reckoning, where the Euler angles, k , k  and k , 
reported by an inertial navigation system are combined with external odometer 
measurements, dk. The dead reckoning position estimates in the x-y-z plane are calculated as 
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          

. (89) 

A filter or a smoother may then be employed to improve the noisy position estimates 

calculated from (89). Euler angles were generated using 
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  

 and ( )i
kw  ~ (0 , 0.01), i = 1…3. Simulations were conducted with 

1000 realisations of Gaussian measurement noise added to position estimates calculated 
from (89). The mean-square error exhibited by the minimum-variance filter and smoother 
operating on the noisy dead reckoning estimates are shown in Fig. 3. It can be seen that 
filtering the noisy dead reckoning positions can provide a significant mean-square-error 
improvement. The figure also demonstrates that the smoother can offer a few dB of further 
improvement at mid-range signal-to-noise ratios.  
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Figure 3.  Mean-square-error of the position estimate versus input signal to noise ratio for Example 2: (i) 
noisy dead reckoning data, (ii) Kalman filter, and (iii) minimum-variance smoother (69). 
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7.6 Performance Comparison 
It has been demonstrated by the previous examples that the optimal fixed-interval smoother 
provides a performance improvement over the maximum-likelihood smoother. The 
remaining example of this section compares the behaviour of the fixed-lag and the optimum 
fixed-interval smoother.  
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Figure 4. Mean-square-error versus measurement noise covariance for Example 3:  
(i) Kalman filter, (ii) fixed-lag smoothers, and (iii) optimal minimum-variance smoother (67). 

Example 3. Simulations were conducted for a first-order output estimation problem, in 
which A = 0.95, B = 1, C = 0.1, Q = 1, R =  {0.01, 0.02, 0.5, 1, 1.5, 2} and N = 20,000. The mean-
square-errors exhibited by the Kalman filter and the optimum fixed-interval smoother (69) 
are indicated by the top and bottom solid lines of Fig. 4, respectively. Fourteen fixed-lag 
smoother output error covariances, ( 1, 1)

1/
i i T

k kCP C 
 , i = 2 … 15, were calculated from (35) – (36) 

and are indicated by the dotted lines of Fig. 4. The figure illustrates that the fixed-lag 
smoother mean-square errors are bounded above and below by those of the Kalman filter 
and optimal fixed-interval smoother, respectively. Thus, an option for asymptotically 
attaining optimal performance is to employ Moore’s reduced-order fixed-lag solution [1] – 
[3] with a sufficiently long lag. 

 

                                                                 

“You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is 
meowing in Los Angeles. Do you understand this? And radio operates exactly the same way: you send 
signals here, they receive them there. The only difference is that there is no cat.” Albert Einstein  
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E{wk} =   E{vk} = 0. 
{ }T

k kE w w  =  Qk > 0  and 
{ }T

k kE v v  = Rk > 0 are 
known. Ak, Bk, C1,k and 
C2,k are known. 
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Assumes that the filtered 
and smoothed states are 
normally distributed. 

1/ˆ k kx   previously 
calculated by Kalman 
filter.  
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Kalman filters. 

1 1 1 1 1
/ / / 1 / / / 1 / 1ˆ ˆ( ) ( )k N k k k k k k k k k k k kx P P x     

        

1, / 1, /ˆ ˆk N k k Ny C x  

O
pt

im
al

 m
in

im
um

-v
ar

ia
nc

e 
sm

oo
th

er
 

 
2,1/ / 1

1/ 2 1/ 2
2,

k k k kk k k k

k k kk k

A K C Kx x
C z

 
 

    
          

 

1/ 2
1 2, 2,

1/ 2

T T T T
k kk k k k k

T
k kk k

A C K C
K

 
 






     
          

 

2, /ˆ k N k k ky z R    

/ 2
ˆˆ H H

k N kw Q    

1/ / /ˆ ˆ ˆk N k k N k k Nx A x B w    

1, / 1, /ˆ ˆk N k k Ny C x  
Table 1. Main results for discrete-time fixed-interval smoothing. 
 

7.7  Conclusion 
Solutions to the fixed-point and fixed-lag smoothing problems can be found by applying the 
standard Kalman filter recursions to augmented systems. Where possible, it is shown that 
the smoother error covariances are less than the filter error covariance, namely, the fixed-
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7.6 Performance Comparison 
It has been demonstrated by the previous examples that the optimal fixed-interval smoother 
provides a performance improvement over the maximum-likelihood smoother. The 
remaining example of this section compares the behaviour of the fixed-lag and the optimum 
fixed-interval smoother.  
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Figure 4. Mean-square-error versus measurement noise covariance for Example 3:  
(i) Kalman filter, (ii) fixed-lag smoothers, and (iii) optimal minimum-variance smoother (67). 

Example 3. Simulations were conducted for a first-order output estimation problem, in 
which A = 0.95, B = 1, C = 0.1, Q = 1, R =  {0.01, 0.02, 0.5, 1, 1.5, 2} and N = 20,000. The mean-
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smoother mean-square errors are bounded above and below by those of the Kalman filter 
and optimal fixed-interval smoother, respectively. Thus, an option for asymptotically 
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smoother in which Gk = 1
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   is a gain matrix. Although this is not a minimum-
mean-square-error solution, it outperforms the Kalman filter and can provide close to 
optimal performance whenever the underlying assumptions are reasonable.  

The minimum-variance smoothers are state-space generalisations of the optimal noncausal 
Wiener solutions. They make use of the inverse of the approximate Wiener-Hopf factor 1ˆ   
and its adjoint ˆ H . These smoothers achieve the best-possible performance, however, they 
are not minimum-order solutions. Consequently, any performance benefits need to be 
reconciled against the increased complexity. 
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to obtain an expression for the components of the smoothed state.  

(ii) Derive expressions for the two predicted error covariance submatrices of interest. 
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7.9  Glossary  
 

p(xk) Probability density function of a discrete random variable xk. 

~ ( , )k xxx R  The random variable xk has a normal distribution with mean μ and 
covariance Rxx. 

/k k  Error covariance of the fixed-point smoother. 
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k  Output of 1ˆ  , the inverse of the approximate Wiener-Hopf factor. 

k  Output of ˆ H , the adjoint of the inverse of the approximate 
Wiener-Hopf factor. 
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kC  Moore-Penrose pseudoinverse of Ck. 
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ei  
A system (or map) that operates on the problem inputs 
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produce an estimation error e. It is convenient to make use of the 
factorisation H
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the field. The material is organised as a ten-lecture course. The foundations are laid in Chapters 1 and 2,

which explain minimum-mean-square-error solution construction and asymptotic behaviour. Chapters 3 and 4

introduce continuous-time and discrete-time minimum-variance filtering. Generalisations for missing data,

deterministic inputs, correlated noises, direct feedthrough terms, output estimation and equalisation are

described. Chapter 5 simplifies the minimum-variance filtering results for steady-state problems. Observability,

Riccati equation solution convergence, asymptotic stability and Wiener filter equivalence are discussed.

Chapters 6 and 7 cover the subject of continuous-time and discrete-time smoothing. The main fixed-lag, fixed-

point and fixed-interval smoother results are derived. It is shown that the minimum-variance fixed-interval

smoother attains the best performance. Chapter 8 attends to parameter estimation. As the above-mentioned

approaches all rely on knowledge of the underlying model parameters, maximum-likelihood techniques within

expectation-maximisation algorithms for joint state and parameter estimation are described. Chapter 9 is

concerned with robust techniques that accommodate uncertainties within problem specifications. An extra term

within Riccati equations enables designers to trade-off average error and peak error performance. Chapter 10

rounds off the course by applying the afore-mentioned linear techniques to nonlinear estimation problems. It is

demonstrated that step-wise linearisations can be used within predictors, filters and smoothers, albeit by

forsaking optimal performance guarantees.
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