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1. Introduction 

Epithelia are physical barriers that constitute a functional interface between distinct body 
compartments and the outside. Under healthy condition, cells that composed the epithelial 
sheets are tightly bound to neighboring cells and to underlying basement membranes by 
adherens junctions, tight junctions, desmosomes and hemi-desmosomes (Farquhar, M. G. & 
Palade, G. E., 1963). However, epithelial cells empower high degree of plasticity and under 
certain circumstances such as developmental processes, fibrogenesis or tumor progression, 
they loss their static phenotype and acquire migratory and invasive behavior (Grunert, S., et 
al., 2003). Epithelial plasticity could be limited to relocalization of junctional proteins or to a 
more drastic epithelial to mesenchymal transition (EMT) which is characterized by 
disruption of intercellular contacts, loss of epithelium-specific proteins, switch to a 
mesenchymal gene expression pattern, and gain of invasive properties (Thiery, J. P., 2002). It 
is to note that EMT is different than collective cell movement which occurs when two or 
more cells that retain their genetic and phenotypic feature move together across a two-
dimensional (layer of extracellular matrix) or through a three-dimensional interstitial tissue 
(Ilina, O. & Friedl, P., 2009).  

2. Deciphering the EMT process 

2.1 General concept 

EMT has been extensively reviewed in the litterature (Nieto, M. A., 2011, Thiery, J. P., 2002,  
2009) and we summarized in Figure 1 the key point steps of this cellular process. As stated 
above, epithelial cells are apico-basal polarized cells with lateral adherence to their neighbors 
under the control of E-cadherins. The adhesion sites to extracellular matrix (ECM) are focused 
to the basal lamina, and cytokeratins are the main intermediate filaments. In contrast, 
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migrating mesenchymal cells display front-back polarity with only focal adhesions to their 
neighbors and to ECM, and have vimentin as a major intermediate filament. Therefore, loss of 
E-cadherin and cytokeratin and gain of vimentin are commonly used to characterize EMT.  

 

Fig. 1. A basic view of signaling pathways involved in EMT 
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EMT can result from various extracellular (ligands for RTKs such as FGFs, PDFG; ligands 
for RS/TKs such as TGFǃ or ligands for specific receptors such as Wnts) and cellular stimuli 
(extracellular matrix compounds, hypoxia, microRNAs, ROS) that through interactions with 
specific receptors or other mechanisms can stimulate intracellular signaling pathways, 
leading to activation of transcription factors that govern the transcription of EMT-related 
genes. The Figure highlights NF-κB and MAPK signaling as major pathways involved in 
EMT triggering. The most relevant criteria to detect EMT are loss of epithelial markers (E-
cadherin, Cytokeratins, ZO-1 and etc.) gain of mesenchymal markers (vimentin, fibronectin, 
MMPs, proteins of the extracellular matrix, etc.) associated to appearance of the 
fibroblastoide phenotype and increased migratory and invasive properties.  

2.2 EMT and transcription factors 

EMT is controlled by a small group of transcription factors defined as the core EMT 
regulatory factors that comprises SNAI1/Snail1 (Twigg, S. R. & Wilkie, A. O., 1999), 
SNAI2/Slug/Snail2 (Cohen, M. E., et al., 1998), Sip1/ZEB2 (Verschueren, K., et al., 1999) 
and Twist (Wang, S. M., et al., 1997). Whereas these proteins share the same function that is 
a transcriptional repression of E-cadherin, they have different structures. The Snail family is 
composed of zinc finger proteins, the ZEB family has 2 zinc finger clusters and Twist 
proteins has a helix loop helix motif (Peinado, H., et al., 2007). Interestingly enough, it was 
recently shown that in neural crest cells all these factors are coordinately regulated by an E3 
ubiquitin ligase named Partner of paired (Ppa) (Lander, R., et al., 2011). Ppa is a F-box 
containing protein that targets its bound substrates to the ubiquitin-proteasome system for 
degradation. Given the importance of EMT in physiological development the existence of a 
common regulatory protein that can be tightly controlled in a spatio-temporal manner 
makes sense. However, it remains to be defined whether Ppa is also involved in 
pathophysiogical EMT such as tumor progression and microbial pathogenesis.   

2.3 EMT and intracellular signaling pathways 

Multiple signaling pathways, including receptor tyrosine kinase–mediated signals, 
transforming growth factor (TGF)-ǃ/Smad, Wnt, Notch and hypoxia have been implicated 
as upstream initiators of the EMT process as highlighted in recent reviews (Moustakas, A. & 
Heldin, C. H., 2007, Peinado, H., et al., 2007, Said, N. A. & Williams, E. D., 2011). We will 
focus here on pathways that are activated by pathogen recognition receptors as detailed 
later in this review. 

The MAPK module 

MAPK signaling pathways are organized in modular cascades in which activation of 
upstream kinases by cell surface receptors leads to sequential activation of a MAPK module 
(MAPKKK → MAPKK → MAPK). This module comprises four different signaling pathways 
activated by mitogens, inflammation, stress and oxidative stress (Junttila, M. R., et al., 2008). 
These signaling pathways are interconnected. 

The Ras>Raf>MAPK kinase cascade is activated by a large number of mitogen receptors 
including tyrosine kinase receptors, such as fibroblast growth factor receptor, epithelial 
growth factor receptor, hepatocyte growth factor, vascular endothelial growth factor and the 
G-protein coupled receptors, a family of seven trans-membrane domains proteins including 
cytokine and chemokine receptors. This signaling cascade, which is extremely well 
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conserved from yeast to man, allows activation of a set of transcription factors which in turn 
control many cellular responses that are relevant for EMT (Keshet, Y. & Seger, R., 2010). 
Indeed, in addition to repress E-cadherin via activation of Snail/Slug, this pathway also 
controls upregulation of mesenchymal genes and cell motility via activation of SRE, AP1 
and SP transcription factors (Grunert, S., et al., 2003) and references herein. 

The p38 MAPK pathway can be activated in response to various cytokines, as well as 
pathogens and by environmental stress such as hypoxia. p38 MAPK was first described to 
down-regulate E-cadherin expression during mouse gastrulation (Zohn, I. E., et al., 2006). 
Further, p38 MAPK was described to participate in TNF-ǂ (Grund, E. M., et al., 2008) and 
TGF-ǃ-induced EMT (Borthwick, L. A., et al., 2011). In addition a crosstalk between the 
Smad and NR-κB pathways accentuates TGF-ǃ-induced EMT in presence of TNF-ǂ. 

The c-Jun N-terminal kinase (JNK) pathway is mainly activated by cellular stress and by 
cytokines that act through several upstream kinases such as TAK1 and TRAF6. JNK 
pathway mediates TGF-ǃ-induced EMT in keratinocytes (Santibanez, J. F., 2006). Further it 
was shown that activation of Smad3 by JNK is necessary to mediate TGF-ǃ-induced EMT 
(Liu, Q., et al., 2008). 

The Smad pathway 

The best described inductor of the Smad pathway is the TGF-ǃ that is widely described as 
an EMT inductor; for a review see (Zavadil, J. & Bottinger, E. P., 2005). Briefly, TGF-ǃ binds 
to its receptor which then activates by phosphorylation two transcription factors, Smad-2 
and Smad-3 (Massague, J., 1998). Phospho-Smad2/3 heterodimerize with Smad-4 and the 
Smad-complex translocate to the nucleus to regulate the transcription of genes that control 
cell proliferation, differentiation and cell migration (Wu, J. W., et al., 2001). Moreover, TGF- 
ǃ activates Smad-independent signaling cascade leading to the activation of the classical 
Ras-MAPK pathway (Said, N. A. & Williams, E. D., 2011).  

In addition to its well-known function in tumor progression, the TGF-ǃ signaling plays an 
essential role in establishing immunological tolerance (Wan, Y. Y. & Flavell, R. A., 2007). 
Interestingly, reports indicate that microbe invasion lead to TGF-ǃ modulation (Reed, S. G., 
1999). First, it was shown, in vitro and in vivo, that macrophages invasion by Trypanosoma 
cruzi led to production of TGF-ǃ (Silva, J. S., et al., 1991). This observation was then 
extended to bacterial infections with studies using Mycobacterium avium and Mycobacterium 
tuberculosis (Champsi, J., et al., 1995, Toossi, Z., et al., 1995). In the last decade it appears that 
many bacteria or viruses induce TGF-ǃ production via signaling pathways that require Toll 
like receptors (TLR) as described below.  

Macrophages represent the first line of defense; indeed most of these studies were 
performed on immune cells. However, TGF-ǃ released by macrophages could activate TGF 
signaling on epithelial cells and then induce EMT. In agreement with this paracrine loop 
hypothesis, it has recently been demonstrated that increasing numbers of leukocytes 
(macrophages and T cells) infiltrating the kidney after acute unilateral ureteral obstruction 
in a mouse model correlate with increased EMT (Lange-Sperandio, B., et al., 2007). 

The STAT pathway 

The signal transducers and activators of transcription (STAT) family consist of seven 
proteins. STATs are activated by tyrosine phosphorylation of receptor tyrosine kinases, by 
the cytokine and chemokine receptor/Janus activated kinase (JAK) complexes or by non-
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receptor tyrosine kinases (Reich, N. C. & Liu, L., 2006). In general, STAT proteins have 
important roles in the immune response (Ihle, J. N., 2001), however STAT3 has been more 
particularly involved in EMT. Invalidation of the stat3 gene in mice results in early embryonic 
lethality (Takeda, K., et al., 1997), therefore using small interference RNA technology to 
efficiently block STAT3 signaling, Huang and co-authors demonstrated in pancreatic cancer 
cells that silencing of STAT3 resulted in suppression of EMT (Huang, C., et al., 2011).  

Hypoxia 

Alteration in microenvironmental oxygen tension and activation of hypoxic signaling through 
hypoxia-inducible factor (HIF) are emerging as important triggers and modulators of EMT 
(Haase, V. H., 2009, Jiang, J., et al., 2011). In vivo, O2 tension varies from 2.5% to 9% in most 
healthy tissues. However, inflamed or diseased tissues can be deprived of O2 (hypoxia) due to 
vascular damage, intensive metabolic activity of bacteria and other pathogens, and large 
numbers of infiltrating cells, leading to O2 levels of less than 1%. This phenomenon results in 
activation of the well-coordinated mechanism leading to regulation of HIF transcriptional 
pathways as described in many reviews such as (Imtiyaz, H. Z., et al., 2010).  

Oxygen deprivation is not the only inducer of HIF. Indeed, inflammatory cytokines, growth 
factors and bacterial products under normoxic conditions also induce HIFs (Blouin, C. C., et 
al., 2004, Cane, G., et al., 2010, Jung, Y. J., et al., 2003, Peyssonnaux, C., et al., 2008, Zhou, J., 
et al., 2003). Once activated HIFs, and more particularly HIF-1, controls E-cadherin 
repression, loss of cell-cell adhesion and cell motility via regulation of the core EMT 
regulatory factors in various cell types, as described in (Haase, V. H., 2009). For example, 
HIF-1, regulates the expression of TWIST by binding directly to the hypoxia response 
element in the TWIST proximal promoter (Yang, M. H., et al., 2008). 

NF-κB 

The NF-κB family of transcription factors which is composed of five members - p65 (REL-A), 
REL-B, cytoplasmic (c) REL, p50 and p52 - is widely activated under cytokines and/or 
microbial challenge (Li, Q. & Verma, I. M., 2002, Min, C., et al., 2008).  

For example, the proinflammatory cytokines interleukin-1ǃ and tumor necrosis factor 
(TNF)-ǂ both activate and are activated by NF-κB, thus creating a positive feedback loop 
that results in perpetual amplification of the response.  

Together with SMADs and HIF-1ǂ, NF-κB has been shown, in an integrative genomic 
analysis, to regulate ZEB2, an EMT regulator, (Katoh, M., 2009). In addition, NF-κB is 
involved in the up regulation of twist-1 and twist-2 expression in response to TNF-ǂ; this 
regulation is lost in fibroblasts lacking the p65 subunit of NF-κB (Sosic, D., et al., 2003). 
Moreover, the authors proposed a model in which TWIST orchestrates a negative feedback 
loop by repressing cytokine expression under cytokine challenge and therefore maintaining 
a controlled inflammatory response. 

Interestingly enough, the classical NF-κB pathway is also responsible for the EMT process 
attributable to Von Hippel-Lindau (VHL) loss and subsequent HIF-1 activation since 
molecular and pharmacological approaches to inhibit NF-κB promote a partial reversion to 
an epithelial phenotype (Pantuck, A. J., et al., 2010).  

Finally, NF-κB also controls mesenchymal marker expression. The NF-kB binding site has 
been described on the vimentin gene (Lilienbaum, A., et al., 1990) and overexpression of a 
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constitutively active form of p65 in breast cancer cells increases expression of vimentin 
(Chua, H. L., et al., 2007). Moreover, NF-κB directly activates the transcription of the matrix 
metalloprotease (MMP)-9 gene, a type IV collagenase which increases cellular invasiveness 
and motility (Himelstein, B. P., et al., 1997) and indirectly controls MMP-2 (Yoshizaki, T., et 
al., 2002).  

MicroRNAs 

MicroRNAs (miRs) are non-coding RNA of 18-24 bp that post transcriptionally regulate 
gene expression. The key region of miRs that governs their target specificity, named the seed 
sequence, encompasses bases 2-7 from their 5’ end (Lewis, B. P., et al., 2005). More than 1200 
miRNAs have been identified in humans, and each individual miR could regulate ten to 
hundreds of genes according to the presence of seed sequence matches in their 3’UTRs. The 
ability of a specific miR to modify gene expression is governed by its seed sequence but also 
its expression, which could be spatiotemporally regulated. 

A microRNA microarray profiling performed on MDCK undergoing EMT allowed to 
characterize the implication of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 
and miR-429) and miR-205. Decrease in expression of each of these miRs correlates with 
decreased expression of E-cadherin and increases in mesenchymal markers mRNA such as 
vimentin and fibronectin. In addition, overexpression of these miRs in MDCK cells prevents 
EMT demonstrating that down-regulation of these miRs is an essential component of the 
EMT process. Finally, it was shown that the miR-200 family represses endogenous 
expression of ZEB1 and ZEB2 (Bracken, C. P., et al., 2008, Gregory, P. A., et al., 2008, Korpal, 
M., et al., 2008, Park, S. M., et al., 2008). 

As mentioned previously in this report, TGFǃ is a powerful inductor of EMT. A combination 
of miRs and mRNA profiling was used to identify miRs that destabilize mRNAs in TGFǃ-
directed EMT. Such strategy allowed the characterization of eight miRs specific of a 
particular signature of EMT-like response (Zavadil, J., et al., 2007). 

3. Pattern recognition receptor-induced signaling pathways 

3.1 A general overview on PRR 

Charles Janeway was the first to understand that recognition of pathogen-associated 
molecular patterns (PAMPs) by host pathogen-recognition receptors (PRRs) is the basis of 
immune immunity and represents the first defense against pathogens (Janeway, C. A., Jr., 
1989). His discovery was further confirmed by the identification of Toll-like receptor (TLR)4 
as the protein involved in the recognition of lipopolysaccharide (LPS), therefore making the 
link between a microbial motif, LPS, and a host receptor, TLR4 (Poltorak, A., et al., 1998). A 
new axe of researches was then opened and after more than a decade the TLRs family 
encounters 10 members in human and each TLR has a distinct function in terms of PAMP 
recognition (Kawai, T. & Akira, S., 2010). 

TLRs are divided into two subgroups based on their cellular localization and respective 
PAMP ligands. The first group, expressed on cell surfaces which recognize mainly microbial 
membrane components such as lipids, lipoproteins and proteins, is composed of TLR1, 
TLR2, TLR4, TLR5, TLR6 and TLR11; the second group, expressed exclusively in 
intracellular vesicles where the receptors recognize microbial nucleic acids, is composed of 
TLR3, TLR7, TLR8 and TLR9.  
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In mammals, in addition to TLRs, an intra-cytoplasmic sensing system for microbial effector 
exists. This second family of receptors is named Nod (nucleotide-binding oligomerization 
domain)-like receptors (NLRs); NLRs sense the presence of intracellular muropeptides 
(Fritz, J. H., et al., 2006). As highlighted in Figure 2 both TLRs and NLRs activate 
intracellular signaling pathways that share common adaptors with receptors of growth 
factors, cytokines or chemokines.  

Note that in addition to TLRs and NLRs other microbial sensors exist as reviewed in (Bouchon, 
A., et al., 2000, Crocker, P. R., 2005, Klesney-Tait, J., et al., 2006, Robinson, M. J., et al., 2006).  

 

Fig. 2. A schematic view of PPR-induced pathways involved in stimulation of NF-κB and 
MAPK signaling 
TLRs (TLR1, TLR2, TLR4, TLR5, TLR6, TLR7 and TLR9 ) do activate NF-κB and MAPK 
module – comprising ERK, p38 and JNK – by binding of MyD88 to the receptor TIR domain 
and subsequently triggering IRAK, TRAF6 and TAK1 which ultimately activate the IkB 
kinase (IKK) complex – which consists of IKK-ǂ, IKK-ǃ and IKK-Ǆ (also known as IKK1, 
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IKK2 and nuclear factor-κB (NF-κB) essential modulator, NEMO, respectively – and 
MAPKs. Alternatively, TIRAP (TIR domain-containing adaptor protein), a second TIR-
domain-containing adaptor protein, is involved in the MyD88-dependent signalling 
pathway through TLR2 and TLR4. A third TIR-domain-containing adaptor, TRIF (TIR 
domain-containing adaptor protein inducing IFN-ǃ), is essential for the MyD88-
independent pathway. Further, the non-typical IKKs IKK-ε and TBK1 (TRAF-family-
member-associated NF-κB activator (TANK)-binding kinase 1) mediate activation of IRF3 
downstream of TRIF. A fourth TIR-domain containing adaptor, TRAM (TRIF-related 
adaptor molecule), is specific to the TLR4-mediated, MyD88-independent/TRIF-dependent 
pathway. By contrast, activation of NLRs leads to the recruitment of the receptor-interacting 
protein 2 (RIP2) kinase, which is essential for the activation of the IKK complex. In addition, 
activation of NOD1 leads to JNK stimulation. Finally, double strand DNA has been linked to 
inflammasome activation. This protein complex which is composed of NLRs of the NALP-
family and adaptor-proteins apoptosis-associated speck-like protein (ASC), mediates the 
generation of IL-1ǃ through cleavage of its precursor by caspase-1.  

3.2 PRR and mediators of EMT 

TLRs are type I trans-membrane proteins with extracellular domains containing leucine-rich 
repeats and mediating the recognition of PAMPs, trans-membrane domains and 
intracellular Toll–interleukin 1 (IL-1) receptor (TIR) domains which recruit TIR domain–
containing adaptor molecules to induce downstream signal transduction. 

MyD88 was identified as the first member of the TIR family adaptors. Once bound to TLRs, 
MyD88 recruits the IL-1 receptor–associated kinases IRAK4, IRAK1, IRAK2 and IRAK-M. 
Mostly, direct or indirect activation of IRAK allows the activation of NF-κB and MAPK 
which in turn induces various transcription factors (Kawai, T. & Akira, S., 2010).  

The TIR family also comprise TIRAP (Mal), TRAM and TRIF. TIRAP and TRAM function as 
additional sorting adaptors allowing the recruitment of MyD88 to TLR2 and TLR4. The final 
consequence of this signaling puzzle is the activation of NF-κB and MAPK signaling 
pathways. TRIF is used by TLR3 and TLR4 and induces alternative pathways that lead to 
activation of the transcription factors IRF3 and NF-κB  

Interestingly enough, host recognition of pathogens lead to activation of NF-κB and MAPK 
pathways. As mentioned earlier, these two pathways are particularly relevant for EMT since 
they control the activation of transcription factors that in turn regulate the expression of the 
EMT core genes. 

4. EMT and bacterial pathogens 

The microbes normally present in humans are collectively estimated to number tenfold that of 
human cells. Mainly located in the gut, the microbiota is crucial for human life by influencing 
human physiology and nutriment uptake (Ley, R. E., et al., 2006). In addition, the microbiota 
contributes to the shaping of healthy intestinal immune responses (Inagaki, H., et al., 1996). It 
has been proposed that an alteration in the development and/or composition of the microbiota 
may disturb the relationship between microbes and the immune system. In turn, immune 
defects may favor pathogenesis of various human inflammatory disorders (Round, J. L. & 
Mazmanian, S. K., 2009) and inflammatory disorders promote EMT.  
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We can therefore speculate that most of microbes that persist in the body have the potential 
to indirectly favor an EMT behavior. In this review we will only focus on the few examples 
that describe a direct involvement of microbial pathogens in EMT induction.  

4.1 Lipopolysaccharide 

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative 
bacteria. LPS is an endotoxin which induces a strong response from normal animal immune 
systems; therefore it is widely used to study gram-negative bacteria-induced cellular 
responses. Intriguingly, we found in the literature only one report that studies LPS-induced 
EMT. Using a model of intrahepatic biliary epithelial cells, Zhao and co-authors have shown 
that in response to LPS stimulation a decrease in E-cadherin expression was observed 
whereas expression of the mesenchymal markers (S100A and ǂ–SMA) increased by more 
than 12-fold (Zhao, L., et al., 2010). In addition to EMT markers, they noticed that the 
messenger coding for TGFǃ-1 was significantly increased. As indicated previously, TGFǃ-1 
is a well-known inductor of EMT that transmits its effect via Smad2/3. Indeed, silencing of 
Smad 2/3 in biliary epithelial cells resulted in a significant decrease of mesenchymal 
markers and an increase in E-cadherin expression. Therefore, the authors concluded that 
LPS induced the EMT probably through the TGF-ǃ1/Smad2/3 pathway. 

4.2 Helicobacter pylori 

Helicobacter pylori is a gram-negative bacteria which colonizes the human stomach of about 
50% of the world's population. Although a large proportion of infected subjects can develop 
gastritis, 80% of these individuals remain asymptomatic. Severe H. pylori-mediated diseases 
are duodenal and gastric ulcer disease, gastric cancer and mucosa-associated lymphoid 
tissues (MALT) lymphomas affecting about 15%, 1% and 0.1% of infected people, 
respectively (Amieva, M. R. & El-Omar, E. M., 2008). Since 1994, H. pylori is classified as a 
class I carcinogen by the World Health Organization. More than 350 genetically different 
strains have been identified. To avoid mechanical clearance, H. pylori first adhere to the 
gastric epithelium due  to adhesins. Among their numerous virulence factors, the two major 
virulence factors of H. pylori, the cytotoxin VacA and the cag pathogenicity island and its 
effector CagA, can co-opt epithelial cell function. Whereas VacA can disrupt the barrier 
function of tight junction, it does not perturb junction integrity (Papini, E., et al., 1998), 
CagA has major effects on the apical junctional complex allowing the deregulation of 
epithelial cell-cell adhesion and a loss in epithelial polarity (Amieva, M. R., et al., 2003, 
Murata-Kamiya, N., et al., 2007).  

Using the pathogenic H. Pylori strain 60190, Yin and co-authors observed expression of 
Snail and Slug in gastric epithelial cells (Yin, Y., et al., 2010). Further, they demonstrated that 
induction of EMT genes depends on H. pylori-induced signaling cascade pathways that 
involve gastrin, MMP7 and shedding of soluble heparin-binding epidermal growth factor. 
Interestingly, the increase of gastrin observed in response to H. pylori infection occurred via 
a Ras>Raf>Mek>Erk>NF-κb signaling pathway (Brandt, S., et al., 2005). Then, it appears 
that NF-κB is a central common effector that plays a key role in the EMT process. 

As mentioned earlier, HIFs are also involved in EMT regulation. It is noteworthy that ROS 

stabilize HIF-1ǂ (Park, J. H., et al., 2003) and H. pylori induce ROS (Bagchi, D., et al., 1996). 
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Therefore, one could speculate that H. pylori-induced stabilization of HIF-1 acts in 

combination with NF-κB to maximally induce the EMT program.  

4.3 Enterovirulent Escherichia coli strains 

Escherichia coli which colonize the gastrointestinal tract of human infants within a few hours 

after birth normally coexist in harmony with its human hosts. However, there are several 

highly adapted E. coli clones that have acquired specific virulence factors, which confer an 

increased ability to adapt to new niches and allow them to cause a broad spectrum of diseases. 

Among the intestinal pathogens there are six well described classes: enteropathogenic-, 

enterohaemorrhagic-, enterotoxigenic-, enteroaggregative-, enteroinvasive- and diffusely 

adherent-E. coli. Enteropathogenic E. coli cause entero/diarrhoeal disease as a consequence of 

lack of intestinal barrier permeability (Kaper, J. B., et al., 2004). In most of the cases this 

epithelial plasticity is limited to relocalization of junctional proteins; however, depending on 

the bacterial strain used to infect epithelial cells, it could lead to a more drastic EMT.  

Among the families of entero-pathogenic E. coli, diffusely adherent E. coli (DAEC) is a 

heterogeneous group with variable virulence factors promoting adherence to epithelial cells 

(Servin, A. L., 2005) The pathogenicity of such bacteria is still controversial; however, the 

presence of DAEC expressing Afa/Dr adhesins has been reported in epidemiological 

studies of various types of enterocolitis (Meraz, I. M., et al., 2007, Vargas, M., et al., 1998). 

Afa/Dr DAEC strains are a family of DAEC expressing the afimbrial Afa-I and Afa-III 

adhesins, Dr haemagglutinin and fimbrial F1845 adhesin. Afa/Dr adhesins interact with 

receptors such as the membrane-associated decay accelerating factor (DAF/ CD55), the 

carcino-embryonic-antigen (CEA/CD66e) and CEACAM-1, -3, -6 (Berger, C. N., et al., 2004), 

leading to cell signaling. Using the clinical isolate DAEC C1845, we have shown that 

infection of intestinal epithelial cells promotes EMT-like behavior. We have deciphered the 

molecular mechanisms leading to EMT and observed that F1845 adhesin binding to the DAF 

receptor promotes Ras>Raf>MAPK and PI3K pathways (Betis, F., et al., 2003a,  2003b, Cane, 

G., et al., 2007). Activation of these signaling pathways is required to induce an increase in 

HIF-1ǂ protein expression but also Twist1 mRNA expression. We noticed that HIF-1ǂ 

silencing significantly blocked the expression of Twist1 gene, revealing a role for HIF-1 in 

the transcriptional regulation of this gene. Furthermore, we observed that C1845-induced 

HIF-1ǂ protein expression leads to a loss of E-cadherin and cytokeratin 18 and an increase in 

fibronectin expression, which are reversed in HIF-1ǂ silenced cells (Cane, G., et al., 2010), 

therefore highlighting the critical role of HIF in DAEC-induced EMT. 

5. EMT and viral pathogens 

As for microbial pathogens, viral infection leads to activation of intracellular signaling 

pathways (Rathinam, V. A. & Fitzgerald, K. A., 2011); thus we can intuitively speculate that 

viruses can induce EMT. The major pathogenic viruses include cytomegalovirus (CMV), 

herpes simplex virus (HSV), Epstein–Barr virus, Kaposi's sarcoma-associated herpes virus, 

polyoma virus, hepatitis B and C virus and human papilloma virus. Previous works indeed 

confirmed that at least two families of viruses (Epstein-barr and hepatitis B and C) induce 

EMT in epithelial cells.  
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5.1 Epstein-barr virus 

Epstein–Barr virus (EBV) is a member of the herpes virus family which infects more than 
90% of world population. EBV utilizes normal B cell biology to infect, persist, and replicate 
in B cells. Beyond immune cells, EBV also infects epithelial cells and it has been associated 
with neoplastic diseases such as nasopharyngeal carcinoma (Chen, M.-R., 2011); the link 
between EBV and EMT has been studied in this particular context.  

Latent EBV encodes for eight proteins, two of them, the latent membrane protein 1 and 2A 
(LMPs), which highjack cell host signaling (Caldwell, R. G., et al., 1998, Gires, O., et al., 
1997), are particularly involved in EMT. Horikawa and coauthors were the first to describe 
that transformation of MDCK epithelial cells with LMP1 induces EMT, characterized by loss 
of epithelial markers, gain of mesenchymal markers and its associated increase in cell 
motility and invasiveness (Horikawa, T., et al., 2007). To go further, the authors have shown 
that Twist1-silencing in MDCK cells resulted in changes from scattered and fibroblast-like 
shapes to tightly packed cobblestone morphology, characteristics of mesenchymal-to-
epithelial transition, the reverse of EMT. Finally, the authors demonstrated that LMP1 
induces Twist through NF-κB in nasopharyngeal epithelial cells. More recently the same 
group demonstrated that Snail1 acts in combination to twist1 to induce EMT in 
nasopharyngeal carcinoma cells (Horikawa, T., et al., 2011).  

Using nasopharyngeal carcinoma tumor samples the group of Zeng has shown that 57.6% of 
tumors overexpressed LMP2A at the tumor invasive front (Kong, Q. L., et al., 2010). 
Interestingly enough, LMP2A increases the size of the stem-like cell population and the 
number of tumor initial cells; this effect being reversed by inhibitors of AKT.  

In addition to a classical effect on intracellular signaling, EBV also down regulates 
expression of miR-200a and miR-200b, the down regulation of which induces EMT 
(Shinozaki, A., et al., 2010). First, the authors demonstrated an association between miR-200a 
and miR-200b down regulation and E-cadherin expression on resected gastric carcinoma 
tissue. Further, using in vitro established EBV-infected cell lines they confirmed that down 
regulation of these miRs correlates with up regulation the ZEB family of transcription 
factors and their associated loss of cell-to-cell adhesion. Finally they uncovered the ability of 
LMP2A, EBNA1 and BARF0 to down regulate the pri-miR-200 transcript.  

EBV is found in alveolar epithelial cells where it is suspected to promote idiopathic pulmonary 
fibrosis. Indeed, active EVB infection regulates EMT in alveolar epithelial cells (Malizia, A. P., 
et al., 2009). In this report the authors highlighted the role of Wnt signaling, since Wnt5B-
silenced cells are resistant to EBV-induced EMT. Further, using an ex vivo cell system model 
the authors demonstrated that activation of non-canonical Wnt signaling pathway by EBV is 
dependent of CUX1 signaling. Therefore a link between EBV and fibrosis was demonstrated 
with EMT being the core of the process. This former observation was recently confirmed and 
extended. Indeed, the group of Lasky demonstrated that LMP1 induces pro-EMT signaling 
that occurs primarily through the nuclear factor-κB pathway and secondarily through the 
extracellular signal-regulated kinase (ERK) pathway (Sides, M. D., et al., 2011).  

5.2 Hepatitis B and C viruses 

At least seven different viruses cause hepatitis, hepatitis viruses A, B and C are the most 
known. Whereas hepatitis virus A (HAV) induces acute infection disease of the liver, HBV 
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and HCV induce more chronic diseases that can lead to cirrhosis and hepatocellular 
carcinoma. Both HBV and HCV have been shown to induce EMT.  

Viral particles of mammalian HBV encode for a small regulatory protein, known as the X 
protein that modulates intracellular signaling pathways by directly or indirectly interacting 
with host factors. Therefore it was hypothesized that HBV X protein may induce EMT in 
hepatocytes. To test this hypothesis Yang and coauthors transfected hepatocytes with HBx 
gene and observed that cells underwent morphological changes from an epithelial 
morphology to spindle-like shape associated with an increase in invasive potential (Yang, S. 
Z., et al., 2009). When the authors treated the cells with PP2, a well-known inhibitor of the 
Src kinase family, they noticed that cells recovered their original epithelial morphology. 
Therefore, they claimed that activated c-Src played a critical role in the HBx-induced EMT of 
hepatocytes.  

HCV core protein which interacts with various cellular proteins induces host cells responses 
(Delhem, N., et al., 2001, Lai, M. M. & Ware, C. F., 2000, Zhu, N., et al., 1998). Of particular 
interest, HCV core protein interacts with Smad3 and consequently inhibits TGF-ǃ induced 
Smad3 transcriptional activity (Pavio, N., et al., 2005). Since the TGF-ǃ/Smad3 pathway 
induces EMT, it was suspected that HCV core protein directly impacts on the EMT process. 
Using stably transfected cell lines and primary mouse hepatocytes, as well as primary 
human hepatocytes infected in vitro with lentiviruses encoding HCV core protein, Battaglia 
and coauthors demonstrated that core protein expression was sufficient to provoke EMT in 
primary hepatocytes. This effect was reverted by addition of a specific inhibitor of TGF-ǃ I 
receptor thus demonstrating a TGF-ǃ dependent effect of core on EMT development 
(Battaglia, S., et al., 2009).  

HCV core protein has also been involved in the pathogenesis of cholangiocarcinoma. In 
agreement with this idea, HCV core protein expression in cholangiocarcinoma cells induces 
EMT through a mechanism dependent on LOXL2 pathway (Li, T., et al., 2010). 

6. Perspective: EMT and microbial pathogenesis 

The field of research encompassing EMT has been one of the most exciting areas in 
embryogenesis, organ development, wound repair and tissue remodeling over the past 10 
years. This overview is by no means intended to provide a global view on EMT. Instead, as 
shown in Figure 3, we have attempted to depict the main lines which govern EMT in order 
to highlight similarities that exist between growth factor-and pathogens-induced signaling 
pathways allowing us to give a coherent picture of the place of microbial infection in EMT 
and subsequent human pathologies. However, it is important to note that in healthy 
individuals, infection is effectively controlled, and the inflammatory response is promptly 
resolved. Indeed, microbes-induced chronic inflammation is intimately linked to defective 
innate immunity correlating with microenvironment, genetic and epigenetic susceptibilities 
but also treatment access. For example, H. pylori colonize the human stomach of about 50% 
of the world's population, however less than 2% of this population will develop a stomack 
cancer, implying the existence of individual predispositon. 

Interestingly, it appears that only pathogens associated to chronic pathologies 
(fibrinogenesis, cancer) (Hofman, P. M., 2010) have been described to induce EMT. Given 
that all pathogen recognition receptors induce NF-κB and MAPK module, one can speculate 
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that each pathogen may have the potential to induce EMT as for as its attack remains 
unresolved by innate immunity. Keeping that in mind, we can assume that a large part of 
EMT knowledge can be moved to translational research in molecular medicine with 
potential future new therapeutics in treating diseases linked to infections. 

 

Fig. 3. Microbe-induced chronic inflammation in predisposed individuals leads to EMT  

Here we suggest a model in which microbe infection plays a critical role as an EMT 
promoter. In healthy individuals, microbe infection is contained by the innate immunity. By 
contrast in predisposed individuals the innate immunity is exceeded by microbe infection 
leading to chronic inflammation. Chronic inflammation, associated to chronic infection lead 
to sustained NF-κB and MAPK module activation: the basement of EMT. Finally, EMT plays 
a critical role in onset of various human pathologies such as fibrinogenesis, cancer 
progression and metastasis.  
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