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1. Introduction 

Graph theory is birth in 1736 with the publication of the work of the Swiss mathematician 
Leonhard Euler on the problem of finding a round trip path that would cross all the seven 
bridges of the city of Königsberg exactly once (Euler, 1736). Since then, this theory has 
known many important developments and has answered to a lot of practical issues. Today, 
the graph theory is considered as an essential component of discrete mathematics. It aims at 
analyzing the structure induced by interactions between a set of elements and to study the 
resulting fundamental properties. Graph theory occurs as a fundamental and theoretical 
framework for analyzing a wide range of the so-called real-world networks in biology, 
computer sciences, multi-agent systems, chemistry, physics, economy, knowledge 
management, and sociology. In many works, graph models are employed as constructive 
descriptions to represent and understand the behavior of different complexe systems 
(Molloy and Reed, 1998; Mieghem et al., 2000; Newman, 2003; Kawahigashi et al. 2005; 
Jurdak, 2007). In such models, the graph vertices stand for the components (nodes) of the 
network that encode information about the values of the state variables of the dynamical 
system and the edges represent the mutual relationships between the correspondent end-
nodes. In practice, random graph theory has become increasingly important for modeling 
networks whose behaviors exhibit nondeterministic looks. In recent years, many significant 
results have used random graph models to explain, replicate and simulate the behavior of 
dynamic real-world networks (Hekmat and Van Mieghem, 2003; Kawahigashi et al., 2005; 
Durrett, 2006; Onat et al., 2008; Hewer et al., 2009; Hamlili, 2010; Trullols et al., 2010). 

To provide a convenient way to represent and analyze dynamic networks by dynamic 
random graphs, it is very important to clarify how the model of random graphs should 
explain the behavior of change in the topology of the network. Thus, we introduce some 
stochastic processes (times of graph change, graph configurations, degree number at a 
chosen vertex …) in order to attempt to account for the observed statistical properties in 
graph dynamics. Therefore, we will try to highlight the basic mathematical operations that 
transform a graph into other one to make possible describing the dynamic change of graph 
configurations. In this objective, different concepts and notation are introduced in the 
preliminary sections and will be used throughout the chapter. A reader familiar with the 
common topics in general graph theory may skip ahead. However, he may use it as 
necessary to refer to unknown definitions or unusual notations. Also, a particular attention 
is agreed to Erdös-Rényi’s random graph model (Erdös and Rényi, 1960; Bollobàs, 2001).  
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2. Preliminary concepts 

This section is a short introduction on graph theory. It will review the basic definitions and 
notation used throughout all this chapter.  

2.1 Graphs 

A classical graph is a static structure of a set of objects where some pairs of these objects are 
connected by one or several directed or undirected links. In this chapter, we assume that 
there is no multiple links between a pair of objects and the orientation of the links doesn’t 
play a decisive role. 

Definition 1 

An undirected simple graph or simply a graph G can be defined as a pair  ,G V E  of two sets: a 

nonempty set V of elements called vertices, and a set   2, /E u v V v u    of unordered pairs of 

vertices. The elements of E are called edges.  

Since the graph is undirected,  ,u v  and  ,v u  designate the same edge which we write 

simply uv . Furthermore, the assumption “simple” states the fact that between two given 

vertices, we cannot pass more than a single edge. 

Definition 2 

If S denotes the cardinality of a set S, the number of vertices N V  and the number of 

edges M E  of a graph  ,G V E  define respectively the order and the size of this graph. 

Furthermore, we assume in this chapter that graphs can be finite or infinite according to 
their order and such that the sets of vertices and edges can’t be jointly or separately empty.  

Definition 2 

Let  ,G V E  and  * * *,G V E  be two graphs. We say that *G  is a host for G or equivalently G is 

a subgraph of G*, if and only if *V V  and *E E . 

Definition 3 

A graph  ,G V E  is called a weighted graph if and only if a positive function (or weights) can be 

defined on the set of edges E.  

Depending on the underlying area of application, such weights might represent 
probabilities, costs, lengths, capacities, or other positive quantities having a particular 
meaning. In the general weighted graph version, both vertices and edges can be weighted. 

2.2 Neighbors, neighborhood and connectivity 

Routing problems are among the oldest problems in graph theory. They are generally based 
on the hypothesis of connectivity. Let us note that the concepts of neighborhood and path 
are the most typical ideas associated to the connectivity assumption. 
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Definition 4 

A neighbor of a vertex u is any vertex v such that uv E .  

We note  GN u  the set of direct neighbors of u (also called the neighborhood of u). e.g. 

    GN u  = v V|  uv E     (1) 

Inversely, two vertices u and v of a graph G are said to be adjacent, if  Gv N u . The closed 

neighborhood of u is denoted      G GN u N u u   and for a set S V , the closed 

neighborhood of S can be defined as    G G
u S

N S N u


  . By analogy, two edges are called 

neighbors if they have an end-vertex in common. In addition, pairwise non-adjacent vertices 

or edges are called independent. If all vertices of a subset S V  are pairwise adjacent, S is 

called a complete subset or a clique. 

Definition 5 

On a given graph  E,VG   we can define a path v,u
between a pair of vertices u and v if and only 

if there is a sequence of vertices (or walk) 
vu,u,,u,uu jjii   11 

 such that 

1 1k ku u E, k i..j    
 

where the vertices u and v are called end-vertices of the path.  

An elementary path is a path such that when all the vertices are sequentially visited, a same 
vertex is never met twice. A path such that the end-vertices coincide is called cycle. An 
elementary cycle is a cycle such that all the vertices have exactly two neighbors. The concept 
of path is behind the notion of connectivity. In the rest of this chapter, we note ,u vP  the set 

of all paths between the vertices u and v. 

Definitions 6 

Let G be a simple graph, 

i. A pair of vertices  ,u v  of G is called connected if G contains a path connecting u to v. 

Otherwise, they are called disconnected. 
ii. A graph G is called connected if any pair of vertices of G is connected. Otherwise, it is called 

non-connected. 

To achieve a fully connected graph G, there must exist a path from any vertex to each other 
vertex in the graph.  

The path between the source vertex and the destination vertex may consist of one hop when 
source and destination are neighbors or several hops if they aren’t directly connected by an 
edge of G. The hopcount specifies the number of hops through a path between two vertices. 
This measure is meaningful only when there is a path between the source and the 
destination. The average hopcount of a graph is the average value of the hopcount between 
the end-vertices of all the possible paths.  
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Furthermore, in a non-connected graph there is no path between at least one source-
destination pair of vertices. Hence, a non-connected graph consists of several disconnected 
clusters and/or vertices. Thus, routing is only possible between the different vertices of a 

same cluster. 

Definitions 7 

Consider a weighted graph G,  ,u v  a pair of vertices of G and let w be the weight function defined 

on G, the weight assigned to a path ,u v  can be computed as the sum of weights assigned to its 

edges. i.e. 

    
_ 1

, 1 1 , 1, , , ,
j

u v i i j j u v k k
k i

u u u u u v w w u u  


        (2) 

2.3 Matrix representation of graphs and degree function of vertices 

The topological structure of the graph  ,G V E  can alternatively be described by a V V  

adjacency matrix  , ,G u v u v V
A a


  such that each entry is either 0 or 1 

 
 if

else
,

1         

0  
u v

v N u
a

  


 (3) 

where , 1u va   signifies that uv is an edge of G. i.e. uv E .  

Definition 8 

The degree of a vertex u is the number of its direct neighbors 

    G Gd u N u  (4) 

Proposition 1 

Consider an undirected graph  ,G V E  and  , ,G u v u v V
A a


  its adjacency matrix, then 

   ,G u v
v V

d u a


   (5) 

The two last equations (4) and (5) are equivalent by definition of the matrix GA . They 

induce a function Gd  from V to N (the set of nonnegative integers) called the degree function. 

Particularly, a vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called 
a leaf. 

3. Random graphs 

Another theory of graphs began in the late 1950s. It was baptized random graph theory in 

several papers by Paul Erdös and Alfréd Rényi. As a real-world network model, the Erdös-

www.intechopen.com



 
Techniques for Analyzing Random Graph Dynamics and Their Applications 

 

191 

Rényi’s random graph model has a number of attractive properties (Bollobàs, 2001). This 
model is exceptionally quantifiable; it allows an easy calculation of average values of the 
graph characteristics (Janson et al., 2000; Hamlili, 2010).  

In this section, we want introduce in first a generalization of the concepts of the theory of 
random graphs. This generalization is intended to describe the issues in applicative 
frameworks where the number of the graph vertices can vary randomly (number of 
communicating entities in a wireless ad hoc network, number of routers in the Internet, etc). 
Also, we will show that most classical models, such as those of Erdös-Rényi random graphs 
and geometric random graphs can be derived as special cases of the model that we put 
forward as a generalized alternative. 

3.1 Generalized random graph model  

Intuitively, a generalized random graph representation can be defined in a simple way 

using the fully weighted graphs.  

Definition 9 

Consider a non-empty set  , called the set of possible vertices and  , ,u v u v
p


P  a symmetric 

    matrix of probabilities. We call generalized random graph a graph G where each vertex u is 

generated with the probability  , 0,1u up  , and where for all two existing vertices u and v, the edge 

uv is built with a probability  , 0,1u vp  .  

Let  PG  be the collection of all possible graphs made on the set of possible vertices   

such that the graph vertices u are generated independently with the probabilities ,u up and 

edges uv are built independently in   with the respective probabilities ,u vp . i.e. 

      , ,: Pr , : Pru u u vG u u V p u v v u uv E p           PG
 

This definition of random graph models is very general. We should note that, if G is a 

generalized random graph, 

  ,G V E V E V V        (6) 

As will be discussed later, this way of modeling a random graph will represent 
opportunities for characterizing complex situations where classical models such as Erdös-
Rényi model are not satisfactory. 

Definition 10 

The extended adjacency matrix  , ,u v u v
A a


 associated to a graph  ,G V E  of the model 

 PG  is a    matrix such that ,u va
 
is independent equal to 1 if  the pair of vertices uv 

belongs to E knowing that u and v belong to V and 0 otherwise. 
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3.2 Practical examples  

Different particular cases can be identified and as stated above, in different contexts it may 
be useful to define the term random graph with different degrees of generality. Hence, the 
generalized model can describe random geometric graphs (Steele, 1997; Barabasi and Albert, 
1999; Penrose, 1999).  It suffices to consider G such thatV   and the edge probabilities  

  




 


otherwise    0

0  if     1 Rvu
vupp v,u

 
(7) 

In this model, ,u vp  depends on the Euclidean distance u v  between the geometric points 

locating the vertices u and v.  

        , , : Pr 1  if    and  Pr 0  if   R V G V E E V V u v V vu E u v R vu E u v R            G  

This model is very interesting and as such it can formalize the framework of mobile wireless 

ad hoc networks where the connectivity of the network depends on the geometric positions 

of the communicating nodes and a radio coverage range which is generally supposed the 

same for all the network nodes. In such networks, the random dynamics of the associated 

graph is induced by the mobility of nodes. 

Another example is the random graph model initiated by Erdös and Rényi in the 1950s. This 
kind of graphs can be represented by a generalized model where the set of vertices is not 

random (it is constantly the sameV   ) and all the graph pairs of vertices are connected 

with the same probability ,u vp p . Thus, let V a nonempty set of vertices, we can define the 

collection  p VG  of all possible graphs made on the set of vertices V, such that the graph 

edges are built independently in V V  with a probability p. i.e. formally, we can write 

      , , : Prp V G V E E V V v w V v w vw E p        G  

This model was be used in most areas of science and human activities in biology, chemistry, 

sociology, computer networks, manufacturing, etc. In a random Erdös-Rényi graph with N 

vertices, the edges are independently and randomly built with a probability p between the 

 1 2N N /   possible edges of the full mesh graph. This definition builds the binomial 

model  p VG  of random graphs, also referred as Erdös-Rényi model (Bollobàs, 2001). 

Proposition 2 

Consider a nonempty set V, a real p in  0,1  and a random graph G on V. Let N V  be the order 

of G and M be the random order of G, then 

     
2

Pr 1

N
m

m
pM m G V p p

 
 
  
 



   G  (8) 

and 
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   1

2

N N
E M  = p 



 
(9) 

Proof 

The set  p VG  has 
2

N 
 
 

 random graphs with equal probabilities. In consequence, each one 

can be chosen with a probability equal to 

1

2

N


 
 
 

. Thus, on one hand, 

    

 

1 2

2

Pr 1
2 2

              1

N
m

m
p

N
m

m

N N
M m G V p p

p p

 
 
  
 

 
 
  
 





   
      

   

 

G
 

On the other hand, the number of edges M in a random Erdös-Rényi graph is a random 

variable with an average value equal to 

   
   

2

1
1

21

0

2 



















NN 
p ppm =ME

NN

m

m
N

m

 

3.3 Degree distribution  

As defined above, the degree function Gd  on the graph vertices returns the number of 

vertices directly connected to the considered vertex. Thus, the degree distribution measures 

the local connectivity relevance of the graph vertices. In a generalized random graph model, 

the degree distribution can be set depending on the wished point of view. Its general form is 

defined by  

  Prk Gp d u k      (10) 

3.3.1 Binomial model and Poisson approximation 

In particular, in the Enrdös–Rényi representation  p VG , the theoretical degree distribution 

of any vertex u is defined by a binomial distribution (Bollobàs, 2001) 

 

  11
1

V kk
k

V
p p p

k

  
  
 

 
(11) 

when the number of vertices V  is small. Otherwise, from the limit central theorem (LCT), 

the binomial distribution is approximately Gaussian with parameters 
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   
     2

1             the mean

1 1    the variance

V p

V p p





  


  
 (12) 

But the Gaussian distribution is continuous, while the binomial distribution is discrete. 

Thus, sometimes when V  is large and under certain special assumptions we prefer the 

Poisson approximation to the LCT approximation. 

Proposition 3 

When the graph order is large, the degree distribution is in the order of  

 
!

k

kp e
k

 
 (13) 

where p is small and V  is sufficiently large.  

Proof 

When the graph oder V  is large, we can also write the degree density as 

 
1

1
Pr 1

1 1 !

k V k
kV

d u k e
k V V k

  
 

    
                    

where p is small and V  is sufficiently large. This shows the equation (13). 

More generally, this approximation is known in probability theory as the De Moivre's 
Poisson approximation to the Binomial distribution. Indeed, the Poisson distribution can be 
applied whenever it is dealing with systems with a large number of possible events such 
that each of which is rare.  

Thus, it is in the order of things to note that the main advantage of the Enrdös–Rényi models 
comes from the traceability of calculations and the simplicity of parameter estimation. A 
form or another of this model will be applied as and when it's required. 

3.3.2 Power-law models 

The traditional model of Erdös and Rényi is not a universal representation for all the 
random graph behaviors. Sometimes, in many natural scale-free networks (such as World 
Wide Web pages and their links, Internet, grid computer networking, etc), despite the 
randomness of the resulting graphs, experimental studies have revealed that the degree 
distribution can have a pure power-law tail (Albert et al., 1999; Barabàsi and Albert, 1999; 
Faloutsos et al. 1999) 

 kp k  
 (14) 

where 0   is a scaling constant and 0   is a constant scaling exponent. Scale-free 

Barabàsi-Albert random graphs are generally built through a growth process combined to a 
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profile of preferential attachment to existing vertices (Barabàsi and Albert, 1999). Although 
such graphs have a large number of vertices, the degree distribution deviates significantly 
from the Poisson law expected for classical random graphs (Barabàsi and Albert, 1999). 
Other forms of degree distribution with a power-law tail have been studied (Amaral et al., 
2000; Newman et al., 2001) 

 

expk

k
p C k 


    

 
;  for 1k   (15) 

where C is a constant fixed by the requirement of normalization,  is the constant scaling 

exponent, and  is a typical degree size from which the exponential adaptation becomes 
significant. 

In scale-free graphs, the parameters estimation of the degree distribution has to be obviously 
adapted to each specific case of power-law. In general, the distribution coordinates have to 
be converted into the logarithmic scales and then apply a method such as least-square 
method. 

4. Random Graph Dynamics (RGD) 

In classic graph theory a graph is simply a collection of objects connected to each other in 

some manner. This description is very restrictive. In fact, the notions of random graph 

theory have been introduced in the objective to produce better models and more complete 

tools to represent non deterministic looks of configurations of a dynamic network. Here 

again, the language of random graphs is used simply to relate the graph structure of the 

different network situations. This language must be completed by defining a number of 

indispensable operations in order to introduce a basic mathematical framework for graph 

dynamics modeling. 

Definition 11 

A dynamic graph is a graph such that its configuration (or topology) is subject to dynamic changes 
with time.  

Hence, it goes without saying that the topology changes induced by the random graph 

dynamics are made through a number of fundamental operations that affect only the set of 

edges E. 

4.1 Random change process 

Generally, we can define several kinds of graph dynamics. The following contexts are the 
basic ways of defining this kind of behavior: 

 Vertex-dynamic graph model: the set of vertices varies with time. In this context 
vertices may be added or deleted. However, we must be careful in this case to the edges 
such that an end-vertex is removed. They should just be deleted too. 

 Edge-dynamic graph model: the set of edges E varies with time. Thus, edges may be 
added or deleted from the graph. In this case, there are no consequences to fear on the 
set of vertices.  
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 Vertex-weighted dynamic graph model: the weights on the vertices vary with time. 

 Edge-weighted dynamic graph model: the weights on the edges vary with time. 

 Fully-weighted dynamic graph model: the weights on both vertices and edges vary 
with time. 

Thus, we consider at first a model of dynamic graphs that combines all these aspects 
together. A such random dynamic graph G can be defined as a stochastic graph process i.e. a 

collection of independent random graphs  tG t I G  where the parameter t is usually 

assumed to be time and which take values in a set I which can be continuous or countable 
(finite or infinite). 

In the widest sense, each graph tG  can belong to a different model  
t
PG . The set of all 

possible states is called the state space.  If the state space is discrete, we deal with a discrete 
state stochastic graph process, which is called a chain of graphs. The state space can also be 
continuous; we then deal with a continuous-state stochastic process. A similar classification 
can be made regarding whether the index set I is continuous leading to a continuous-time 
stochastic process or countable leading to a discrete-time stochastic process. Thus, a 
dynamic graph G is a representation which assumes that at any time t, there exists an 

instance  ,t t tG V E  that belongs to a model  
t
PG .  

To explain the changes in a dynamic random graph, we must often refer to events of 
presence, absence, addition, deletion, birth, death and structure of objects; where the term 
"object" refers to both vertices and edges of the graph. The following definitions clarify what 
do these events really mean and how can they be mathematically defined in the context of 
graph dynamics. 

Definition 12 

The weighted graphs  ;t tG P  thus defined are called instantaneous configurations of the random 

dynamic graph G.  

The random graph dynamics can be characterized by the ordered stochastic time process 

0 1 2 10 k kT T T T T         where the configuration changes of the random dynamic 

graph G are operated. Thus, a marked random graph process is defined such that, at the thk  

time of change k kT t , a     symmetric matrix   ,
,

k
k u v

u v
p


P of probabilities is selected 

and a graph (configuration)  ,k k kG V E  is chosen according to the random graph model 

 
k
PG .  

In this model, the diagonal entries of the matrix kP represent the probabilities to select, at 

time kt , the vertices of kV  individually in   and the off-diagonal entries of this symmetric 

matrix represent the probabilities to activate the edges between two given vertices of kV . 

Both the sets of vertices and edges in the graph configuration process are chosen as 
temporary. Thus, between two existing end-vertices u and v an edge is selected with the 

temporary probability  
,
k

u vp . Both the vertices and the edges of a dynamic random graph can 

be seen as subject to dynamic random changes.  
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This type of model is very interesting for modeling dynamic networks where the parameters 

are all temporary. As examples, we can mention routers and links of the Internet, friends in 

web social networking, communicating nodes in mobile wireless mobile ad hoc networks 

that use essentially the methods of broadcast. 

4.2 Change operations 

In this section, the studied approaches are classified according to their own definition in the 

context of graph dynamics. The RGD is said low when only few elements (number of 

vertices, number of edges, building edges probability, vertices clustering …) change over 

time. Otherwise, the dynamics is strong. Furthermore, there are several operations that 

build new graphs from old ones. They might be characterized through a number of 

descriptor events and basic transforms.  

Definition 13 (Presence) 

In a dynamic graph G, an object is present at time t if it belongs to the instance Gt of G.  

Thus, a vertex u is present at time t, if and only if tu V . Similarly, an edge uv is present at 

time t, if and only if tuv E knowing that both u and v belong to tV . 

Definition 14 (absence)  

In a dynamic graph G, an object is absent at time t, if it does not belong to the instance Gt of G. 

Operating dynamic changes on a random graph consists of a series of graph modifications 

(weight, vertex or edge adaptations). In contrast, the dynamicity analysis is more effective 

when all combination of additions and deletions of edges and vertices are taken into 

account. 

Definition 15 (Addition) 

An object appears in the dynamic graph G, if it transits from the state absent to the state present. 

From an operational perspective, this definition should be clarified. Let u and v be two 

vertices of G such that uv is not an edge of G, the addition of the edge uv to the graph G is 

defined by the operation 

   ,G uv V E uv    (16) 

Now, there are two ways to add a new vertex to a graph. One way is to add an isolated 
vertex to the graph G, i.e. 

   ,G u V u E  


 (17) 

and the other is to add a new vertex u which will be connected to an existing vertex v of the 
graph G, i.e. 

 
    ,

v
G u V u E uv   



 (18) 
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From the algorithmic point of view this last operation (18) can be seen as a composition of 

the two previous ones (16) and (17). Also, note that any instance  ,G V E  of the model 

 PG  has a host  * ,G E   which is defined by adding to the graph G isolated vertices 

taken in V  

 

*

u V
G G u


 


 

(19) 

Thus, we conceive that the adjacency matrix of *G  is obtained by completing the adjacency 

matrix of G by 0. This matrix will be called in the rest of the chapter extended adjacency matrix 

of G. The advantage of working with the host graph *G  can be viewed rather as freeing from 

the assumption that the set of vertices of a random dynamic graph varies with time. But the 

downside of this alternative is that the graph model can exhibit needlessly an excessively 

large order or incomplete information. 

Proposition 4 

Let V  be two nonempty sets such that  E,VG   be a graph and  E,G*   be a host for G. 
Then 

  
v

G u G u uv   
 

 (20) 

Proof 

This property results trivially from the definitions corresponding to the operations 


and 




. 

Definition 16 (Deletion) 

An object disappears (or is deleted) from the dynamic graph G, if it transits from the state present to 
the state absent. 

In these terms, the edge deletion can be formalized as follow. Let u and v be two vertices of a 
graph  E,VG   such that uv is an edge of G, the deletion of the edge uv from the graph G 

is defined by the operation 

   uvE,VuvG   (21) 

On another hand, the vertex deletion can be defined  

    
  















uNv

uvE,uVuG  (22) 

Indeed, the deletion of the vertex u induces the deletion of all the edges having u as end-

vertex. 

Definition 17 (Birth) 

The birth of an object is the date of  its first appearance in the dynamic graph G. 
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Formally, the birth of a vertex u is the date u
  of its first occurrence 

  minu tt u V     R  (23) 

and the birth of an edge e is the date u
  of its first occurrence 

  mine tt e E     R  (24) 

Definition 18 (Death) 

Death of an element is the date for the last deletion of this element from the dynamic graph G. 

Thus, the death of a vertex is the date 

u  of its last occurrence 

  maxu tt u V     R  (25) 

and the birth of an edge e is the date e
  such that 

  maxe tt e E     R  (26) 

Definition 19 (Structure) 

A structure S of a graph consists in a dynamical set of elements that satisfies a given property.  

A path, a click and a cluster are all examples of structures. Let us note that from the random 
viewpoint the succession of graph transforms and structure updates that convert a 
configuration of the dynamic graph in another one are not known in advance. 

4.3 Graph topology changes in RGD 

Remark that between two consecutive changes of the graph configuration recorded at kT  

and 1kT  , the extended adjacency matrix  k
A  of kG  remains unchanged all through the 

interval  1,k kT T  . Thus, the dynamicity of the graph topology can be characterized by the 

variation of the extended adjacency matrix between 1kT   and kT  

      1k k k
A A A

    (27) 

where  k
A  is the extended adjacency matrix of the current configuration of the graph at 

time k kT t  and  1k
A


 is the extended adjacency matrix of the previous configuration at 

time 1 1k kT t   (with 1k kT T  ).  

4.3.1 Characterizing the change of the number of vertices 

We can define for successive configurations of the graph, the number of new vertices, the 

number of lost vertices and the number of maintained vertices respectively at k kT t  by 
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 
  , 0
k

u u

k

a
u


 


  1 ,  

  , 0
k

u u

k

a
u


 


  1   and  

  , 0
k

u u

k

a
v


 


  1  (28) 

where S1  indicates the characteristic function of the set S and  
,

k
u ua  symbolizes the 

diagonal term of the matrix  k
A  associated to the eventual vertices of the dynamic graph. 

Proposition 5 

Let G be a random dynamic graph following the model  
t
PG such that the configuration change is 

characterized by the stochastic time process 0 1 2 10 k kT T T T T        . Consider the 

extended adjacency matrices     ,
,

k k
u v

u v
A a


  of   ,k k kG V E  and  k

A  the matrix defined by 

the equation (27) . Then, 

  

       
            
       

1
, , ,

1 1
, , , , ,

1
, , ,

Pr 1 1

Pr 0 1 1

Pr 1 1

k k k
u u u u u u

k k k k k
u u u u u u u u u u

k k k
u u u u u u

a p p

a p p p p

a p p



 



    
      

     

 (29) 

Proof 

Since all trials are independent, each of the three probabilities can be decomposed as follows 

               
                

             
 

Pr Pr Pr Pr

Pr Pr

                      Pr Pr

                      Pr

1 1
, , , , ,

1 1
, , , , ,

1 1
, , , ,

,

1 1 0 1 0

0 1 1 0 0

1 1 0 0

k k k k k
u u u u u u u u u u

k k k k k
u v u u u u u u u u

k k k k
u u u u u u u u

k
u u

a a a a a

a a a a a

a a a a

a

 

 

 

        

             

        

           
               

Pr Pr Pr

Pr Pr Pr Pr

1 1
, , ,

1 1
, , , , ,

1 1 0 0

1 0 1 0 1

k k k
u u u u u u

k k k k k
u u u u u u u u u u

a a a

a a a a a

 

 









    


         


 

and because     1 1
, ,Pr 1
k k

u u u ua p
   ,     1 1

, ,Pr 0 1
k k

u u u ua p
    ,     

, ,Pr 1
k k

u u u ua p   and 

    
, ,Pr 0 1
k k

u v u va p    we have the result (29). 

Corollary 6 

Under the assumptions of the above proposition, and by supposing that the configuration process of 

the dynamic graph is homogeneous and that all the element of   can appear with the same 

probability   in a configuration of the dynamic random graph G, the triplet       , ,  
k k k    

follows a trinomial distribution of parameters 
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      2 2; 1 , 1 , 1           i.e. 

 

           31 2 2 2
1 2 3

1 2 3

!
Pr , ,  1 1

! ! !

nn nk k k
n n n

n n n
      

             
 (30) 

Proof 

On one hand, there are only three possible outcomes   , 1
k

u ua  ,   , 0
k

u ua   and 

  , 1
k

u ua    such that         , , ,Pr 1 Pr 0 Pr 1 1
k k k

u u u u u ua a a           and all trials are 

independent.  On the other hand, we have  discrete trials (relating the different situations 

in the set  ) and because the occurrence measures of graph vertex situations  k ,  k
 

and   
k  are interrelated by the equation       

k k k      , this means that we deal with 

a multinomial distribution of   trials and from the previous proposition (proposition 5) 

three outcomes with respective probabilities  

    
    
    

,

22
,

,

Pr 1 1

Pr 0 1

Pr 1 1

k
u u

k
u u

k
u u

a

a

a

 

 

 

    
     

     

 

This shows the required result in (30). 

Following this line of thinking, these results can be applied only if the number of the 

observed vertices varies with time. That is when the dynamicity affects the vertices of the 

dynamic graph. Otherwise, while the number observed vertices remain unchanged, we will 

show similar results in the next subsection under the assumption of dynamicity of edges. 

These two approaches are complementary. 

4.3.2 Characterizing the change of the number of edges 

First and foremost let us remain under the assumption of the general model  
t
PG  of 

dynamic graphs. In the context of connectivity, the number of edges connected to the same 

vertex defines its degree. Thus, from the uncertain connectivity viewpoint of dynamic 

random graphs, we can define locally for each graph vertex the number of new neighbors, 

the number of lost neighbors and the number of maintained neighbors respectively at 

k kT t  by 

 

 
  , 0
k

u v
k

k
u a

v V


 


  1 , 

 
  , 0
k

u v
k

k
u a

v V


 


  1  and  

  , 0
k

u v
k

k
u a

v V


 


  1  (31) 

www.intechopen.com



 
New Frontiers in Graph Theory 

 

202 

where S1  indicates the characteristic function of the set S and  
,
k

u va  indicates a generic 

entry of the matrix  k
A . Essentially, the knowledge, step by step, of the evolution of the 

local metrics  k
u  and  k

u   will allow us to determine a propagation equation of degree 

function at each vertex of the observed dynamic graph. 

 

Fig. 1. Connectivity metrics change for two simulated random dynamic graphs 

Proposition 7 

Let G be a random dynamic graph following the model 
 

tPG  and consider the configurations 

 k k
G

N
 of G associated to the stochastic time process 0 1 2 10 k kT T T T T        . If 

kGd denotes the underlying degree function to kG  

        
1

:
k k

k k
G G u uu d u d u  


       (32) 

Proof 

The proof of (32) results directly from the definitions of  k
u  and  k

u .  

We can also define global graph indices which reflect the global configuration changes of 
the dynamic random graph (see figure 1) 

www.intechopen.com



 
Techniques for Analyzing Random Graph Dynamics and Their Applications 

 

203 

 

   

k

k k
u

v V

 


  ,    

k

k k
u

v V

 


   and    

k

k k
u

v V

 


    (33) 

Under the condition of conservation of the number of vertices from a configuration to a 

successor one, we can establish a number of results for dynamic graphs under Erdös-Rényi 

model constrains. 

Proposition 8 

Let G be a random dynamic graph following the model  p VG such that the configuration change is 

characterized by the stochastic time process 0 1 2 10 k kT T T T T        . Consider the 

extended adjacency matrices     ,
, k

k k
u v

u v V
A a


  of   ,k kG V E  and  k

A  the matrix defined by 

the equation (27) and such that all the terms of its principal diagonal are equal to zero, then 

  

    
    
    

,

22
,

,

Pr 1 1

Pr 0 1

Pr 1 1

k
u v

k
u v

k
u v

a p p

a p p

a p p

    
     

     

 (34) 

Proof 

Since all trials are independent, each of the three probabilities can be decomposed such as 
follows 

               
                

             
 

1 1
, , , , ,

1 1
, , , , ,

1 1
, , , ,

,

Pr 1 Pr 1 0 Pr 1 Pr 0

Pr 0 Pr 1 1 0 0

                      Pr 1 1 Pr 0 0

                      Pr

k k k k k
u v u v u v u v u v

k k k k k
u v u v u v u v u v

k k k k
u v u v u v u v

k
u v

a a a a a

a a a a a

a a a a

a

 

 

 

        

             

        

           
               

1 1
, , ,

1 1
, , , , ,

1 Pr 1 Pr 0 Pr 0

Pr 1 Pr 0 1 Pr 0 Pr 1

k k k
u v u v u v

k k k k k
u v u v u v u v u v

a a a

a a a a a

 

 









    


         


 

and because      1
, ,Pr 1 Pr 1
k k

u v u va a p
    and      1

, ,Pr 0 Pr 0 1
k k

u v u va a p
     , we have 

the result (34). 

Corollary 9 

Under the assumptions of the above proposition, and by supposing that the random dynamic graph 

belongs to the  p VG  model, the triplet       , ,  
k k k    follows a trinomial distribution of 

parameters         2 21 2 ; 1 , 1 , 1V V p p p p p p     . i.e. 
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           31 2 2 2
1 2 3

1 2 3

!
2

Pr , ,  1 1
! ! !

nn nk k k

V

n n n p p p p
n n n

  


 
 
             

 (35) 

Proof 

First, note that all pairs of vertices u and v, there are only three possible independent 

outcomes   , 1
k

u va  ,   , 0
k

u va   and   , 1
k

u va   . Furthermore, we have 

        , , ,Pr 1 Pr 0 Pr 1 1
k k k

u v u v u va a a           

and all trials are independent. Subsequently, we have V discrete trials and since there are 

no other situations than those described above, the three measures of occurrence of graph 

edges  k ,   
k and  k  are interrelated and verify 

           1 2
k k k

V V        (36) 

Each of the  1 2V V   trials (off-diagonal generic entries of the symmetric matrix  k
A ) 

matches to one of the three possible outcomes with respective probabilities 

 
    ,Pr 1 1
k

u va p p    ,     22
,Pr 0 1
k

u va p p      and     ,Pr 1 1
k

u va p p      (37) 

Thus, by taking into account the results established by the equation (36) and the system (37), 

we can conclude that, the triplet       , ,  
k k k    follows a trinomial distribution of parameters 

        2 21 2 ; 1 , 1 , 1V V p p p p p p     . 

Corollary 10 

Under the assumptions of the proposition 8, the off-diagonal entries of the correlation matrix 

associated to       , ,  
k k k    are such that 

 

           
 

2 2

2

1
, ,

2 1

k k k k p p

p p
     

 
  

    

and       
 2

1
,

1

k k p p
ν

p p
 


 

 
 (38) 

Proof 

The corollary results from the general properties of the correlation matrix of a trinomial 

distribution of parameters         2 21 2 ; 1 , 1 , 1V V p p p p p p     . 

Note that the graph order  1 2V V   drop out of the off-diagonal entries of the 

correlation matrix associated to       , ,  
k k k   . 
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5. Parameter estimation of the random dynamic graph model 

The ultimate objective in random graph dynamics analysis is the estimation of the graph 

model parameters. In some respects, nearly all types of dynamic changes can be interpreted 

in this way. In the empirical study, for reasons of traceability of the calculations, we restrict 

ourselves to an homogeneous model  
t
PG  such that, there exists a non-negative real 

 0,1p ,  for all existing pair of vertices u and v  
,
k

u vp p . 

Furthermore, we assume that by some means a vertex may deduct its neighborhood set 

directly from information exchanged as part of edge sensing. This section aims to show how 

the model parameters of the random dynamic graph can be estimated.   

5.1 Dynamic graphs with known number of vertices and unknown edge probability  

The main goal here is to find the maximum-likelihood estimate (MLE) of the edge 

probability p when the number of the graph vertices N V  is known.  

Proposition 11 

Let G be a random dynamic graph following the model  p VG  and note p V   when p is small 

and V is large. Consider D the random variable counting the degree in a fixed vertex u of G and let 

1 2, , , sD D D be a s-sample formed by the degrees of u for s different configurations of the random 

dynamic graph at the graph change times 1 2 sT T T   . Then  

 

1
ˆ     if  is small

1
ˆ              if  is large

MLE

MLE

p D N
N

D N

  
   (39) 

Proof 

If the graph order N V  is small, from equation (11), the log-likelihood function of the 

degree distribution in a given vertex u is 

     1
1 1

1
, , , log log 1 log 1

1

s s

s i
ii i

N p
p N;D D D s N p

D p 

   
          
  

 

The MLE of p is obtained by solving the partial differential equation 
 1, , ,

0sp N;D D

p





 

 

i.e. 

 
1 1

ˆ
1 1

s

i
i

MLE

D

p D
s N N

 
 


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Now, if N is large, from equation (13), the log-likelihood function of the degree distribution 

in a given vertex u is      1
1 1

, , log log !
s s

s i i
i i

;D D D D s  
 

      

The MLE of  p is obtained by solving the partial differential equation 

 1 , ,
0s;D D







 
i.e. 

1ˆ

s

i
i

MLE

D

D
s

  


 

When s observations of the change of the random dynamic graph topology are 

accomplished, the variations of ˆ
MLEp  and ˆ

MLE displayed in one vertex or another relates 

the local knowledge on the values of these parameters taking into account the observed 
neighborhood behavior at u.  

  
ˆ

MLEp                                                            ˆ
MLE  

Fig. 2. ˆ
MLEp  and ˆ

MLE evaluations for two simulated random graphs of order 30 vertices 

Indeed, since ˆ
MLEp

 

depends only on the observed number of neighbors of a selected vertex 

for different configurations of the random dynamic graph, this quantity is estimated 
differently in each vertex (see figure 2).  

5.2 Dynamic graphs with unknown number of vertices and edge probability 

In the statistical common sense, when the graph order is unknown the method proposed in 

the previous paragraph cannot be applied.  Another resourceful method of point estimation 

called method of moments (Lehmann E. L. and Casella G., 1998) can be used when the 

number N of the graph vertices and the edge density parameter p are both unknown. 

Likewise, these parameters should be estimated on the basis of an s-sample 1 2, , , sD D D  of 

the degree of a vertex u for s different instances of the random dynamic graph topology.  
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Proposition 12 

Let G be a random dynamic graph following the model  p VG  and suppose that N V  is small. 

Consider D the random variable counting the degree in a fixed vertex u of G and let 1 2, , , sD D D be 

a s-sample formed by the degrees of u for s different configurations of the random dynamic graph at 

the graph change times 1 2 sT T T   . Then the estimates of moments of the graph parameters are 

respectively  

 

2

2

2

ˆ 1

ˆ 1

ME

ME

S
p

D

D
N

D S


 


   

 (40) 

Proof 

In this case, the method of moments supposes that the empirical moment D  is a natural 

estimate of the theoretical moment of order 1  E D  and the theoretical centralized moments 

of order k   k

k E D D       can be estimated by their respective empirical centralized 

moments  
1

1 s k

k i
i

M D D
s 

  . When N V  is small, the degree follows a binomial 

distribution of parameters p an  1N   and the method of moments in terms of the average 

and the variance of the observed degrees leads to the system of equations 

 
 
    2

1

1 1

N p D

N p p S

  


  
 (41) 

  
ˆ

MEp                                                       ˆ
MEN  

Fig. 3. ˆ
MEp  and ˆ

MEN  evaluations for two simulated dynamic random graphs  
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It results from the resolution of the system of equations (41) that the moment estimates of 

the unknown graph parameters 

2

2

2

ˆ 1

ˆ 1

ME

ME

S
p

D

D
N

D S


 


      

Depending on the neighbors met by each of the random dynamic graph vertices, the 

evaluation of the estimated parameters will be different. 

5.3 Expected degree number of vertices in wide random dynamic graphs 

Various random dynamic graph problems (Internet, out vehicle networks, wide ad hoc 

networks …) are analyzed and interpreted under the assumption that the order of the 

resulting graph may be relatively large (with some tens, hundreds or even thousands of 

vertices). Let   be the average degree number 

  E D   (42) 

As a result of scaling, since we use an approximation of the degree distribution, it is very 

important to work with good estimates. This shows that the resulting computed values are 

most likely not due merely to chance. 

Proposition 13 

Let G be a random dynamic graph following the model 
 VpG   and suppose that 

VN 
  is large. 

Consider D the random variable counting the degree in a fixed vertex u of G and let 1 2, , , sD D D be 

a s-sample formed by the degrees of u for s different configurations of the random dynamic graph at 

the graph change times 1 2 sT T T   .  Let   be the Poisson distribution parameter of the degree. 

Then, the empirical moment of order 1 ˆ D   is a good estimate of the average degree. i.e. 

i. ̂  is unbiased. 

ii. ̂  realizes the maximum of the likelihood function. 

iii. ̂  is an efficient estimate of  . 

Proof 

The first property results from 

     
1 1

1 1s s

i i
i i

E D E D E D E D
s s


 

 
    

 
   

because 1 2, , , sD D D  are independent and identically distributed to D.  
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Furthermore, the log-likelihood function of a sample 1 2, , , sD D D representing the degrees of 

a given vertex u of G for s different configurations of the random dynamic graph is given by 

 1
1 1

, , log ! log
s s

s i i
i i

;D D D D s  
 

       

The MLE is obtained by solving the partial differential equation  1 , ,
0s;D D







 
  i.e 

1ˆ

s

i
i

D

D
s

  


 

which shows the proposition ii. It follows, on one hand,  

     2
1

1 1ˆvar var var      (because are independent and identically distibuted to ) 

                                                      (because    is Poisson distributed with parameter )

s

i
i

D D D
ss

D
s



 


 





and on the other hand,  

 1 1, ,

s

i
s i

D
;D D

s


 


  


 
 and   2

1 1
2 2

, ,

s

i
s i

D
;D D
 


 



 
 

Thus, the Fisher information quantity of the parameter   is such that 

      

 
2

1 1
2 2

, , 1
ˆvar

s

i
s i

E D
;D D s

I E



  


 

     
  

 
 (43) 

which is the lower bound of the Fréchet-Darmois-Cramer-Rao (FDCR) inequality.  

Then, since ̂  is unbiased and verifies the lower bound of the FDCR inequality, it is an 

efficient estimate. 

5.4 Routing performance metrics evaluation 

5.4.1 Average hopcount estimation  

Proposition 14 

Let G be a random dynamic graph following the model  p VG  and suppose that V  is large and 

known. Consider D the random variable counting the degree in a fixed vertex u of G and let 

1 2, , , sD D D be a s-sample formed by the degrees of u for s different configurations of the random 

dynamic graph at the graph change times 1 2 sT T T   . Then, the average hopcount MLE is 

approximately 
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log
ˆ

log
MLE

V

D
 

 (44) 

Proof 

Let   be the average degree number. As each vertex in the random graph is connected to 

about   other nodes, after   hops, we expect that   vertices must be reached. Thus all the 

vertices are reached for the value V  such that V V  . Since V  and   are both known 

constant parameters, the average hopcount   log

log
V

V
E 


  in large random graphs is 

 
  log

log
V

V
E 




 (45) 

From the proposition 11 and the equation (45), and because the MLE of a function of a 

parameter is equal to the function of the MLE of this parameter, the average hopcount MLE 

is made by 

log
ˆ

log
MLE

V

D
 

 

 

Fig. 4. Hopcount MLE evaluation for two simulated dynamic random graphs 

This approximation holds because D  is a good estimate of   in the strict sense of the 

proposition 13. Under other assumptions than those suggested in this paragraph, different 

authors have led to further forms of the approximation of the average hopcount number 

(Mieghem et al., 2000; Bhamidi et al., 2010). 

www.intechopen.com



 
Techniques for Analyzing Random Graph Dynamics and Their Applications 

 

211 

5.4.2 Giant component size estimation 

Let us consider G a random dynamic graph following the model  p VG  and suppose that 

the graph order V  is large and known. From the theory of Erdös-Rényi graphs, we know 

(Molloy and Reed, 1998) that the graph will almost surely have a unique giant component 

containing a positive fraction of the graph vertices if 1p V  (see figure 5) i.e. the average 

degree numbet 1  . 

 

Fig. 5. Existence of the giant component of a graph 

Proposition 15 

Let G be a random dynamic graph following the model  p VG  and suppose that V  is large and 

known. Consider D the random variable counting the degree in a fixed vertex u of G and let 

1 2, , , sD D D  be a s-sample formed by the degrees of u for s different configurations of the random 

dynamic graph at the graph change times 1 2 sT T T   . Then, the average size MLE of the giant 

component is approximately  

 
 1ˆ 1 LambertW expD D

D
      

 (46) 

Proof 

Let   be the giant component size, for large order random graphs,   is a solution of the 

equation 

  1 exp       (47) 

But, it is well known that there are two possible solutions to this equation 

  
1

2

0

1
1 LambertW exp 



 

      

  (48) 
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where LambertW is the classic “Lambert W ” function. Since only the non-zero solution is 

adequate, the giant component size increases as a function of the average degree   of the 

graph vertices G following the curve  1
: 1 LambertW expz z z

z
      . 

 

Fig. 6. Comparison of theoretic and empiric solutions   and ̂  

Thus, from the proposition 11 and because the MLE of a function of an unknown parameter 

is equal to the function of the MLE of this parameter, when V  is large the part of the graph 

occupied by the giant component can be estimated by 

 1ˆ 1 LambertW expD D
D

      
 

Elementary dissimilarities exist between random graph models and real-world graphs. Real-

world graphs show strong clustering, but Erdös and Rényi's model does not. Many of the 

graphs, including Internet and World-Wide Web graphs, show a power-law degree 
distribution (Albert et al., 1999). This means that only a small part of the graph vertices can 
have a large degree. In fact, Erdös-Rényi assumptions can imply strong consequences on the 
behavior of the graph (Newman, 2003). 

6. Conclusions  

In this chapter we have illustrated several basic tools for representing and analyzing 
dynamic random graph in a general context and a practical approach to estimate the 
parameters of classical models of such behaviors. The generalized model that we have 
proposed can describe not only classical real-world networks models but also situations 
with more complex constraints. In this model, random graph dynamics is outlined by 
introducing a random time process where the dynamic graph topology changes are 
recorded. Among the advantages of this model is the possibility to generate successive 
independent random graphs with potentially different sets of vertices but all belonging to 
the same basic set of vertices. Otherwise, the fact that the generalized model allows to 
consider probabilities which are not necessarily all equal gives the possibility to favor the 
establishment of certain connections over others. This kind of behavior is often observed in 
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wireless mobile networks and social networks. Here, there are ways to implement in the 
generalized model the ability to prioritize connections to closest vertices. These advantages 
of modeling are generally not possible through the traditional random graphs of Erdös-
Rényi. Also, we have described the global behavior between two consecutive configurations 
by calculating the probability of change. This is done in the case where the dynamic change 
concerns only the graph edges, as well as in the case where the dynamic change affects also 
the graph vertices.  

At the end of this chapter we have shown how the parameters of a dynamic random graph 
can be estimated under the assumptions of the Erdös-Rényi model. Thus, the estimation of 
these parameters has led to the estimates of the average degree of vertices, the average 
hopcount and the size of the giant component in large dynamic graphs. 
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