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5.1 Introduction 
This chapter presents the minimum-variance filtering results simplified for the case when 
the model parameters are time-invariant and the noise processes are stationary. The filtering 
objective remains the same, namely, the task is to estimate a signal in such as way to 
minimise the filter error covariance. 

A somewhat naïve approach is to apply the standard filter recursions using the time-
invariant problem parameters. Although this approach is valid, it involves recalculating the 
Riccati difference equation solution and filter gain at each time-step, which is 
computationally expensive. A lower implementation cost can be realised by recognising that 
the Riccati difference equation solution asymptotically approaches the solution of an 
algebraic Riccati equation. In this case, the algebraic Riccati equation solution and hence the 
filter gain can be calculated before running the filter.    

The steady-state discrete-time Kalman filtering literature is vast and some of the more 
accessible accounts [1] – [14] are canvassed here. The filtering problem and the application 
of the standard time-varying filter recursions are described in Section 2. An important 
criterion for checking whether the states can be uniquely reconstructed from the 
measurements is observability. For example, sometimes states may be internal or sensor 
measurements might not be available, which can result in the system having hidden modes. 
Section 3 describes two common tests for observability, namely, checking that an 
observability matrix or an observability gramian are of full rank. The subject of Riccati 
equation monotonicity and convergence has been studied extensively by Chan [4], De Souza 
[5], [6], Bitmead [7], [8], Wimmer  [9] and Wonham [10], which is discussed in Section 4. 
Chan, et al [4] also showed that if the underlying system is stable and observable then the 
minimum-variance filter is stable. Section 6 describes a discrete-time version of the Kalman-
Yakubovich-Popov Lemma, which states for time-invariant systems that solving a Riccati 
equation is equivalent to spectral factorisation. In this case, the Wiener and Kalman filters 
are the same. 

 

                                                                 

“Science is nothing but trained and organized common sense differing from the latter only as a veteran 
may differ from a raw recruit: and its methods differ from those of common sense only as far as the 
guardsman's cut and thrust differ from the manner in which a savage wields his club.” Thomas Henry 
Huxley 
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5.2 Time-Invariant Filtering Problem  
 

5.2.1 The Time-Invariant Signal Model  
A discrete-time time-invariant system (or plant) : m  →  p  is assumed to have the state-
space representation 

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(1) 

(2)  

where A  n n , B  n m , C   p n , D   p p , wk is a stationary process with { }kE w  = 0 
and { }T

j kE w w  = jkQ . For convenience, the simplification D = 0 is initially assumed within 
the developments. A nonzero feedthrough matrix, D, can be accommodated as described in 
Chapter 4. Observations zk of the system output yk are again modelled as 

k k kz y v  , (3)  

where vk is a stationary measurement noise sequence over an interval k  [1, N], with { }kE v  
= 0, { }T

j kE w v  = 0, { }T
j kE v v  = jkR . An objective is to design a filter   that operates on the 

above measurements and produces an estimate, /ˆ k ky    /ˆk k kC x , of yk so that the covariance, 

/ /{ }T
k k k kE y y  , of the filter error, /k ky  = yk   /ˆ k ky , is minimised. 

 

5.2.2 Application of the Time-Varying Filter Recursions  
A naïve but entirely valid approach to state estimation is to apply the standard minimum-
variance filter recursions of Section 4 for the problem (1) – (3). The predicted and corrected 
state estimates are given by 

1/ / 1ˆ ˆ( )k k k k k k k kx A K C x K z    , 

/ / 1ˆ ˆ( )k k k k k k k kx I L C x L z   , 

(4) 

(5)  

where Lk = / 1 / 1(T
k k k kP C CP C   + 1)R   is the filter gain, Kk = / 1 / 1(T

k k k kAP C CP C   + 1)R   is the 
predictor gain, in which / 1k kP   = / 1 / 1{ }T

k k k kE x x 
   is obtained from the Riccati difference 

equation 
1

1 ( )T T T T T
k k k k kP AP A AP C CP C R CP A BQB
     . (6)  

As before, the above Riccati equation is iterated forward at each time k from an initial 
condition P0. A necessary condition for determining whether the states within (1) can be 
uniquely estimated is observability which is discussed below.  

 

                                                                 

“We can understand almost anything, but we can’t understand how we understand.” Albert Einstein 

  

5.3 Observability 
 

5.3.1 The Discrete-time Observability Matrix  
Observability is a fundamental concept in system theory. If a system is unobservable then it 
will not be possible to recover the states uniquely from the measurements. The pair (A, C) 
within the discrete-time system (1) – (2) is defined to be completely observable if the initial 
states, x0, can be uniquely determined from the known inputs wk and outputs yk over an 
interval k  [0, N]. A test for observability is to check whether an observability matrix is of 
full rank. The discrete-time observability matrix, which is defined in the lemma below, is the 
same the continuous-time version. The proof is analogous to the presentation in Chapter 3. 

Lemma 1 [1], [2]: The discrete-time system (1) – (2) is completely observable if the observability 
matrix  

2
N

N

C
CA

O CA

CA

 
 
 
 
 
 
  


, N ≥ n – 1, (7)  

is of rank n . 

Proof: Since the input wk is assumed to be known, it suffices to consider the unforced system 

1k kx Ax  , 

k ky Cx . 

(8) 

(9)   

It follows from (8) – (9) that  

0 0y Cx  

1 1 0y Cx CAx   

2
2 2 0y Cx CA x   

  

0
N

N Ny Cx CA x  , 

(10)  

 

 

 

 

 

                                                                 

“What happens depends on our way of observing it or the fact that we observe it.” Werner Heisenberg 
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5.2.1 The Time-Invariant Signal Model  
A discrete-time time-invariant system (or plant) : m  →  p  is assumed to have the state-
space representation 

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(1) 

(2)  

where A  n n , B  n m , C   p n , D   p p , wk is a stationary process with { }kE w  = 0 
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Chapter 4. Observations zk of the system output yk are again modelled as 

k k kz y v  , (3)  
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predictor gain, in which / 1k kP   = / 1 / 1{ }T
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   is obtained from the Riccati difference 

equation 
1

1 ( )T T T T T
k k k k kP AP A AP C CP C R CP A BQB
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As before, the above Riccati equation is iterated forward at each time k from an initial 
condition P0. A necessary condition for determining whether the states within (1) can be 
uniquely estimated is observability which is discussed below.  
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5.3 Observability 
 

5.3.1 The Discrete-time Observability Matrix  
Observability is a fundamental concept in system theory. If a system is unobservable then it 
will not be possible to recover the states uniquely from the measurements. The pair (A, C) 
within the discrete-time system (1) – (2) is defined to be completely observable if the initial 
states, x0, can be uniquely determined from the known inputs wk and outputs yk over an 
interval k  [0, N]. A test for observability is to check whether an observability matrix is of 
full rank. The discrete-time observability matrix, which is defined in the lemma below, is the 
same the continuous-time version. The proof is analogous to the presentation in Chapter 3. 

Lemma 1 [1], [2]: The discrete-time system (1) – (2) is completely observable if the observability 
matrix  

2
N

N

C
CA

O CA

CA

 
 
 
 
 
 
  


, N ≥ n – 1, (7)  

is of rank n . 

Proof: Since the input wk is assumed to be known, it suffices to consider the unforced system 

1k kx Ax  , 

k ky Cx . 

(8) 

(9)   

It follows from (8) – (9) that  

0 0y Cx  

1 1 0y Cx CAx   

2
2 2 0y Cx CA x   

  

0
N

N Ny Cx CA x  , 

(10)  

 

 

 

 

 

                                                                 

“What happens depends on our way of observing it or the fact that we observe it.” Werner Heisenberg 
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which can be written as 

0

1
2

2 0

N
N

y I
y A
yy C xA

y A

   
   
   
    
   
   
     

 
. (11)  

From the Cayley-Hamilton Theorem, Ak, for k ≥ n, can be expressed as a linear combination of A0, A1, 
..., An-1 . Thus, with N ≥ n – 1, equation (11) uniquely determines x0 if ON has full rank n.           ฀  

Thus, if ON is of full rank then its inverse exists and so x0 can be uniquely recovered as x0 = 
1

NO y . Observability is a property of the deterministic model equations (8) – (9). Conversely, 
if the observability matrix is not rank n then the system (1) – (2) is termed unobservable and 
the unobservable states are called unobservable modes.  
 

5.3.2 Discrete-time Observability Gramians  
Alternative tests for observability arise by checking the rank of one of the observability 
gramians that are described below.  

Lemma 2: The pair (A, C) is completely observable if the observability gramian 

0
( )

N
T T k T k

N N N
k

W O O A C CA


  , N ≥ n-1 (12)  

is of  full rank. 

Proof: It follows from (8) – (9) that 

2 2
0 0( ) ( )T T T T T N T

N

I
A

y y x I A A A C C xA

A

 
 
 
      
 
  




. (13)  

From the Cayley-Hamilton Theorem, Ak, for k ≥ n, can be expressed as a linear combination of  
A0, A1, ..., An-1 . Thus, with N = n – 1, 

1

0 0 0 0 0 0
0
( )

n
T T T T T T k T k

N N N
k

y y x O O x x W x x A C CA x




 
    

 
  (14)  

is unique provided that WN is of full rank.                                                                                             ฀ 

 

                                                                 

“You affect the world by what you browse.”  Tim Berners-Lee 

  

It is shown below that an equivalent observability gramian can be found from the solution 
of a Lyapunov equation. 

Lemma 3: Suppose that the system (8) – (9) is stable, that is, |λi(A)| < 1, i = 1 to n, then the pair 
(A, C) is completely observable if the nonnegative symmetric solution of the Lyapunov equation 

T TW A WA C C  . 
(15)  

is of full rank. 

Proof: Pre-multiplying CTC = W – ATWA by (AT)k, post-multiplying by Ak and summing from k = 
0 to N results in  

1 1

0 0 0
( ) ( ) ( )

N N N
T k T k T k k T k k

k k k
A C CA A WA A WA 

  

     

                                                      1 1( )T k k
N NW A W A   . 

(16)  

Since 1 1lim( )T k k
Nk

A W A 


 = 0, by inspection of (16), lim Nk

W W


  is a solution of the Lyapunov 

equation (15). Observability follows from Lemma 2.                                                                             ฀ 

It is noted below that observability is equivalent to asymptotic stability. 

Lemma 4 [3]: Under the conditions of Lemma 3, x0   2  implies y  2 . 

Proof: It follows from (16) that 
0
( )

N
T k T k

k
A C CA


  ≤ WN and therefore 

2
0 0 0 02

0 0
( )

N N
T T T k T k T
k k N

k k
y y y x A C CA x x W x

 

 
   

 
  , 

from which the claim follows.                                                                                                                 ฀ 

Another criterion that is encountered in the context of filtering and smoothing is 
detectability. A linear time-invariant system is said to be detectable when all its modes and 
in particular its unobservable modes are stable. An observable system is alsodetectable. 

Example 1. (i) Consider a stable second-order system with A   
0.1 0.2
0 0.4

 
 
 

 and C   1 1   . 

The observability matrix from (7) and the observability gramian from (12) are 1O  = 
C

CA
 
 
 

 = 

1 1
0.1 0.6
 
 
 

 and W1 = 1 1
TO O  = 

1.01 1.06
1.06 1.36
 
 
 

, respectively. It can easily be verified that the 

                                                                 

“It is a good morning exercise for a research scientist to discard a pet hypothesis every day before 
breakfast.” Konrad Zacharias Lorenz 
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1
2

2 0

N
N

y I
y A
yy C xA

y A

   
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   
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 
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0
( )

N
T T k T k

N N N
k

W O O A C CA


  , N ≥ n-1 (12)  
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Proof: It follows from (8) – (9) that 

2 2
0 0( ) ( )T T T T T N T

N

I
A

y y x I A A A C C xA

A

 
 
 
      
 
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


. (13)  
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1

0 0 0 0 0 0
0
( )

n
T T T T T T k T k

N N N
k

y y x O O x x W x x A C CA x




 
    

 
  (14)  

is unique provided that WN is of full rank.                                                                                             ฀ 
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It is shown below that an equivalent observability gramian can be found from the solution 
of a Lyapunov equation. 

Lemma 3: Suppose that the system (8) – (9) is stable, that is, |λi(A)| < 1, i = 1 to n, then the pair 
(A, C) is completely observable if the nonnegative symmetric solution of the Lyapunov equation 

T TW A WA C C  . 
(15)  

is of full rank. 

Proof: Pre-multiplying CTC = W – ATWA by (AT)k, post-multiplying by Ak and summing from k = 
0 to N results in  

1 1

0 0 0
( ) ( ) ( )

N N N
T k T k T k k T k k

k k k
A C CA A WA A WA 

  

     

                                                      1 1( )T k k
N NW A W A   . 

(16)  

Since 1 1lim( )T k k
Nk

A W A 


 = 0, by inspection of (16), lim Nk

W W


  is a solution of the Lyapunov 

equation (15). Observability follows from Lemma 2.                                                                             ฀ 

It is noted below that observability is equivalent to asymptotic stability. 

Lemma 4 [3]: Under the conditions of Lemma 3, x0   2  implies y  2 . 

Proof: It follows from (16) that 
0
( )

N
T k T k

k
A C CA


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2
0 0 0 02

0 0
( )

N N
T T T k T k T
k k N

k k
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 

 
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 
 
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 
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 
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 
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solution of the Lyapunov equation (15) is W = 
1.01 1.06
1.06 1.44
 
 
 

 = W4 to three significant figures. 

Since rank(O1) = rank(W1)  = rank(W4)   2, the pair (A, C) is observable. 

(ii) Now suppose that measurements of the first state are not available, that is, C = 0 1   . 

Since O1 = 
0 1
0 0.4
 
 
 

 and W1 = 
0 0
0 1.16
 
 
 

 are of rank 1, the pair (A, C) is unobservable. This 

system is detectable because the unobservable mode is stable. 
 

5.4 Riccati Equation Properties 
 

5.4.1 Monotonicity 
It will be shown below that the solution 1/k kP   of the Riccati difference equation (6) 
monotonically approaches a steady-state asymptote, in which case the gain is also time-
invariant and can be precalculated. Establishing monotonicity requires the following result.  
It is well known that the difference between the solutions of two Riccati equations also 
obeys a Riccati equation, see Theorem 4.3 of [4], (2.12)  of [5], Lemma 3.1 of [6], (4.2) of [7], 
Lemma 10.1 of [8], (2.11) of [9] and (2.4) of [10]. 

Theorem 1: Riccati Equation Comparison Theorem [4] – [10]: Suppose for a t ≥ 0 and for all k ≥ 
0 the two Riccati difference equations 

1
1 1 1 1( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
            , 

1
1 ( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
         , 

(17) 

(18)  

have solutions t kP   ≥ 0 and 1t kP    ≥ 0, respectively. Then 1t k t k t kP P P      satisfies 

1
1 1 1 1( )T T T T

t k t k t k t k t k t k t k k t k t kP A P A A P C CP C R CP A
               , (19)  

where 1t kA    = A − 1 1(T T
t k t kAP C CP C     + 1

1)t k t kR C
    and t kR   = T

t kCP C  + R. 

The above result can be verified by substituting 1t kA    and 1t kR    into (19). The above 
theorem is used below to establish Riccati difference equation monotonicity. 

Theorem 2 [6], [9], [10], [11]: Under the conditions of Theorem 1, suppose that the solution of the 
Riccati difference equation (19) has a solution t kP   ≥ 0 for a t ≥ 0 and k = 0. Then  t kP   ≥ 1t kP    for 
all k ≥ 0.  

                                                                 

“We follow abstract assumptions to see where they lead, and then decide whether the detailed 
differences from the real world matter.” Clinton Richard Dawkins  

  

Proof: The assumption t kP   ≥ 0 is the initial condition for an induction argument. For the induction 

step, it follows from (T T
t k t kCP C CP C   + 1)kR   ≤ I that t kP   ≤ (T T

t k t kP C CP C   + 1)k t kR CP
 , which 

together with Theorem 1 implies t kP   ≥ 0.                                                                                            ⁪ ฀ 

The above theorem serves to establish conditions under which a Riccati difference equation 
solution monotonically approaches its steady state solution. This requires a Riccati equation 
convergence result which is presented below. 

5.4.2 Convergence 
When the model parameters and second-order noise statistics are constant then the 
predictor gain is also time-invariant andpre-calculated as 

1( )T TK APC CPC R   , (20)  

where P is the symmetric positive definite solution of the algebraic Riccati equation 
1( )T T T T TP APA APC CPC R CPA BQB     

                                       ( ) ( )T T TA KC P A KC BQB KRK     . 

(21) 

(22)  

A real symmetric nonnegative definite solution of the Algebraic Riccati equation (21) is said 
to be a strong solution if the eigenvalues of (A – KC) lie inside or on the unit circle [4], [5]. If 
there are no eigenvalues on the unit circle then the strong solution is termed the stabilising 
solution. The following lemma by Chan, Goodwin and Sin [4] sets out conditions for the 
existence of7 solutions for the algebraic Riccati equation (21). 

Lemma 5 [4]: Provided that the pair (A, C) is detectable, then 

i) the strong solution of the algebraic Riccati equation (21) exists and is unique; 

ii) if A has no modes on the unit circle then the strong solution coincides with the stabilising 
solution. 

A detailed proof is presented in [4]. If the linear time-invariant system (1) – (2) is stable and 
completely observable and the solution Pk of the Riccati difference equation (6) is suitably 
initialised, then in the limit as k approaches infinity, Pk will asymptotically converge to the 
solution of the algebraic Riccati equation. This convergence property is formally restated 
below.  

Lemma 6 [4]: Subject to: 

i) the pair (A, C) is observable; 

ii) |λi(A)| ≤ 1, i = 1 to n; 

iii) (P0 − P) ≥ 0; 
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solution of the Lyapunov equation (15) is W = 
1.01 1.06
1.06 1.44
 
 
 

 = W4 to three significant figures. 
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(ii) Now suppose that measurements of the first state are not available, that is, C = 0 1   . 

Since O1 = 
0 1
0 0.4
 
 
 

 and W1 = 
0 0
0 1.16
 
 
 

 are of rank 1, the pair (A, C) is unobservable. This 

system is detectable because the unobservable mode is stable. 
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0 the two Riccati difference equations 

1
1 1 1 1( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
            , 

1
1 ( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
         , 

(17) 

(18)  

have solutions t kP   ≥ 0 and 1t kP    ≥ 0, respectively. Then 1t k t k t kP P P      satisfies 

1
1 1 1 1( )T T T T

t k t k t k t k t k t k t k k t k t kP A P A A P C CP C R CP A
               , (19)  

where 1t kA    = A − 1 1(T T
t k t kAP C CP C     + 1

1)t k t kR C
    and t kR   = T

t kCP C  + R. 

The above result can be verified by substituting 1t kA    and 1t kR    into (19). The above 
theorem is used below to establish Riccati difference equation monotonicity. 

Theorem 2 [6], [9], [10], [11]: Under the conditions of Theorem 1, suppose that the solution of the 
Riccati difference equation (19) has a solution t kP   ≥ 0 for a t ≥ 0 and k = 0. Then  t kP   ≥ 1t kP    for 
all k ≥ 0.  
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step, it follows from (T T
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 , which 

together with Theorem 1 implies t kP   ≥ 0.                                                                                            ⁪ ฀ 

The above theorem serves to establish conditions under which a Riccati difference equation 
solution monotonically approaches its steady state solution. This requires a Riccati equation 
convergence result which is presented below. 

5.4.2 Convergence 
When the model parameters and second-order noise statistics are constant then the 
predictor gain is also time-invariant andpre-calculated as 
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where P is the symmetric positive definite solution of the algebraic Riccati equation 
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(21) 
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A real symmetric nonnegative definite solution of the Algebraic Riccati equation (21) is said 
to be a strong solution if the eigenvalues of (A – KC) lie inside or on the unit circle [4], [5]. If 
there are no eigenvalues on the unit circle then the strong solution is termed the stabilising 
solution. The following lemma by Chan, Goodwin and Sin [4] sets out conditions for the 
existence of7 solutions for the algebraic Riccati equation (21). 

Lemma 5 [4]: Provided that the pair (A, C) is detectable, then 

i) the strong solution of the algebraic Riccati equation (21) exists and is unique; 

ii) if A has no modes on the unit circle then the strong solution coincides with the stabilising 
solution. 

A detailed proof is presented in [4]. If the linear time-invariant system (1) – (2) is stable and 
completely observable and the solution Pk of the Riccati difference equation (6) is suitably 
initialised, then in the limit as k approaches infinity, Pk will asymptotically converge to the 
solution of the algebraic Riccati equation. This convergence property is formally restated 
below.  

Lemma 6 [4]: Subject to: 

i) the pair (A, C) is observable; 

ii) |λi(A)| ≤ 1, i = 1 to n; 

iii) (P0 − P) ≥ 0; 
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then the solution of the Riccati difference equation (6) satisfies 
lim kk

P P


 . (23)  

A proof appears in [4]. This important property is used in [6], which is in turn cited within 
[7] and [8]. Similar results are reported in [5], [13] and [14]. Convergence can occur 
exponentially fast which is demonstrated by the following numerical example. 

Example 2. Consider an output estimation problem where A = 0.9 and B = C = Q = R = 1. 
The solution to the algebraic Riccati equation (21) is P = 1.4839. Some calculated solutions of 
the Riccati difference equation (6) initialised with P0 = 10P are shown in Table 1. The data in 
the table demonstrate that the Riccati difference equation solution converges to the algebraic 
Riccati equation solution, which illustrates the Lemma. 
 

k 
kP  1k kP P   

1 1.7588 13.0801 

2 1.5164 0.2425 

5 1.4840 4.7955*10-4 

10 1.4839 1.8698*10-8 

Table. 1.  Solutions of (21) for Example 2. 
 

5.5 The Steady-State Minimum-Variance Filter 
 

5.5.1 State Estimation  
The formulation of the steady-state Kalman filter (which is also known as the limiting 
Kalman filter) follows by allowing k to approach infinity and using the result of Lemma  
That is, the filter employs fixed gains that are calculated using the solution of the algebraic 
Riccati equation (21) instead of the Riccati difference equation (6). The filtered state is 
calculated as 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k kx x L z Cx     

                                                     / 1ˆ( ) k k kI LC x Lz   , 
(24) 

where L = (T TPC CPC  + 1)R   is the time-invariant filter gain, in which P is the solution of 
the algebraic Riccati equation (21). The predicted state is given by 

1/ /ˆ ˆk k k kx Ax   

                                                                    / 1ˆ( ) k k kA KC x Kz   , 
(25)  

where the time-invariant predictor gain, K, is calculated from (20). 

                                                                 

“Great is the power of steady misrepresentation - but the history of science shows how, fortunately, this 
power does not endure long”. Charles Robert Darwin 

  

5.5.2 Asymptotic Stability  
The asymptotic stability of the filter (24) – (25) is asserted in two ways. First, recall from 
Lemma 4 (ii) that if |λi(A)| < 1, i = 1 to n, and the pair (A, C) is completely observable, then 
|λi(A − KC)| < 1, i = 1 to n. That is, since the eigenvalues of the filter’s state matrix are 
within the unit circle, the filter is asymptotically stable. Second, according to the Lyapunov 
stability theory [1], the unforced system (8) is asymptotically stable if there exists a scalar 
continuous function V(x), satisfying the following.  

(i) V(x) > 0 for x ≠ 0. 

(ii) V(xk+1) – V(xk) ≤  0 for xk ≠ 0. 

(iii) V(0) = 0. 

(iv) V(x) → ∞ as 
2

x  → ∞. 

Consider the function ( )kV x  = T
k kx Px  where P is a real positive definite symmetric matrix. 

Observe that 1( )kV x   – ( )kV x  = 1 1
T
k kx Px   – T

k kx Px  = (T T
kx A PA  – ) kP x  ≤ 0. Therefore, the 

above stability requirements are satisfied if for a real symmetric positive definite Q, there 
exists a real symmetric positive definite P solution to the Lyapunov equation 

TAPA P Q   . (26) 

By inspection, the design algebraic Riccati equation (22) is of the form (26) and so the filter is 
said to be stable in the sense of Lyapunov. 
 

5.5.3 Output Estimation  
For output estimation problems, the filter gain, L, is calculated differently. The output 
estimate  is given by 

/ /ˆ ˆk k k ky Cx  

                                                                        / 1 / 1ˆ ˆ( )k k k k kCx L z Cx     

                                                                        / 1ˆ( ) k k kC LC x Lz   , 

(27)  

where the filter gain is now obtained by  L = (T TCPC CPC  + 1)R  . The output estimation 
filter (24) – (25) can be written compactly as  

1/ / 1

/

ˆ ˆ( )
ˆ ( )
k k k k

k k k

x A KC K x
y C LC L z
      

        
, (28)  

from which its transfer function is 
1( ) ( )( )OEH z C LC zI A KC K L     . (29)  

                                                                 
“The scientists of today think deeply instead of clearly. One must be sane to think clearly, but one can 
think deeply and be quite insane.”  Nikola Tesla 
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then the solution of the Riccati difference equation (6) satisfies 
lim kk

P P


 . (23)  

A proof appears in [4]. This important property is used in [6], which is in turn cited within 
[7] and [8]. Similar results are reported in [5], [13] and [14]. Convergence can occur 
exponentially fast which is demonstrated by the following numerical example. 

Example 2. Consider an output estimation problem where A = 0.9 and B = C = Q = R = 1. 
The solution to the algebraic Riccati equation (21) is P = 1.4839. Some calculated solutions of 
the Riccati difference equation (6) initialised with P0 = 10P are shown in Table 1. The data in 
the table demonstrate that the Riccati difference equation solution converges to the algebraic 
Riccati equation solution, which illustrates the Lemma. 
 

k 
kP  1k kP P   

1 1.7588 13.0801 

2 1.5164 0.2425 

5 1.4840 4.7955*10-4 

10 1.4839 1.8698*10-8 

Table. 1.  Solutions of (21) for Example 2. 
 

5.5 The Steady-State Minimum-Variance Filter 
 

5.5.1 State Estimation  
The formulation of the steady-state Kalman filter (which is also known as the limiting 
Kalman filter) follows by allowing k to approach infinity and using the result of Lemma  
That is, the filter employs fixed gains that are calculated using the solution of the algebraic 
Riccati equation (21) instead of the Riccati difference equation (6). The filtered state is 
calculated as 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k kx x L z Cx     

                                                     / 1ˆ( ) k k kI LC x Lz   , 
(24) 

where L = (T TPC CPC  + 1)R   is the time-invariant filter gain, in which P is the solution of 
the algebraic Riccati equation (21). The predicted state is given by 

1/ /ˆ ˆk k k kx Ax   

                                                                    / 1ˆ( ) k k kA KC x Kz   , 
(25)  

where the time-invariant predictor gain, K, is calculated from (20). 

                                                                 

“Great is the power of steady misrepresentation - but the history of science shows how, fortunately, this 
power does not endure long”. Charles Robert Darwin 

  

5.5.2 Asymptotic Stability  
The asymptotic stability of the filter (24) – (25) is asserted in two ways. First, recall from 
Lemma 4 (ii) that if |λi(A)| < 1, i = 1 to n, and the pair (A, C) is completely observable, then 
|λi(A − KC)| < 1, i = 1 to n. That is, since the eigenvalues of the filter’s state matrix are 
within the unit circle, the filter is asymptotically stable. Second, according to the Lyapunov 
stability theory [1], the unforced system (8) is asymptotically stable if there exists a scalar 
continuous function V(x), satisfying the following.  

(i) V(x) > 0 for x ≠ 0. 

(ii) V(xk+1) – V(xk) ≤  0 for xk ≠ 0. 

(iii) V(0) = 0. 

(iv) V(x) → ∞ as 
2

x  → ∞. 

Consider the function ( )kV x  = T
k kx Px  where P is a real positive definite symmetric matrix. 

Observe that 1( )kV x   – ( )kV x  = 1 1
T
k kx Px   – T

k kx Px  = (T T
kx A PA  – ) kP x  ≤ 0. Therefore, the 

above stability requirements are satisfied if for a real symmetric positive definite Q, there 
exists a real symmetric positive definite P solution to the Lyapunov equation 

TAPA P Q   . (26) 

By inspection, the design algebraic Riccati equation (22) is of the form (26) and so the filter is 
said to be stable in the sense of Lyapunov. 
 

5.5.3 Output Estimation  
For output estimation problems, the filter gain, L, is calculated differently. The output 
estimate  is given by 

/ /ˆ ˆk k k ky Cx  

                                                                        / 1 / 1ˆ ˆ( )k k k k kCx L z Cx     

                                                                        / 1ˆ( ) k k kC LC x Lz   , 

(27)  

where the filter gain is now obtained by  L = (T TCPC CPC  + 1)R  . The output estimation 
filter (24) – (25) can be written compactly as  

1/ / 1

/

ˆ ˆ( )
ˆ ( )
k k k k

k k k

x A KC K x
y C LC L z
      

        
, (28)  

from which its transfer function is 
1( ) ( )( )OEH z C LC zI A KC K L     . (29)  
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5.6 Equivalence of the Wiener and Kalman Filters 
As in continuous-time, solving a discrete-time algebraic Riccati equation is equivalent to 
spectral factorisation and the corresponding Kalman-Yakubovich-Popov Lemma (or 
Positive Real Lemma) is set out below. A proof of this Lemma makes use of the following 
identity 

1 1( ) ( ) ( ) ( )T T T TP APA zI A P z I A AP z I A zI A PA         . (30)  

Lemma 7. Consider the spectral density matrix 

1 1
1 0 ( )

( ) ( )
0

T T
H Q z I A Cz C zI A I

R I

 
               

. (31) 

Then the following statements are equivalent. 

(i) ( )jH e   ≥ 0, for all ω  (−π, π ). 

(ii)  0
T T T

T T

BQB P APA APC
CPA CPC R

  
 

 
. 

(iii) There exists a nonnegative solution P of the algebraic Riccati equation (21). 

Proof: Following the approach of [12], to establish equivalence between (i) and (iii), use (21) within 
(30) to obtain 

1 1( ) ( ) ( ) ( ) ( )T T T T T T TBQB APC CPC R CPA zI A P z I A AP z I A zI A PA          . (32)  

Premultiplying and postmultiplying (32) by 1( )C zI A   and 1 1( )T Tz I A C  , respectively, results 
in 

1 1 1 1 1( ) ( )( ) ( ) ( )T T T T T T T T T TC zI A BQB APC CPA z I A C CPC C zI A APC CPA z I A C             , 

where TCPC R   . Hence,  

( ) ( )H Hz GQG z R    

             1 1 1( ) ( )T T TC zI A BQB z I A C R       

             1 1 1 1 1 1( ) ( ) ( ) ( )T T T T T T T TC zI A APC CPA z I A C C zI A APC CPA z I A C                

                1 1 1( ) ( )T T TC zI A K I K z I A C I                                                                          (33) 

             0 . 

The Schur complement formula can be used to verify the equivalence of (ii) and (iii).                          ฀ 

                                                                 

“Any intelligent fool can make things bigger and more complex... It takes a touch of genius - and a lot of courage 
to move in the opposite direction.” Albert Einstein 

  

In Chapter 2, it is shown that the transfer function matrix of the optimal Wiener solution for 
output estimation is given by 

1( ) { } ( )H
OEH z I R z 

    , (34) 

where { }+ denotes the causal part. This filter produces estimates /ˆ k ky  from measurements zk. 
By inspection of (33) it follows that the spectral factor is 

1 1/ 2 1/ 2( ) ( )z C zI A K      . (35)  

The Wiener output estimator (34) involves 1( )z  which can be found using (35) and a 
special case of the matrix inversion lemma, namely, [I + C(zI − A)-1K]-1 = I − C(zI − A + KC)-

1K. Thus, the spectral factor inverse is  
1 1/ 2 1/ 2 1( ) ( )z C zI A KC K         . (36)  

It can be seen from (36) that { }H
  =  1/ 2 . Recognising that 1I R    = (CPCT + R)(CPCT + 

R)-1 − R(CPCT + R)-1 = CPCT(CPCT + R)-1 = L, the Wiener filter (34) can be written equivalently 

                           1 1( ) ( )OEH z I R z      

                                        1 1 1( )I R R C zI A KC K          

                                        1( )( )L C LC zI A KC K     , 

(37) 

which is identical to the transfer function matrix of the Kalman filter for output estimation 
(29). In Chapter 2, it is shown that the transfer function matrix of the input estimator (or 
equaliser) for proper, stable, minimum-phase plants is 

1 1( ) ( )( { } ( ))H
IEH z G z I R z  

    . (38) 

Substituting (35) into (38) gives  
1( ) ( ) ( )IE OEH z G z H z . (39) 

The above Wiener equaliser transfer function matrices require common poles and zeros to 
be cancelled. Although the solution (39) is not minimum-order (since some pole-zero 
cancellations can be made), its structure is instructive. In particular, an estimate of wk can be 
obtained by operating the plant inverse on /ˆ k ky , provided the inverse exists. It follows 
immediately from L = (T TCPC CPC  + 1)R   that  

0
lim
R

L I


 . (40) 

By inspectionof (34) and (40), it follows that 

0 { , }
lim sup ( )j

OER
H e I

    
 . (41) 

Thus, under conditions of diminishing measurement noise, the output estimator will be 
devoid of dynamics and its maximum magnitude will approach the identity matrix. 
                                                                 

“It is not the possession of truth, but the success which attends the seeking after it, that enriches the 
seeker and brings happiness to him.” Max Karl Ernst Ludwig Planck 
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5.6 Equivalence of the Wiener and Kalman Filters 
As in continuous-time, solving a discrete-time algebraic Riccati equation is equivalent to 
spectral factorisation and the corresponding Kalman-Yakubovich-Popov Lemma (or 
Positive Real Lemma) is set out below. A proof of this Lemma makes use of the following 
identity 

1 1( ) ( ) ( ) ( )T T T TP APA zI A P z I A AP z I A zI A PA         . (30)  

Lemma 7. Consider the spectral density matrix 

1 1
1 0 ( )

( ) ( )
0

T T
H Q z I A Cz C zI A I

R I

 
               

. (31) 

Then the following statements are equivalent. 

(i) ( )jH e   ≥ 0, for all ω  (−π, π ). 

(ii)  0
T T T

T T

BQB P APA APC
CPA CPC R

  
 

 
. 

(iii) There exists a nonnegative solution P of the algebraic Riccati equation (21). 

Proof: Following the approach of [12], to establish equivalence between (i) and (iii), use (21) within 
(30) to obtain 

1 1( ) ( ) ( ) ( ) ( )T T T T T T TBQB APC CPC R CPA zI A P z I A AP z I A zI A PA          . (32)  

Premultiplying and postmultiplying (32) by 1( )C zI A   and 1 1( )T Tz I A C  , respectively, results 
in 

1 1 1 1 1( ) ( )( ) ( ) ( )T T T T T T T T T TC zI A BQB APC CPA z I A C CPC C zI A APC CPA z I A C             , 

where TCPC R   . Hence,  

( ) ( )H Hz GQG z R    

             1 1 1( ) ( )T T TC zI A BQB z I A C R       

             1 1 1 1 1 1( ) ( ) ( ) ( )T T T T T T T TC zI A APC CPA z I A C C zI A APC CPA z I A C                

                1 1 1( ) ( )T T TC zI A K I K z I A C I                                                                          (33) 

             0 . 

The Schur complement formula can be used to verify the equivalence of (ii) and (iii).                          ฀ 

                                                                 

“Any intelligent fool can make things bigger and more complex... It takes a touch of genius - and a lot of courage 
to move in the opposite direction.” Albert Einstein 

  

In Chapter 2, it is shown that the transfer function matrix of the optimal Wiener solution for 
output estimation is given by 

1( ) { } ( )H
OEH z I R z 

    , (34) 

where { }+ denotes the causal part. This filter produces estimates /ˆ k ky  from measurements zk. 
By inspection of (33) it follows that the spectral factor is 

1 1/ 2 1/ 2( ) ( )z C zI A K      . (35)  

The Wiener output estimator (34) involves 1( )z  which can be found using (35) and a 
special case of the matrix inversion lemma, namely, [I + C(zI − A)-1K]-1 = I − C(zI − A + KC)-

1K. Thus, the spectral factor inverse is  
1 1/ 2 1/ 2 1( ) ( )z C zI A KC K         . (36)  

It can be seen from (36) that { }H
  =  1/ 2 . Recognising that 1I R    = (CPCT + R)(CPCT + 

R)-1 − R(CPCT + R)-1 = CPCT(CPCT + R)-1 = L, the Wiener filter (34) can be written equivalently 

                           1 1( ) ( )OEH z I R z      

                                        1 1 1( )I R R C zI A KC K          

                                        1( )( )L C LC zI A KC K     , 

(37) 

which is identical to the transfer function matrix of the Kalman filter for output estimation 
(29). In Chapter 2, it is shown that the transfer function matrix of the input estimator (or 
equaliser) for proper, stable, minimum-phase plants is 

1 1( ) ( )( { } ( ))H
IEH z G z I R z  

    . (38) 

Substituting (35) into (38) gives  
1( ) ( ) ( )IE OEH z G z H z . (39) 

The above Wiener equaliser transfer function matrices require common poles and zeros to 
be cancelled. Although the solution (39) is not minimum-order (since some pole-zero 
cancellations can be made), its structure is instructive. In particular, an estimate of wk can be 
obtained by operating the plant inverse on /ˆ k ky , provided the inverse exists. It follows 
immediately from L = (T TCPC CPC  + 1)R   that  

0
lim
R

L I


 . (40) 

By inspectionof (34) and (40), it follows that 

0 { , }
lim sup ( )j

OER
H e I

    
 . (41) 

Thus, under conditions of diminishing measurement noise, the output estimator will be 
devoid of dynamics and its maximum magnitude will approach the identity matrix. 
                                                                 

“It is not the possession of truth, but the success which attends the seeking after it, that enriches the 
seeker and brings happiness to him.” Max Karl Ernst Ludwig Planck 
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Therefore, for proper, stable, minimum-phase plants, the equaliser asymptotically 
approaches the plant inverse as the measurement noise becomes negligible, that is, 

1

0
lim ( ) ( )IER

H z G z


 . (42) 

Time-invariant output and input estimation are demonstrated below.  

 

 
 
 
 
 
 
 
 
 

 

 

Figure 1. Fragment of Matlab® script for Example 3. 12 
Example 3. Consider a time-invariant input estimation problem in which the plant is given 
by 

                                          G(z) = (z + 0.9)2(z + 0.1)−2 

                                                   = (z2 + 1.8z + 0.81)(z2 + 0.2z + 0.01) −1 

                                                    = (1.6z + 0.8)(z2 + 0.2z + 0.01) −1 + 1, 

together with Q = 1 and R = 0.0001. The controllable canonical form (see Chapter 1) yields 

the parameters A =  
0.2 0.1
1 0

  
 
 

, B =  
1
0
 
 
 

, C =  1.6 1.8    and D = 1. From Chapter 4, the 

corresponding algebraic Riccati equation is P = APAT − KΩKT + BQBT, where K = (APCT + 
BQDT)Ω-1 and Ω =  CPCT +R + DQDT. The minimum-variance output estimator is calculated 
as 
                                                                 

“There is no result in nature without a cause; understand the cause and you will have no need of the 
experiment.” Leonardo di ser Piero da Vinci 

w=sqrt(Q)*randn(N,1);   % process noise 

x=[0;0];     % initial state 

for k = 1:N 

    y(k) = C*x + D*w(k);   % plant output 

    x = A*x + B*w(k);  

end 

v=sqrt(R)*randn(1,N);   % measurement noise 

z = y + v;     % measurement 

omega=C*P*(C’) + D*Q*(D’) + R; 

K = (A*P*(C’)+B*Q*(D’))*inv(omega); % predictor gain 

L = Q*(D’)*inv(omega);   % equaliser gain 

x=[0;0];     % initial state 

for k = 1:N 

    w_estimate(k) = - L*C*x + L*z(k);  % equaliser output 

    x = (A - K*C)*x + K*z(k);   % predicted state 

end 

  

1/ / 1

/

ˆ ˆ( )
ˆ ( )
k k k k

k k k

x A KC K x
y C LC L z
      

        
, 

where L = (CPCT + DQDT)Ω-1. The solution 
0.0026 0.0026
0.0026 0.0026

P
 

   
 for the algebraic Riccati 

equation was found using the Hamiltonian solver within Matlab®.  

Figure 2.  Sample trajectories for Example 5: (i) measurement sequence (dotted line); (ii) 
actual and estimated process noise sequences (superimposed solid lines). 

The resulting transfer function of the output estimator is  

HOE(z) = (z + 0.9)2(z + 0.9)−2, 

which illustrates the low-measurement noise asymptote (41). The minimum-variance input 
estimator is calculated as 

1/ / 1

/

ˆ ˆ( )
ˆ
k k k k

k k k

A KC Kx x
LC Lw z

     
        

, 

where L = QDTΩ-1. The input estimator transfer function is 

                                                                 

“Your theory is crazy, but its not crazy enough to be true.” Niels Henrik David Bohr 

www.intechopen.com



Discrete-Time Steady-State Minimum-Variance Prediction and Filtering 113
  

Therefore, for proper, stable, minimum-phase plants, the equaliser asymptotically 
approaches the plant inverse as the measurement noise becomes negligible, that is, 

1

0
lim ( ) ( )IER

H z G z


 . (42) 

Time-invariant output and input estimation are demonstrated below.  
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corresponding algebraic Riccati equation is P = APAT − KΩKT + BQBT, where K = (APCT + 
BQDT)Ω-1 and Ω =  CPCT +R + DQDT. The minimum-variance output estimator is calculated 
as 
                                                                 

“There is no result in nature without a cause; understand the cause and you will have no need of the 
experiment.” Leonardo di ser Piero da Vinci 

w=sqrt(Q)*randn(N,1);   % process noise 

x=[0;0];     % initial state 

for k = 1:N 

    y(k) = C*x + D*w(k);   % plant output 

    x = A*x + B*w(k);  

end 

v=sqrt(R)*randn(1,N);   % measurement noise 

z = y + v;     % measurement 

omega=C*P*(C’) + D*Q*(D’) + R; 

K = (A*P*(C’)+B*Q*(D’))*inv(omega); % predictor gain 

L = Q*(D’)*inv(omega);   % equaliser gain 

x=[0;0];     % initial state 

for k = 1:N 

    w_estimate(k) = - L*C*x + L*z(k);  % equaliser output 

    x = (A - K*C)*x + K*z(k);   % predicted state 

end 
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where L = (CPCT + DQDT)Ω-1. The solution 
0.0026 0.0026
0.0026 0.0026

P
 

   
 for the algebraic Riccati 

equation was found using the Hamiltonian solver within Matlab®.  

Figure 2.  Sample trajectories for Example 5: (i) measurement sequence (dotted line); (ii) 
actual and estimated process noise sequences (superimposed solid lines). 

The resulting transfer function of the output estimator is  

HOE(z) = (z + 0.9)2(z + 0.9)−2, 

which illustrates the low-measurement noise asymptote (41). The minimum-variance input 
estimator is calculated as 

1/ / 1

/

ˆ ˆ( )
ˆ
k k k k

k k k

A KC Kx x
LC Lw z

     
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, 

where L = QDTΩ-1. The input estimator transfer function is 

                                                                 

“Your theory is crazy, but its not crazy enough to be true.” Niels Henrik David Bohr 
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HIE(z) = (z + 0.1) 2 (z + 0.9) −2, 

which corresponds to the inverse of the plant and illustrates the asymptote (42). A 
simulation was generated based on the fragment of Matlab® script shown in Fig. 1 and some 
sample trajectories are provided in Fig. 2. It can be seen from the figure that the actual and 
estimated process noise sequences are superimposed, which demonstrates that an equaliser 
can be successful when the plant is invertible and the measurement noise is sufficiently low. 
In general, when measurement noise is not insignificant, the asymptotes (41) – (42) will not 
apply, as the minimum-variance equaliser solution will involve a trade-off between 
inverting the plant and filtering the noise. 
 

Table 2. Main results for time-invariant output estimation. 
 

5.7 Conclusion 
In the linear time-invariant case, it is assumed that the signal model and observations can be 
described by xk+1 = Axk + Bwk, yk = Cxk, and zk = yk + vk, respectively, where the matrices A, B, 
C, Q and R are constant. The Kalman filter for this problem is listed in Table 2. If the pair (A, 
C) is completely observable, the solution of the corresponding Riccati difference equation 
monotonically converges to the unique solution of the algebraic Riccati  equation that 
appears in the table. 

The implementation cost is lower than for time-varying problems because the gains can be 
calculated before running the filter. If |λi(A)| < 1, i = 1 to n, and the pair (A, C) is completely 

                                                                 

“Clear thinking requires courage rather than intelligence.” Thomas Stephen Szasz 

 ASSUMPTIONS MAIN RESULTS 
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E{wk} =   E{vk} = 0. { }T
k kE w w  =  Q  

and { }T
k kE v v  = R are known. A, B 

and C are known. 

1k k kx Ax Bw    

k ky Cx  

k k kz y v   
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1/ / 1ˆ ˆ( )k k k k kx A KC x Kz     

1, / / 1ˆ ˆ( )k k k k ky C LC x Lz    
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Q > 0, R > 0 and TCPC  + Rk  > 0. 
The pair (A, C) is observable. 

1( )T TK APC CPC R    

1( )T TL CPC CPC R    

( )T T T TP APA K CPC R K BQB     

 

  

observable, then |λi(A – KC)| < 1, that is, the steady-state filter is asymptotically stable. The 
output estimator has the transfer function 

1( ) ( )( )OEH z C I LC zI A KC K CL     . 

Since the task of solving an algebraic Riccati equation is equivalent to spectral factorisation, 
the transfer functions of the minimum-mean-square error and steady-state minimum-
variance solutions are the same. 
 

5.8 Problems 
Problem 1. Calculate the observability matrices and comment on the observability of the 
following pairs. 

(i) 
1 2
3 4

A
 

  
 

, 2 4C     .  (ii) 
1 2
3 4

A
 

    
, 2 4C     . 

Problem 2. Generalise the proof of Lemma 1 (which addresses the unforced system xk+1 = 
Axk and yk = Cxk) for the system xk+1 = Axk + Bwk and yk = Cxk + Dwk. 

Problem 3. Consider the two Riccati difference equations 

1
1 1 1 1( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
             

1
1 ( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
         . 

Show that a Riccati difference equation for 1t k t k t kP P P      is given by 

1
1 ( )T T T T

t k k t k k k t k t k k t k kP A P A A P C CP C R CP A
         

where t kA   = t kA   − (T T
t k t k t kA P C CP C    + 1)t k t kR C

   and t kR   = T
t kCP C  + R. 

Problem 4. Suppose that measurements are generated by the single-input-single-output 
system xk+1  = kax  + wk, zk = xk + vk, where  a  ,  { }kE v  = 0, { }T

j kE w w  = 2(1 ) jka  , { }T
j kE v v  

= jk , { }T
j kE w v  = 0.  

(a) Find the predicted error variance. 
(b) Find the predictor gain. 

(c) Verify that the one-step-ahead minimum-variance predictor is realised by 

1/ˆ k kx   = / 12
ˆ

1 1
k k

a x
a


 

 + 
2

2

1
1 1

k
a a z

a


 
. 

(d) Find the filter gain. 
(e) Write down the realisation of the minimum-variance filter.  

                                                                 

“Thoughts, like fleas, jump from man to man. But they don’t bite everybody.” Baron Stanislaw Jerzy Lec 
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HIE(z) = (z + 0.1) 2 (z + 0.9) −2, 

which corresponds to the inverse of the plant and illustrates the asymptote (42). A 
simulation was generated based on the fragment of Matlab® script shown in Fig. 1 and some 
sample trajectories are provided in Fig. 2. It can be seen from the figure that the actual and 
estimated process noise sequences are superimposed, which demonstrates that an equaliser 
can be successful when the plant is invertible and the measurement noise is sufficiently low. 
In general, when measurement noise is not insignificant, the asymptotes (41) – (42) will not 
apply, as the minimum-variance equaliser solution will involve a trade-off between 
inverting the plant and filtering the noise. 
 

Table 2. Main results for time-invariant output estimation. 
 

5.7 Conclusion 
In the linear time-invariant case, it is assumed that the signal model and observations can be 
described by xk+1 = Axk + Bwk, yk = Cxk, and zk = yk + vk, respectively, where the matrices A, B, 
C, Q and R are constant. The Kalman filter for this problem is listed in Table 2. If the pair (A, 
C) is completely observable, the solution of the corresponding Riccati difference equation 
monotonically converges to the unique solution of the algebraic Riccati  equation that 
appears in the table. 

The implementation cost is lower than for time-varying problems because the gains can be 
calculated before running the filter. If |λi(A)| < 1, i = 1 to n, and the pair (A, C) is completely 
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observable, then |λi(A – KC)| < 1, that is, the steady-state filter is asymptotically stable. The 
output estimator has the transfer function 

1( ) ( )( )OEH z C I LC zI A KC K CL     . 

Since the task of solving an algebraic Riccati equation is equivalent to spectral factorisation, 
the transfer functions of the minimum-mean-square error and steady-state minimum-
variance solutions are the same. 
 

5.8 Problems 
Problem 1. Calculate the observability matrices and comment on the observability of the 
following pairs. 
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1 2
3 4

A
 

  
 

, 2 4C     .  (ii) 
1 2
3 4

A
 

    
, 2 4C     . 
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Problem 4. Suppose that measurements are generated by the single-input-single-output 
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(a) Find the predicted error variance. 
(b) Find the predictor gain. 

(c) Verify that the one-step-ahead minimum-variance predictor is realised by 
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(d) Find the filter gain. 
(e) Write down the realisation of the minimum-variance filter.  
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Problem 5. Assuming that a system G has the realisation xk+1 = Akxk + Bkwk, yk = Ckxk + Dkwk, 
expand ΔΔH(z) =  GQG(z) + R to obtain Δ(z) and the optimal output estimation filter. 
 

5.9 Glossary  
In addition to the terms listed in Section 2.6, the notation has been used herein. 

A, B, C, D A linear time-invariant system is assumed to have the realisation xk+1 = 
Axk + Bwk and yk = Cxk + Dwk in which A, B, C, D are constant state 
space matrices of appropriate dimension. 

Q, R Time-invariant covariance matrices of stationary stochastic signals wk 
and vk, respectively. 

O Observability matrix. 
W Observability gramian. 
P Steady-state error covariance matrix. 
K Time-invariant predictor gain matrix. 
L Time-invariant filter gain matrix. 

Δ(z) Spectral factor. 
HOE(z) Transfer function matrix of output estimator. 
HIE(z) Transfer function matrix of input estimator. 
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