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1. Introduction

The image segmentation task is to divide an image into regions of interest that are suitable for

machine or human operations. The machine ability of recognizing and distinguishing objects,

or its parts in a scene, is the main goal of computer vision domain. This is a critical issue

because the judgement of good or bad segmentation is usually subject to humans.

Extensive studies have been accomplished for image segmentation. The segmentation

algorithms are commonly categorized according to the image characteristics borders and

regions (Gonzales & Woods, 2000). In the first one, the image is divided based on its

discontinuities, i.e., the places where abrupt intensity changes occur. Regarding to the region

segmentation, this happen when there are similarities of color or texture, for example, between

neighboring pixels. In spite of these categories, the problem is to find a good partitioning of

an image among several possible to be achieved.

Several algorithms in image segmentation can be formulated from the partitioning of graphs.

This means using graphs as image models or representations and then apply a criterion or

methodology in order to split it into subgraphs. The existing literature on graph partitioning

is wide, but we are interested on a particular approach, the called Normalized Cut introduced

by Shi & Malik (1997).

A graph cut consists of removing edges consistently in order to generate two subgraphs.

The Normalized Cut approach is a graph-cut technique based on Spectral Graph Theory

responsible for generating balanced subgraphs through the removal of the smallest possible

number of edges. The Normalized Cut approach uses concepts by Fiedler (1975) in the

manipulation of the second smallest eigenvector of the graph representative matrix as a guide

for graph partitioning. The inherent bias of this technique is that balanced partitions for

image segmentation cannot be appropriate for some images when small number of partitions

is desired (e.g., images with an easily detectible object and an uniform background). A survey

of application of Spectral Graph Theory is given by Spielman (2007).

There are several ways of generating the graph model representing the input images. The

graph commonly used as input to the Normalized Cut implementation is that one based on

the pixel grid similarity. We propose two alternative representations of graphs known as

Quadtree and Component Tree similarity graphs. These graphs decompose the image into

partitions and thus carry hierarchical information that can be useful on segmentation task.
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2 Will-be-set-by-IN-TECH

Another goal is to reduce the computational cost, due to the reduction of the graph size,

compared to using the pixel similarity graph.

Finally, we show experiments using Normalized Cut and Quadtree and Component Tree

similarity graphs. In addition to the Component Tree, we propose the use of the Reverse

Component Tree in order to profit the relevant information in decomposition process of an

image. The results are classified using a benchmark provide by The Berkeley Image Database

(Martin et al., 2001).

This chapter is organized as follows. Section 2 introduces graph concepts, including our

Quadtree and Component Tree based similarity graph. Section 3 presents graph cuts and

Normalized Cut theory. Some related works also are described in this section. An overview

of the proposed approach is given in Section 4. Experiments in sampled images are done in

Section 5 and further comments of the experiments, conclusions, as well as suggestions of

future work are done in Section 6.

2. Graph representation

In digital image processing, a graph is commonly used to model digital images

(Wilson & Watkins, 1990). In the Normalized Cut segmentation technique the input graph

is called Similarity Graph (Shi & Malik, 2000), that we explain in details in Section 3.3. In a

similarity graph the edge weights should reflect the similarity between the nodes connected

by them, and are given by a Similarity Function. Here we present the methods for building a

similarity graph that we have used in the experiments described in Section 5.

There are several approaches to represent an image as a similarity graph. In the next

subsections we present some fundamental concepts on graphs, and four image-graph

representation approaches: based on the Pixel Grid (Shi & Malik, 2000) , Multiscale Pixel Grid

(Cour et al., 2005), based on the Component Tree (Carvalho, Costa, Ferreira & Cesar-Jr., 2010),

and based on the Quadtree (Carvalho, Costa & Ferreira, 2010). Approaches based on the

Component Tree, Quadtree, and Multiscale Pixel Grid rely on hierarchical structures to model an

image as a graph, and provide different segmentation results when compared to the classical

non-hierarchical pixel grid approach.

2.1 Basic concepts on graphs

A graph is a mathematical structure employed to model or to describe objects and their

relationships, e. g., a composition relationship can describe objects and their constituent parts.

Let G = (V, E, W) be a non-directed weighted graph; V is a set of nodes, E is a set of edges

e(i, j), i, j ∈ V, and W is a set of weights w(i, j), i, j ∈ V. For each edge e(i, j) ∈ E exists an

associated weight w(i, j) ∈ W, that can be represented by a single value or a set of values.

Two nodes i and j are adjacent, represented by i ∼ j, if there is an edge connecting i and j.

Given a node i ∈ V, its degree di corresponds to its number of neighbours, and its strength si

(Wilson & Watkins, 1990) to the sum of its edge’s weights. A subgraph of a graph G = (V, E, W)
is a graph G′ = (V ′, E′, W ′) where V ′ ⊆ V, E′ ⊆ E, and W ′ ⊆ W.

A path π = (i1, i2, . . . , in), in ∈ V, is a sequence without repeated nodes where ik ∼ ik+1,

k = 1, 2, . . . , n − 1. Two nodes are connected if there exists at least one path between i and j. In
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Combining Hierarchical Structures on Graphs and Normalized Cut for Image Segmentation 3

a connected graph G all pair of nodes are connected. A cycle is a path where i1 = in. A tree is a

connected graph with no cycles.

2.1.1 Graphs and matrices

A graph and its features can be represented using matrices (Wilson & Watkins, 1990). The

adjacency between graph nodes can be described by an Adjacency Matrix A with size n × n,

where n is the number of nodes, |V|, of graph G = (V, E, W). The matrix elements a(i, j)
are 1 if i ∼ j, i, j ∈ V, or 0, otherwise. Similarly, the Weight Matrix W, also with size n × n,

n = |V|, can store the graph weights w(i, j), i ∼ j, i, j ∈ V. The Degree Matrix D is diagonal

with d(i, i) = di, where di is the degree os node i ∈ V. Finally, the Laplacian Matrix L is defined

as L = D − A for unweighted graphs, or L = D − W for weighted graphs. The Laplacian

matrix is commonly used on Spectral Graph Theory (Spielman, 2007).

2.2 Graph based on the Pixel Grid

In this Pixel Grid-based image-graph representation each pixel is taken as a graph node, and
two pixels within a r distance are connected by an edge. Shi & Malik (2000) have used this

approach as the first one for their Normalized Cut technique. This approach have been

introduced in the experiments as a landmark for compare results with other approaches.

2.2.1 Multiscale Pixel Grid

The Multiscale Pixel Grid graph decomposition algorithm introduced by Cour et al. (2005)

works on multiple scales of the image grid to capture coarse and fine detail levels. The

construction of the similarity graph is done according to their spatial separation, as in the

following Equation

W = W1 + W2 + . . . + Ws, (1)

where W is a weight matrix that represents a graph composed by independent subgraphs Ws,

s corresponds to a scaled pixel grid.

In the Multiscale approach there exists one different radius for each image scale s. Thus, two

pixels i and j ∈ Ws are connected only if the distance between them is lower than a radius Rs.

The radii values are a tradeoff between the computation cost and the segmentation result. The

Multiscale approach can alleviate this situation by using recursive sub-sampling of the image

pixel grid.

2.3 Graph based on the Component Tree

The Component Tree (CT) (Carvalho, Costa, Ferreira & Cesar-Jr., 2010) is a hierarchical

representation of a digital image after thresholding operations between its minimum and

maximum gray values (Mosorov & Kowalski, 2002). There exists a relation of inclusion

between components at sequential gray levels in the image, explained below by the partition

definition (Carvalho, 2004).

Definition 1. A partition P of an image I is a set of disjoint regions Ri, i ∈ N , where
⋃n

i Ri = I and

Ri ∩ Rj = ∅, i �= j.
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A cross-section Ik of an image I is a binary image defined as (Mosorov & Kowalski, 2002;

Najman & Couprie, 2006):

Ik = {x ∈ I/I(x) ≥ k}. (2)

In the CT, the Connected Components (CC) of all cross-sections are organized in a tree structure.

There exists an edge between two connected components CCi
k+1 and CC

j
k when CCi

k+1 ⊆ CC
j
k

(inclusion relation); k is a cross-section identifier, i is a CC in cross-section k + 1, and j is a
CC in cross-section k. The connected component of the first cross-section corresponds to the

whole image domain and it is called root. The leaves are the elements of the CT that have no

children. A fast algorithm to build the CT is given by Najman & Couprie (2006). Fig. 1 shows

a gray scale image I and its five cross-sections Ik. The Component Tree for image I is depicted

in Fig. 2(a).

(a) I (b) I1 (c) I2

(d) I3 (e) I4 (f) I5

Fig. 1. Thresholding image graylevels to build cross-sections. (a) a grayscale image I and
(b)-(f) its five cross-sections.

When observing the traditional CT model, one realizes that the tree will be composed by

only white components, i. e., components with value 1. There still information in the

cross-sections related to the black components. In fact, these components can provide more

relevant information in particular cases. Therefore, we have defined the Reverse Component

Tree (RCT) (Carvalho, Costa, Ferreira & Cesar-Jr., 2010) where two connected components

CCi
k and CC

j
k+1 are linked when CC

j
k ⊆ CCi

k+1; k is a cross-section identifier, i is a CC in

cross-section k + 1, and j is a CC in cross-section k. Unlike described for the CT case, the roots

of the RCT’s are formed by the connected components of the last cross-section. Fig. 2(b) shows

the Reverse Component Tree for image I, presented in Fig. 1(a).

In order to build a connected similarity graph, we combine Component and Reverse

Component Trees. This similarity graph will be used in the graph cut process. First, a

connected subgraph Gk = (Vk, Ek, Wk) is created for each cross-section Ik, where the nodes

392 New Frontiers in Graph Theory
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(a) Component Tree (b) Reverse Component Tree

Fig. 2. Component Tree and Reverse Component Tree from grayscale image presented in Fig.
1(a).

vk,n correspond to the connected components CCn
k ; k ∈ N is a cross-section identifier, and

n ∈ N is a connected component identifier. Given two nodes vk,i and vk,j, vk,i ∼ vk,j if

distance(vk,i, vk,j) ≤ r, where r ∈ R is the connection radius. After built, the k subgraphs are

connected by adding the edges from the CT and RCT. The weight of each edge should reflect

the likelihood of different connected components. Some of them are difference between areas,

density, average gray levels and standard deviation, and Euclidean distance.

One strong characteristic of CT method is the generation of multiple image partitions at once.

Because a cross-section Ik corresponds to the whole image, there is one image partition for

each cross-section.

Finally, it is important to note that some images can produce a high quantity of connected

components, especially in the presence of noise. Therefore, it is useful to apply some

pre-processing on the image before starting the CT computation such as, gaussian filter,

normalization of the gray values into a smaller range, and merging of identical subsequent

cross-sections.

2.4 Graph based on the Quadtree

A Quadtree is a data structure formed from the recursive decomposition of a space (Samet,

1984). In the image processing domain, a quadtree usually maps an image and its regions into

a directed acyclic graph (Consularo & Cesar-Jr., 2005).

The decomposition process is simple: The initial region corresponds to the whole image and

is associated to the root node; each region in the image should be recursively decomposed

into exact four new disjoint regions until they satisfy a defined criterion of homogeneity. Fig.
3 shows a Quadtree decomposition example. The decomposition criterion choice in this case

was to exist regions with only one value.

In practice, the regularity of the Quadtree decomposition limits the application of this

method to square images with edge sizes 2n, n ∈ N . One solution is to relax the

regular decomposition, allowing a more suitable number of regions. But the greatest

393Combining Hierarchical Structures on Graphs and Normalized Cut for Image Segmentation
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(a) I (b) Regions (c) Quadtree

Fig. 3. Quadtree decomposition. (a) original image. (b) decomposed regions. (c)
corresponding Quadtree.

difficulty in creating the quadtree is the choice of the decomposition criterion. There are

different criteria proposed, such as the standard deviation or entropy of image gray levels

(Consularo & Cesar-Jr., 2005).

In our quadtree approach (Carvalho, Costa & Ferreira, 2010) for image segmentation,

we proposed applying the Canny (Canny, 1986) (1986) filter in the image before the

decomposition. This filter has low sensitivity to noise in images. By removing pixels with

low gradient and thresholding the resultant ones, this process results in a binary image with

border pixels highlighted. This procedure was chosen because:

1. after the filtering, the image results in a binary matrix. Then, facilitating the decomposition

criterion definition, that a region should be decomposed when it is not formed entirely by
ones or zeros (Samet, 1984);

2. the edge detection operation drastically reduce the size of data to be processed, while at

the same time preserves the structural information about object boundaries (Canny, 1986).

In our work (Carvalho, Costa & Ferreira, 2010), the main reason for using a Quadtree image

representation was to reduce the similarity graph size. Thus, in this technique the graph is

generated using only the regions associated to the Quadtree leaves. Each region is associated

to a node and for each region a centroid pixel is defined as the representative pixel. The nodes

of the similarity graph are linked together if their representative pixel distances are less than a

given radius r, similar to the pixel grid approach. However, it is useful to consider the nodes

region sizes to calculate the radius r.

The number of nodes on the similarity graph can be influenced by the choice of the edge

detector parameters. The number of regions obtained by the proposed technique will vary

according to the image features. Also, the parameters of the edge detection filter can be

manually specified, in order to change its sensibility.

3. Graph Cut and Normalized Cut

A graph cut partitions the set of nodes V of a graph G = (V, E, W) into two disjoint subsets A

and B, and can be expressed by the following equation (Shi & Malik, 1997):

Cut(A, B) = ∑
u∈A,v∈B

w(u, v), (3)
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where w(u, v) are the edges removed from G.

This formula indicates the degree of dissimilarity between GA and GB, the corresponding

subgraphs to the node subsets A and B, respectively. There are a lot of ways to solve the

problem of graph cuts. One of them, proposed by Wu & Leahy (1993), solve this problem

removing the smallest possible number of edges. However, in some cases this approach can

produce isolated nodes. A study about types of graph cut is given by Soundararajan & Sarkar

(2001).

A graph cut can be accomplished by means of Spectral Graph Theory. In this approach, the

matrix eigenvectors that represent graphs are analyzed and used as parameter in order to

partition a graph.

3.1 Spectral Graph Theory

The Spectral Graph Theory (SGT) studies the eigenvalues of the graph matrices, also called

graph spectrum. Algebraic methods used to analyze matrices of graphs are especially effective

in treating regular and symmetric graphs (Chung, 1997). The matrices commonly used are
adjacency matrices and the SGT establishes a relation between the graph spectrum and the

graph features.

The use of graph spectrum information for graph cuts has a great contribution from

Donath & Hoffman (1972); Fiedler (1975); Pothen et al. (1990). Fiedler proposed that the

second smallest eigenvector v2 of the Laplacian matrix, also called the Fiedler vector, has in a

given row v2[i] a numerical information about node i, also called the characteristic value of the

node. The graph nodes can be partitionated by grouping them according to their value in the

Fiedler vector. The commonly way used to group nodes is the characteristic values signals.

3.2 The Normalized Cut

The Normalized Cut (NCut) technique (Shi & Malik, 1997) is a theoretic method for graph

partitioning. Its goal is to find a balanced cut in a graph, in order to generate two or more

subgraphs. This technique solves the problem stated by Wu & Leahy (1993) in their minimum

cut criteria for graph cutting. Applying this method for image segmentation is possible with

a proper image-graph representation, where the subgraphs obtained from graph partitioning

represents the image regions. The NCut in a graph G is calculated by the following equation:

NCut(A, B) =
Cut(A, B)

SumCon(A, V)
+

Cut(A, B)

SumCon(B, V)
, (4)

where A and B are the node subsets of subgraphs GA and GB, subject to A ∪ B = V and

A∩ B = ∅; Cut(A, B) is defined in Equation (3); SumCon(A, V) is the total weight of the edges

connecting nodes from a subgraph GA to all nodes in the original graph G; and SumCon(B, V)
is similarly defined to a subgraph GB.

The optimal NCut is the one that minimizes Equation 4. The problem in minimizing Equation

4 is that it is only trivial for small graphs. For bigger graphs, it has a NP-Complete complexity.

Shi & Malik (2000) extended this equation and found a well-known equation in linear algebra

called the Rayleigh Quotient. It can be minimized using spectral graph properties of the

395Combining Hierarchical Structures on Graphs and Normalized Cut for Image Segmentation
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graph’s Laplacian Matrix described by Fiedler (1975), i.e., its minimum value is λ2, the second

smallest eigenvalue (Golub & Loan, 1989).

The graph partitioning is guided by the eigenvector v2, where each value v2[i] will represent

a graph node i. To split a graph, a threshold value is used and the graph nodes are partitioned

in two subsets. The most common threshold values are zero, the median value in v2 or the

one that minimizes the NCut value.

3.3 Similarity Graph

In a Similarity Graph the edge weights represent the degree of similarity between the linked

nodes. For graphs that represent images, the similarity can be determined by a function of

intensity, position and other image pixels features. A measure of similarity regarding the

intensity and the position of image pixels is given by (Shi & Malik, 2000):

WIP(i, j) =

⎧

⎪

⎨

⎪

⎩

e
−

( α2

dp

)

−

( β2

di

)

, if α2 < r

0, Otherwise

, (5)

where α =
∣

∣|Pi − Pj|
∣

∣ and β =
∣

∣|Ii − Ij|
∣

∣ are respectively the distance and the difference of

intensity between pixels i and j; r is a given distance (also called graph connection radius);

and dp and di are set as the variance of the image pixels positions and intensity. This grouping

cue used separately often gives bad segmentations because some natural images are affected

by the texture clutter.

The intervening contours is another measure to evaluate the affinity between two nodes by

measuring the image edges between their correspondent pixels. The intervening contour

similarity function is given by (Cour et al., 2005):

WC(i, j) =

⎧

⎪

⎨

⎪

⎩

e
−

(max(x ∈ line(i,j)) ε2

dc

)

, if α < r

0, Otherwise

, (6)

where line(i, j) is a straight line joining pixels i and j and ε =
∣

∣|Edge(x)|
∣

∣ is the image edge

strength at location x.

These two grouping cues can be combined as (Cour et al., 2005):

WIPC(i, j) =
√

WIP(i, j)WC(i, j) + WC(i, j). (7)

3.4 Related work

There is a wide range of recent work in image segmentation using the Normalized Cut

technique. The contributions are focused on improving the algorithm performance, others

on proposing different image-graph modelling and others on the application of this technique

for real-world applications.
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In several works, the image model used is the similarity graph built by taking each image

pixel as a node. In this case, the node pairs within a given radius r are connected by an edge.

This graph will be explained in the next section.

Monteiro & Campilho (2008) proposed the Watershed Normalized Cut, which uses the

regions from the Watershed image segmentation as nodes for the similarity graph. The

Watershed region similarity graph is either used by Carvalho et al. (2009) for comparison with

the primitive pixel affinity graph in yeast cells images segmentation. Ma & Wan (2008) used

Watershed based similarity graphs to segment texture images.

The primitive normalized cut enhancement was also studied and applied by many

researchers. Cour et al. (2005) proposes a Normalized Cut adaptive that focus on the

computational problem created by long range graphs. The authors suggested the use of

multiscale segmentations, decomposing a long range graph into independent subgraphs. The

main contribution of this technique is that larger images can be better segmented with a

linear complexity. Sun & He (2009) proposed the use of the multiscale graph decomposition,

partitioning the image graph representation at the finest scale level and weighting the graph

nodes using the texture features.

Tolliver & Miller (2006) suggested an improvement of the normalized cut technique. They

proposed the use of the k first eigenvectors for graph partitioning as the k-way Normalized

cut. The difference is that these eigenvectors modify the edges weight in the graph,

resulting in new graph matrices, and the k first eigenvectors are calculated again in the new

Laplacian Matrix. The authors proved that this procedure changes the k first eigenvalues to

zero. Spectral graph theory concepts about the Laplacian matrix informs that the number
of eigenvalues equal to zero shows the number of connected components in a graph.

Their algorithm returns these connected components. Cour et al. (2005) suggested another

improvement by dividing the graph in scales and processing them in paralell. This approach

can segment large images graphs with high conections with linear complexity.

Tao et al. (2008) proposed a new image thresholding technique using the normalized cut. The

graph similarity matrix proposed is now based on pixel gray levels, reducing the matrix size

and the computational cost. So, a new matrix M is created, where M(i, j) = Cut(Vi, Vj)
with i and j being two given gray levels. Using this matrix, the normalized cut is then

calculated to each threshold value, If the normalized cut related to a given threshold value

t is below a prespecified value, this threshold value is adequate to separate the objects from

the background in this image.

Grote et al. (2007) suggested the normalized cut for extracting roads from aerial images. In

their graph, pixels are the graph nodes and the similarity matrix uses contours, hue and color

in the image pixels. this approach uses the k-way normalized cut, with k being large to avoid

road and non-road pixels mixture. Senthilnath & Omkar (2009) compared this technique with

other state-of-art road extraction approach, proving that the normalized cut based technique

works better. Other normalized cut aplications in the literature are the noise reduction in

images by Zhang & Zhang (2009) and the colour image segmentation by Tao et al. (2008).
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4. Normalized Cut segmentation workflow

Given an image I, we build a similarity graph G = (V, E, W), from Quadtree and/or

Component Tree representations. The image segmentation process based on Normalized Cut

technique can be applied by two distinct methods: recursive Two-way and K-Way. The block

diagram presented in Fig. 4 illustrates the complete image segmentation process.

Fig. 4. Workflow of the image segmentation technique based on Normalized Cut.

The similarity graph obtained from Quadtree and Component/Reverse Tree representations

is done according to the details explained previously and its parameters are described in

Section 5. They have hierarchical information that is exploited in the graph cut process. The

eigenvectors of the Laplacian matrix are obtained from the solution of the following equation:

(D − W)v = λDv. (8)

At this moment, it is possible to use only the second eigenvector v2 in order to provide two
partitions of the graph G and reapply the process to obtain recursively a large number of

partitions. A partition should be divided by analysing a specified cut value. This technique

is known as Recursive Two-Way NCut. In the other hand, it is possible to discretize the k

first eigenvector X, were X = [v1, v2, . . . , vk] and use them directly to implement the graph

partitioning into k desired partitions. This partitioning process is called K-Way Cut and

corresponds to the block sequence presented in Fig. 4.

5. Experimental results and discussion

We have performed k-way Normalized Cut segmentation in 100 grayscale test images from

Berkeley Segmentation Benchmark1 (Martin et al., 2001). The goal of these experiments is to

compare the techniques for building the similarity graph based on Pixel Grid (Shi & Malik,

2000), Multiscale Pixel Grid (Cour et al., 2005), Quadtree (Carvalho, Costa & Ferreira, 2010), and

Component Tree (Carvalho, Costa, Ferreira & Cesar-Jr., 2010). Fig. 5 show a collection of 9

selected images.

The Berkeley’s benchmark rely on human image segmentations to state the segmentation

algorithms assertiveness, according to Precision (P) and Recall (R) metrics (Davis & Goadrich,

1 Available at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ (last accessed
September, 2011).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Selected images from Berkeley’s benchmark. (a) 3096. (b) 21077. (c) 42049. (d) 85048.
(e) 97033. (f) 119082; (g) 147091. (h) 167062. (i) 241004.

2006; Martin et al., 2001). Precision is the probability that a pixel marked as a border is in fact

a border pixel, and is given by

P =
TP

TP + FP
, (9)

where TP is the number of true positives, and FP the number of false positives. The precision

P decrease as increases the number of false positives. Recall, also called hit rate, is the

probability that the border pixels marked by the machine are the same as the border pixels

marked by humans, and is defined as

R =
TP

TP + FN
, (10)

where FN is the number of false negatives.

These two metrics are summarized in the F-measure (Davis & Goadrich, 2006)

F = 2 ·
P · R

P + R
, (11)
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that is used as the score metric by Berkeley’s benchmark to ranking the algorithms

effectiveness.

5.1 Experiment setup

The experiments were perfomed according to the workflow presented in Section 4 with k-way

method. The connection radius for the Pixel Grid graph was r = 10 and the edges weights

were given by Equation (6). For the Multiscale Pixel Grid approach were used one radius for

each scale, which were r1 = 2, r2 = 3 and r3 = 7 and the edge weights were given by Equation

(6). The Quadtree weights were also given by Equation (6), and their radii given as

ri,j =
1

2
max(v

φx
i + v

φx
j , v

φy
i + v

φy
j ) + k, (12)

where v
φx
i and v

φy
i are repectively the horizontal and the vertical diameter of region

correspondent to node vi ∈ V; v
φx
j and v

φy
j are similarly defined for node vj ∈ V; and k = 10.

The Component Tree was generated with radius r = 25 for the subgraphs. The attributes used

to build our CT similarity graph were difference of area, distance, standard deviation of the

gray levels and density. For the edges that links the subgraphs, the weights were multiplied

by a factor given by the following equation:

f =
NCFi + NCFj

2 + |d(i)− d(j)|
, (13)

where NCFi and NCFj are the number of CCs of the cross-sections that has the nodes i

and j respectively; and d(i) and d(j) are the degrees of nodes i and j respectively, related

to the CT. After the CT segmentation procedure the various partitions generated for each

image were converted to a single one by two distinct approaches: manually by selecting the

partition that seemed to be the better image segmentation by a criterion of resemblance to the

original image; automatically by merging pairs of partitions with highest mutual information

iteratively. These approaches sets our experiments on image segmentation based on CT as

semi-automatic or automatic procedures.

5.2 Results, discussion, and future works

The Berkeley’s benchmark combine the individual scores from all segmentations of each

algorithm in a single final score that determine the algorithm overall ranking. In our

experiments the first place in the ranking was for the Multiscale Pixel Grid approach and the

last place was for the automatic Component Tree. Fig. 6 show the overall scores obtained for

each similarity graph method.

The segmentation scores for some individual images, however, are quite different from the

algorithm’s overall score. Fig. 7 show the individual scores for each image with each

algorithm. We can observe that even the automatic CT approach, which is the worst ranked

algorithm, has the highest score to about ten images. A similar result was obtained by the

Semi-automatic CT approach. Put together, they account for 20% of the better scores for

individual images. Not surprisingly, they also have the highest overall Recall, 0.65 and 0.64
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Fig. 6. Algorithms overall ranking. The two values between parenthesis at the right box
represent (R,P).

for automatic and semi- automatic methods, respectively, against 0.60 for the best ranked

algorithm.
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In the chart shown at Fig. 7 one can yet observe a clear trend for the Multiscale and

the Quadtree approaches to follow the scores obtained by the classical Pixel Grid method:

Multiscale with a little better, and Quadtree with a little worse scores. We can associate this

trend to the fact that these algorithms are using the same similarity function.

Despite these quantitative analisys, it is also important to make a qualitative analisys of the

segmentation results. Thus, are shown in Fig 8 one machine segmentation for each image

shown in Fig. 5, and its human segmentations.

The computational performance is also an important requirement for the Normalized Cut

technique. When Cour et al. (2005) proposed the Multiscale approach to generate the

similarity graph, one main objective was to reduce the NCut computational cost. It is also

the objective of the Quadtree approach. Fig. 9 show a chart with the time each algorithm

took to process the segmentation. There is a strong correlation between the Component Tree
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Fig. 8. Selected segmentations. (a) 21077 and (c) 85048 segmentations by Quadtree method.
(f) 3096 and (h) 167062 segmentations by Semi-automatic Component Tree method. (i) 119082
and (k) 147091 segmentations by Component Tree method. (n) 42049 and (p) 241004
segmentations by Multiscale Pixel Grid method. (r) 97033 segmentation by Pixel Grid
method. (b) 21077, (d) 85048, (e) 3096, (g) 167062, (j) 119082, (l) 147091, (m) 42049, (o) 241004,
and (q) 97033, human segmentations from Berkeley benchmark.
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and the Quadtree methods. That indicates that they are similarly sensitive to the image’s

data, but their overall performance are, respectively, the lower and the higher ones. The

overall performance of the Multiscale algorithm is higher than the overall performance of the

Pixel Grid algorithm, but is lower than the performance of the Quadtree method. Despite the
lower performance, only the Component Tree can generate multiple image partitions at once.

This problem can be alleviated by implementing the Najman’s (Najman & Couprie, 2006) fast

algorithm to build the Component Tree.
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Fig. 9. Algorithms performance. (a) execution time for each image. (b) number of nodes in
the similarity graph for Quadtree representation.

The chart in Fig. 9(b) show the number of nodes in the similarity graph generated by the

Quadtree approach. Notice that the number of regions in the graph has direct impact to the

algorithm’s performance.

For future works we see that the Component Tree is the most promising method, despite

its worst effectiveness and efficiency. Its implementation can be improved to reduce the

computational cost. A more detailed study about the similarity criteria has the potencial of

reducing the false positive rate.

There are future works for the Quadtree approach as well. Once the nodes represent regions

instead of pixels, the study of texture and other region-based similarity criteria would improve

the method effectiveness. It is also reasonable to explore further the hierarchical information

of the Quadtree, that would lead the design of a new multiscale approach.
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6. Conclusion

In this Chapter we proposed an approach to implement image segmentation based on graph

modelling and Normalized Cut technique. Performing graph partitioning by means of

Normalized Cut has been widely used in the specific literature. The possibility of generate

balanced partitions has shown that this approach is efficient. The proposed similarity graphs,

build from the Quadtree and Component Tree structures, proved promising compared to the

traditional modelling based on pixel similarity graph. We performed comparisons using

two-well established metrics, the Precision and Recall values. An additional aspect to be

considered in the proposed graph models is exploring the hierarchical structures of both,

Quadtree and Component Tree. Besides, we exploit a little more the Component Tree and

proposed the Reverse Component Tree as a way to better represent the information contained

in the image cross-sections.

The experimental results accomplished on images from the Berkeley Database show that use

regions, or primitive regions to be specific, instead pixels seems to be a better strategy to

segment images by Normalized Cut approach. In addition, the new image representation had

the advantage of reducing the number of graph nodes and, therefore, improved the algorithm

performance.
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