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1. Introduction

The relationships between individuals in various systems are always described by
networks. Recently, the quick development of computer science makes it possible to
study the structures of those super-complex networks in many areas including sociology
(Xuan et al., 2009; Xuan, Du & Wu, 2010a), biology (Barabási & Oltvai, 2004; Eguíluz et al.,
2005), physics (Dorogovtsev et al., 2008; Rozenfeld et al., 2010), etc., by the tools in graph
theory. Interestingly, it was revealed that many of these complex networks in various areas
present several similar topological properties, such as small-world (Watts & Strogatz, 1998),
scale-free (Barabási & Albert, 1999), self-similarity (Motter et al., 2003), symmetry (Xiao et al.,
2008), etc. In order to explain these properties, a large number of models have been
proposed (Barabási & Albert, 1999; Li & Chen, 2003; Mossa et al., 2002; Watts & Strogatz, 1998;
Xiao et al., 2008; Xuan, Du, Wu & Chen, 2010; Xuan et al., 2006; 2007; 2008). However, most
of current researches still focus on understanding the relationships between individuals in a
single system, while the inter-system relationships are always ignored.

One of such inter-system relationships may be caused by the fact that an individual may
be active in different systems with different identities (Xuan & Wu, 2009), and this type
inter-system relationships may further lead to the similar structures of different complex
networks. For instance, an ancient protein may evolve into various homologous proteins
in different species, a concept may be expressed by different words in different languages,
and a person may be active in different communication networks with different identities
represented by telephone numbers (Onnela et al., 2007) and email addresses (Newman et al.,
2002), etc. Therefore, revealing the different identities of an individual in several different
systems has practical significance in many areas (Xuan, Du & Wu, 2010b), e.g., revealing
homogeneous proteins, auto-translating languages, inter-network filtrating information, and
so on. Through describing complex systems by networks, these different tasks can be
transferred to a common node-matching problem between different complex networks, and
thus can be solved in the same framework.

However, since many real-world complex networks are always highly symmetric (Xiao et al.,
2008), i.e., there are always large numbers of nodes sharing the same neighbors in a
network, it seems quite difficult to distinguish them in one network only by comparing
their topological properties (Costa et al., 2007), such as degrees, clustering coefficient and
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2 Will-be-set-by-IN-TECH

so on, not to mention matching them between different complex networks. Fortunately,
the researchers of different areas can use their own dedicated methods, such as chemical
(Cootes et al., 2007; Kelley et al., 2003), semantic (Giunchiglia & Shvaiko, 2004) and others, to
reveal a part of matched nodes, although their high economical or computational cost makes
it almost impossible to examine and compare each pair of nodes between different large-scale
networks. Such extra information are certainly very useful in solving the node-matching
problem between complex networks. Based on these findings, we first introduced two
kinds of co-evolving models (Xuan, Du & Wu, 2010b; Xuan & Wu, 2009) to create interacting
networks, which can help better understand the co-evolution of different systems. Such
co-evolution results in some structural similarity between complex networks, which made
it possible to design node-matching algorithms by adopting the structural information.
With the reason that the selection of the pairwise matched nodes revealed a priori by the
dedicated methods is somewhat controllable, we then proposed several revealed matched
nodes selecting strategies to improve the performances of node-matching algorithms. Finally,
based on the similarities between nodes of different networks calculated by their connections
to several pairs of preliminarily revealed matched nodes, we provided three different
node-matching algorithms, including the classical optimal matching algorithm (Kuhn, 2005;
Munkres, 1957; Xuan & Wu, 2009) in graph theory, one-to-one and one-to-many iterative
node-matching algorithms (Du et al., 2010; Xuan, Du & Wu, 2010b) to solve artificial and
real-world node-matching problems.

This chapter will review the overall process that we defined and solved the node-matching
problems between different networks. In the next section, the node-matching problem is
defined, and two co-evolving network models as well as a real-world node-matching data set
are introduced. In Section 3, several revealed matched nodes selecting strategies are provided
in order to improve the performances of the subsequent node-matching algorithms. Then
in Section 4, the similarities between nodes of different networks are defined and several
node-matching algorithms are introduced and the experiments are implemented. Finally, the
chapter is concluded in Section 5.

2. Definitions and data sets

2.1 Definitions

The node matching problem between two different networks are described as follows
(Xuan, Du & Wu, 2010b; Xuan & Wu, 2009): the two networks under study are denoted by
G1 = (V1, E1) and G2 = (V2, E2), where Vi = vi

1, . . . , vi
M and Ei represent the node set and

the link set of network i(i = 1, 2), respectively. Assume that there are M(M � min{N1, N2})
pairs of matched nodes v1

j ↔ v2
j defined by {vi

1, . . . , vi
M} ⊆ Vi(i = 1, 2), while Pr(Pr < M)

pairs of them have been already revealed, named as revealed matched nodes and denoted
by {vi

1, . . . , vi
Pr
} ⊂ Vi(i = 1, 2). Then the problem is: can we design a method to find the

other M − Pr pairs of matched nodes in these two distinct networks by using the structural
information of G1 and G2 and the revealed matched nodes? If we can design such a method
and finally Pc(Pc � M − Pr) pairs of them are revealed correctly, the matching precision φ
then can be calculated by

φ =
Pc

M − Pr
. (1)
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2.2 Co-evolution network models

In order to better understand the interactions between different systems and test the
subsequent node matching algorithms, two co-evolution network models need to be first
introduced, where the parameters are set to be N1 = N2 = M = N for convenience.
Generally, there are two ways to create a pair of interactional networks, as is shown in Fig.
1 (a) and (b), respectively, both of which may work in reality. Inspired by the evolution of
organisms, the first way is that the pair of interactional networks G1 and G2 are evolved from a
common original network; in other words, they are derived from the same network (obtained
by some model) through random rewiring processes. And the other way is that the pair of
interactional networks are derived from two independent networks by a random interacting
process composed of the following two steps (Xuan & Wu, 2009):

• Networks initialization: Two networks G1 and G2 with N nodes respectively are created
by the same rule, where all the nodes are randomly matched, i.e., N pairs of randomly
matched nodes v1

i ↔ v2
i are provided.

• Interaction: if v1
i (or v2

i ) and v1
j (or v2

j ) is connected in G1 (or G2) while v2
i (or v1

i ) and v2
j (or

v1
j ) is not connected in G2 (or G1), then connect v2

i (or v1
i ) and v2

j (or v1
j ) with probability η1

(or η2).

Here, the second way will be adopted to create pairs of tested artificial interactional networks.

Rewire

G1

G2

G

(a) Rewiring model

Interact

G1 G1

G2 G2

(b) Interacting model

Fig. 1. Two ways to create a pair of interactional networks (Xuan & Wu, 2009). (a) The pair of
interactional networks G1 and G2 are derived from the same original network through
random rewiring. The corresponding nodes are matched and connected by brown dashed
lines. (b) The pair of interactional networks G1 and G2 are derived from a pair of
independent networks by random interacting, i.e., two non-linked nodes in the network G1
are connected by a green line with probability η2 if their corresponding matched nodes in G2
were linked while two non-linked nodes in G2 are connected by a red line with probability η1
if their corresponding matched nodes in G1 were linked. η1 and η2 are named as interactional
degree.

2.3 Real-world interactional networks

In reality, when two strangers chat with each other for some reason, e.g., demand of business,
common interests, curiosity, warmheart, etc., they may be friends one day in the future if they
enjoy with each other, in other words, the chat network may influence the evolution of the
friendship network. On the other hand, there is also a natural trend that one prefers to chat
with his friends or acquaintances rather than strangers, i.e., the friendship network determines
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the chat network to a certain extent. Therefore, chat network and friend network can be
considered as a pair of real-world interactional networks, which can be figured on a quite
large scale by advanced communication technologies and thus used to test the subsequent
node matching algorithms.

As an example, we collected the communication records and the contact lists in a week from
the database of Alibaba trademanager (an instant messenger (IM) mainly used for electronic
commerce). We mainly focus on 14,800 employees of the Alibaba company and construct
the chat network G1 and the friendship network G2 among them by these records. The two
networks were then preprocessed by the following two steps (Du et al., 2010; Xuan, Du & Wu,
2010b):

• Extract the giant cluster (GC): Extract the GCs of G1 and G2, denoted by G
g
1 = (V

g
1 , E

g
1)

and G
g
2 = (V

g
2 , E

g
2 ) where V

g
i and E

g
i represent the node set and the link set of the GC G

g
i

respectively.
• Calculate the intersection: A pair of matched nodes in the networks correspond to the

same Alibaba user. Select those users appearing in both the G
g
1 and G

g
2 , denoted by Vc =

V
g
1 ∩ V

g
2 , and get the sub-networks Gc

1 = (Vc, Ec
1) and Gc

2 = (Vc, Ec
2) where Ec

i ⊆ E
g
i

represents the set of links between nodes in Vc. Set G1 = Gc
1 and G2 = Gc

2, and terminate
the preprocessing if both the networks Gc

1 and Gc
2 are connected, otherwise, turn to the first

step.

After the preprocessing, both the networks G1 and G2 have 9859 nodes and are one-to-one
matched, i.e., each node in G1 has a matched node in G2 and vice versa. Moreover, if there
is a link between two nodes in G1, we can find a link between their matched nodes in G2
with probability 80.8%, and the probability is 18.4% from G2 to G1. Their basic topological
properties, such as the number of nodes N, the average degree 〈k〉, the average clustering
coefficient 〈C〉, and the average shortest path length 〈L〉 are presented in Table 1.

Networks N 〈k〉 〈C〉 〈L〉
Chat 9859 39.4 0.218 3.37

Friendship 9859 172 0.313 2.55

Table 1. The basic properties, i.e., the number of vertices N, the average degree 〈k〉, the
average clustering coefficient 〈C〉, and the average shortest path length 〈L〉 for the chat
network and the friendship network derived from Alibaba trademanager database (Du et al.,
2010; Xuan, Du & Wu, 2010b).

3. Revealed matched nodes selecting strategies

Since the interactional networks under study are usually not completely identical
(Xuan & Wu, 2009), it seems unpractical to match nodes between different networks just by
their local structural properties. As a result, a few pairs of matched nodes would be better
revealed as references before the node-matching algorithms are implemented.

Recent studies on real-world networks reveals that many of them have similar heterogeneous
structure characterized by a power-law degree distribution (Barabási, 2009; Barrat et al., 2004;
Eguíluz et al., 2005; Xuan et al., 2009). This property, first modeled by Barabási and Albert
(BA) (Barabási & Albert, 1999), indicates that the connection of a heterogeneous network
highly depends on hub nodes with quite large degrees, i.e., once these hub nodes are attacked,
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the average shortest path length of the network will increase quickly (Albert et al., 2000;
Crucitti et al., 2004; Motter & Lai, 2002), as a result, the communication efficiency of the
network will be largely weakened. For the node matching problem introduced here, we
proved that (Xuan & Wu, 2009) such hub nodes can provide more structural information than
those normal nodes and thus are more suitable to be revealed matched nodes. Based on the
interactional model introduced in Fig. 1 (b), denoting the degree of v1

i by d1
i and the degree of

v2
j by d2

j , if they are randomly selected as a pair of matched nodes, then, averagely speaking,

there are d1
i d2

j /N other pairs of matched nodes around them before the interaction. And

after the interaction, the degree of v1
i and that of v2

j can be calculated by Eq. (2) and Eq. (3)
respectively,

d̃1
i = d1

i + d2
j (1 −

d1
i

N
)η2, (2)

d̃2
j = d2

j + d1
i (1 −

d2
j

N
)η1. (3)

And the number of pairs of other matched nodes around the matched nodes v1
i and v2

j after
the interaction can be calculated by Eq. (4),

Fij = d2
j (1 −

d1
i

N
)η2 + d1

i (1 −
d2

j

N
)η1 +

d1
i d2

j

N
. (4)

Since real-world complex networks always have a very huge number of nodes and a relatively
small average degree, Eq. (2)-Eq. (4) can be further simplified to Eq. (5)-Eq. (7) respectively,

d̃1
i ≈ d1

i + η2d2
j , (5)

d̃2
j ≈ d2

j + η1d1
i , (6)

Fij ≈ η1d1
i + η2d2

j . (7)

Then we get Eq. (8) as

Fij ≈

⎧
⎪⎨
⎪⎩

η1(1−η2)
1−η1η2

d̃1
i +

η2(1−η1)
1−η1η2

d̃2
j , η1η2 < 1;

1
2 d̃1

i +
1
2 d̃2

j , η1η2 = 1.
(8)

With the reason that the matched nodes are supposed unknown beforehand in reality, it
seems unpractical to sort all the pairs of matched nodes by Fij in descending order in order
to improve the final matching precision φ, although larger Fij corresponds to more pairs of
unrevealed matched nodes around a pair of revealed matched nodes v1

i and v2
j . Fortunately,

Eq. (8) suggests a substitute way, i.e., selecting nodes with larger degree in the reference
network, revealing their matched nodes in the other network by some dedicated methods,
then these pairs of matched nodes are set to the revealed matched nodes.
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3.1 Large degree priority strategies

Based on this principle, we proposed large degree priority strategies (Xuan & Wu, 2009) for
the optimal node matching algorithm, as described by

• Large Degree Priority in G1 (LDP1): G1 is selected as the reference network, where the
nodes are sorted by their degrees in descending order, and the top Pr of them as well as
their matched nodes in G2 are selected as the revealed matched nodes.

• Large Degree Priority in G2 (LDP2): G2 is selected as the reference network, where the
nodes are sorted by their degree in descending order, and the top Pr of them as well as
their matched nodes in G1 are selected as the revealed matched nodes.

But which of them can bring higher matching precision? Can we answer this question
just by comparing the structural properties (in particular, the degree sequences) of the two
interactional networks? Without loss of generality, for a pair of interactional networks,
suppose G1 has larger average degree than G2, i.e., 〈d̃1〉 > 〈d̃2〉. Multiply Eq. (5) by η1 and
minus Eq. (6), we get

η1〈d̃1〉 − 〈d̃2〉 = (η1η2 − 1)〈d2〉. (9)

Since η1η2 � 1, the value of η1 can be roughly estimated by

η1 �
〈d̃2〉

〈d̃1〉
, (10)

while the value of η2 cannot be estimated just by comparing the structural properties of the
interactional networks. Suppose that the nodes are sorted by their degrees in descending
order, denote by Ri(i = 1, 2) the set of top Pr nodes in Gi, then from Eq. (8), we can see that
more structural information may be provided when G2 is selected as the reference network, if
it is satisfied that

η1 ∑
v1

i ∈R1

d̃1
i + (1 − η1)Pr〈d̃2〉 < η1Pr〈d̃1〉+ (1 − η1) ∑

v2
i ∈R2

d̃2
i , (11)

which is equivalent to

η1( ∑
v1

i ∈R1

d̃1
i − Pr〈d̃1〉) + (1 − η1)(Pr〈d̃2〉 − ∑

v2
i ∈R2

d̃2
i ) < 0. (12)

Because it is always satisfied that

∑
v1

i ∈R1

d̃1
i � Pr〈d̃1〉, ∑

v2
i ∈R2

d̃2
i � Pr〈d̃2〉, (13)

Eq. (12) must be satisfied if we have

〈d̃2〉

〈d̃1〉
( ∑

v1
i ∈R1

d̃1
i − Pr〈d̃1〉) + (1 −

〈d̃2〉

〈d̃1〉
)(Pr〈d̃2〉 − ∑

v2
i ∈R2

d̃2
i ) < 0. (14)

where all the parameters are known when two interactional networks are provided. That is,
only when Eq. (14) is satisfied, we can say that LDP2 may be superior to LDP1.
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3.2 Centralized large degree priority strategies

The above LDP strategies are designed for optimal node-matching algorithms, while for
iterative node-matching algorithms, these strategies need to be further modified. Because
in this case, the revealed pairwise matched nodes would better be centralized to a local
world in the networks so as to improve the matching precision in the first round, then the
second round and so on. Correspondingly, we propose two centralized large degree priority
strategies specially for iterative node-matching algorithms (Xuan, Du & Wu, 2010b):

• Centralized Large Degree Priority in G1 (CLDP1). G1 is selected as the reference network,
where a set R1 (|R1| = Pr) of nodes are picked up according to their degrees by following
process. The node of the largest degree in G1 is firstly selected as the only member of R1.
Denoting the neighbor set of R1 as U1 (U1 ∩ R1 = ∅), i.e., each node in U1 (but none of the
nodes in V1 \ (U1 ∪ R1)) is at least connected to one node in R1, at each time the nodes in
V1 \ R1 are sorted by the number of neighbors belonging to U1 in descending order and
the top one is selected to join in R1. Update R1 and U1 and repeat the selecting process
until the set R1 contains exactly Pr nodes. Then the set R1 of nodes in G1 as well as their
matched nodes in G2 are selected as the revealed pairwise matched nodes.

• Centralized Large Degree Priority in G2 (CLDP2). G2 is selected as the reference network,
where a set R2 (|R2| = Pr) of nodes are picked up according to their degrees by following
process. The node of the largest degree in G2 is firstly selected as the only member of R2.
Denoting the neighbor set of R2 as U2 (U2 ∩ R2 = ∅), i.e., each node in U2 (but none of the
nodes in V2 \ (U2 ∪ R2)) is at least connected to one node in R2, at each time the nodes in
V2 \ R2 are sorted by the number of neighbors belonging to U2 in descending order and
the top one is selected to join in R2. Update R2 and U2 and repeat the selecting process
until the set R2 contains exactly Pr nodes. Then the set R2 of nodes in G2 as well as their
matched nodes in G1 are selected as the revealed pairwise matched nodes.

4. Node-matching algorithms

4.1 Similarities between nodes of interactional networks

Name Definition

Common Neighbors (Newman, 2001) Sij = nM(v1
i , v2

j )

Salton Index (Salton & McGill, 1983) Sij =
nM(v1

i ,v2
j )√

nL(v1
i )×nL(v2

j )

Jaccard Index (Jaccard, 1901) Sij =
nM(v1

i ,v2
j )

nL(v1
i )+nL(v2

j )−nM(v1
i ,v2

j )

Sørensen Index (Sørensen, 1948) Sij =
2nM(v1

i ,v2
j )

nL(v1
i )+nL(v2

j )

Hub Promoted Index (Ravasz et al., 2002) Sij =
nM(v1

i ,v2
j )

min{nL(v1
i ),nL(v2

j )}

Hub Depressed Index (Lü & Zhou, 2011) Sij =
nM(v1

i ,v2
j )

max{nL(v1
i ),nL(v2

j )}

Table 2. Several definitions of similarities between nodes of interactional networks based on
their local structural information.
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The similarity between two nodes belonging to different networks can be measured by the
number of pairs of revealed matched nodes around them, e.g., the number of common friends
they contact with in different communication networks, where a common friend is denoted
by a pair of revealed matched nodes in corresponding communication networks. Denote by
nL(v

1
i ) and nL(v

2
j ) the numbers of links connected to the node v1

i and v2
j in the networks

G1 and G2, respectively, and by nM(v1
i , v2

j ) the number of pairs of revealed matched nodes

(v1
k , v2

k) where v1
i and v2

j are mutually connected, i.e., v1
i is connected to v1

k and v2
j is connected

to v2
k , in the corresponding networks. Then the similarity between v1

i and v2
j can be calculated

by a number of methods (Jaccard, 1901; Lü & Zhou, 2011; Newman, 2001; Ravasz et al., 2002;
Salton & McGill, 1983; Sørensen, 1948), as presented in Table. 2. Here, we adopt Jaccard Index
to calculate the similarities between nodes of interactional networks.

4.2 Optimal node-matching algorithm

When revealed pairwise matched nodes are selected by LDP strategies, the similarity of
each pair of the remaining nodes from different interactional networks can be calculated by
Jaccard Index. Then, reviewing the definitions in Section 2.1, the node-matching problem
between G1 and G2 can be transferred to a maximum matching problem for the bipartite
graph Gb = (U1, U2, W) where Ui = {vi

Pr+1, vi
Pr+2, . . . , vi

N} (i = 1, 2), and W denotes the
set of links weighted by the similarities between these two groups of nodes. Without loss of
generality, under the assumption N1 � N2, the task is to find a set of nonadjacent weighted
links {w1, w2, . . . , wN1−Pr

} to maximize the sum of their weights ∑
N1−Pr

i=1 si, which can be
solved by the classical KM algorithm (Kuhn, 2005; Munkres, 1957). Note that, although the
KM algorithm was developed for the case N1 = N2, it could be also feasible in the case
N1 < N2 through factitiously adding N2 − N1 isolated nodes in G1. For this reason we
supposed N1 = N2 = N for simplicity.

Since the KM algorithm has relatively high complexity O(N3), the sizes of the test networks
cannot be very large. Here the two interactional networks G1 and G2 are both created by
the BA model with N = 100 nodes and average degree 〈k〉 = 8. Then they interact with
each other with different interactional degrees η1 = 0.9 and η2 = 0.1 by the model shown in
Fig. 1 (b). Denote the sample ratio by γ = Pr/N, the matching results are shown in Fig. 2,
where we can see that, in most cases, LDP1 is prior to LDP2. This result is reasonable because
when η1 ≫ η2, Eq. (8) suggests that larger Fij can be expected when select those nodes with
large degrees in G1 and their correspondences in G2 as the revealed matched nodes. Note
that, in this experiment, we set M = N for simplicity, that is, every node in one network
has its correspondence in the other network. In reality, M may be smaller than N, i.e., some
individuals may be active in only one of the interactional networks. In this case, we need
further select M − Pr pairs of matched nodes from N − Pr pairs of matched nodes obtained by
the node-matching algorithm. If the value of M is known a priori, we can simply sort N − Pr

pairs of matched nodes by their attached similarities, then select the top M − Pr pairs with
larger similarities as the final pairs of matched nodes. However, if M is unknown, we have
to set a threshold θ ∈ [0, 1) beforehand, and those pairs of matched nodes with similarities
larger than θ then are selected as the final pairs of matched nodes, which will not be further
discussed here. That is, in the following studies, we always set M = N1 = N2 = N for
simplicity.
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Fig. 2. The matching precision φ as the function of the sample ratio γ by adopting the two
revealed matched nodes selection strategies, i.e., LDP1 and LDP2, for scale-free networks
created by the BA model with N = 100 and 〈k〉 = 8 and different interactional degrees
η1 = 0.9 and η2 = 0.1 (Xuan & Wu, 2009). For each γ and each selection strategy, the
experiment is implemented on 100 different pairs of scale-free networks, then the average
matching precision as well as the error bar is recorded.

4.3 Iterative node-matching algorithm

As we can see in Fig. 2, the optimal node-matching algorithm fails to achieve acceptable
results when there are only a relatively small number of pairwise matched nodes revealed
beforehand, e.g., in order to achieve a matching precision of 80%, we have to reveal as many
as 60% correspondences between nodes of the two networks in advance, which, as well as
its long running time, hinders its efficient application in node-matching between real-world
networks of quite large size. Based on the CDLP revealed matched nodes selecting strategies
and Jaccard similarities between nodes of different networks, the iterative node-matching
algorithm is simply composed of the following two steps (Xuan, Du & Wu, 2010b):

• Node matching. At each time, a pair of unmatched nodes belonging to different networks
with the largest similarity are selected as a pair of matched nodes. Then this pair of
matched nodes are considered as a pair of newly revealed matched nodes, then recalculate
the similarities between the remaining nodes, and so forth.

• Termination. The iterative process is terminated when all of the nodes in the interactional
networks have been matched.

The time complexity of the above node-matching algorithm mainly depends on the
recalculation of the similarities. Generally, once a pair of nodes from different networks
are matched at (τ − 1)th round, we need to recalculated the similarities of about k1

τk2
τ

pairs of nodes mutually connected to that pair of matched nodes at τth round, where ki
τ

(i = 1, 2) represents the degree of the matched node in Gi at (τ − 1)th round. Provided
N1 = N2 = M = N, the running time of the algorithm, denoted by Γ, can be calculated
by Eq. (15) statistically,

Γ ∼ E(
N

∑
τ=1

k1
τk2

τ). (15)
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If the two networks under study are strongly dependent each other, i.e., extremely G1 and G2
are identical and a node in one network only can be matched to the node of equal degree in
the other network, Eq. (15) can be replaced by Eq. (16),

Γ ∼
N

∑
τ=1

E((k1
τ)

2). (16)

For scale-free networks generated by the BA model, the degree distribution follows p(k) ∼
k−3, thus the running time can be simplified by Eq. (17),

Γ ∼ N
∫ N

1
k2k−3dk ∼ N ln N. (17)

However, if the two target networks are relatively independent from each other, i.e., a node
with large degree in one network can be matched to a node with small degree in the other
network, which is more common in reality, Eq. (15) can be approximatively transferred to
Eq. (18),

Γ ∼
N

∑
τ=1

E(k1
τ)E(k

2
τ) ∼ N〈k1〉〈k2〉, (18)

where 〈ki〉 represents the average degree of the network Gi. In most cases, 〈ki〉 can be
considered as a constant, therefore, Eq. (18) suggests a linear time complexity O(N) of the
algorithm (Xuan, Du & Wu, 2010b). Eqs. (17) and (18) mean that the iterative node-matching
algorithm has much lower complexity than the optimal node-matching algorithm.

In order to compare to the optimal node-matching algorithm, here we take the same example
to test the iterative node-matching algorithm. Since the iterative algorithm is able to solve
node-matching problems between networks of quite large size, the two interactional networks
G1 and G2 here are also created by the BA model with same average degree 〈k〉 = 8, but much
larger network size N = 500. Then these two networks interact with each other with different
interactional degrees η1 = 0.9 and η2 = 0.1 by the same model shown in Fig. 1 (b). The
matching results are show in Fig. 3 (a). At this time, in order to correctly reveal most of
matched nodes in the networks (e.g., φ � 80%), we only need to have a very small percentage
of matched nodes revealed beforehand (1% for CLDP1 and 1.6% for CLDP2), i.e., the iterative
node-matching algorithm is far more efficient than the optimal node-matching algorithm on
interactional artificial scale-free networks.

However, when we test this iterative node-matching algorithm on the real-world interactional
chat network and friendship network introduced in Section 2.3, the matching results, as
shown in Fig. 3 (b), are not that satisfactory, i.e. the final matching precision between the pair
of real-world networks is much lower than that between the artificial networks generated
by the BA model when adopting the same proportion of pairwise revealed matched nodes.
For example, only about 40% matched nodes are revealed correctly, even though there are
as many as 10% matched nodes are revealed beforehand. This phenomenon may be caused
by the relatively high symmetry of the chat network and the friendship network. Generally,
the local symmetry between the two non-linked nodes vi and vj in a network is defined by
(Xuan, Du & Wu, 2010b)

ωij =
χc

ij

χt
ij

, (19)
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Fig. 3. The matching precision φ as the function of the sample ratio γ by adopting the two
revealed matched nodes selection strategies, i.e., CLDP1 and CLDP2, for (a) the interactional
scale-free networks created by the BA model with N = 500 and 〈k〉 = 8 and different
interactional degrees η1 = 0.9 and η2 = 0.1, and (b) the interactional real-world chat network
and friendship network (Xuan, Du & Wu, 2010b). For artificial networks, the experiment is
implemented on 100 different pairs of scale-free networks for each γ and each selection
strategy, then the average matching precision as well as the error bar is recorded.

where χc
ij and χt

ij are the numbers of their common and total neighbors, respectively. If
nodes vi and vj are connected, release the link and then calculate the symmetry between
them following Eq. (8). Since it is impossible to distinguish two nodes vi and vj in a network
with the symmetry χij = 1 (i.e. they share the same neighbors excluding themselves) just by
adopting their topological information, those highly symmetric nodes in one network may be
wrongly matched to the nodes in the other network with quite a high probability, and thus
one-to-one node-matching algorithms may produce poor results in such situations.

4.4 One-to-many iterative node-matching algorithms

In order to overcome the above limitation of one-to-one node-matching algorithms, we
proposed one-to-many node matching (Du et al., 2010) through expanding the number of
nodes in each matching step. In fact, one-to-many node matching has its practical significance
because it can help to quickly narrow down the searching range of a target individual
in different complex systems. Particularly, a 1-to-M algorithm should output N − Pr

correspondences as defined by Eq. (20),

v1
i → Q2

i = {v2
i1

, v2
i2

, . . . , v2
iM
}, (20)

where v1
i (i = Pr + 1, Pr + 2, . . . , N) is a node in G1, and Q2

i is a node set including the top
M most likely matched nodes of v1

i in G2. It should be noted that here 1-to-M match is just
a natural generalization of 1-to-1 match, therefore, Eq. (20) also provides a consistent 1-to-1
match, i.e., v1

i ↔ v2
i1

, satisfying that v2
i1

and v2
j1

represent two different nodes in G2 if i �= j.

For a 1-to-M matching algorithm, a node v1
i in G1 is considered correctly matched if its real

matched node v2
i is contained in Q2

i , i.e., v2
i ∈ Q2

i . Denoting PM (PM � N − Pr) as the number
of nodes in G1 that are correctly matched, the matching precision φM for the 1-to-M node
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matching algorithm can be calculated by Eq. (21), and naturally Eq. (22) is always satisfied.

φM =
PM

N − Pr
, (21)

φM ≥ φM−1. (22)

Next, we will introduce two different one-to-many iterative node-matching algorithms
(Du et al., 2010).

1) A1: Local mapping. Since the similarity between each pair of nodes may change as the
one-to-one iterative algorithm is implemented step by step, it is possible to correct some
initially wrongly matched nodes by recalculating their similarities after the one-to-one node
matching algorithm is terminated. This fact leads to the first one-to-many node matching
algorithm based on local mapping. In particular, the Algorithm A1 is defined by the following
two steps (Du et al., 2010):

• Iterative 1-to-1 node matching. N − Pr pairs of nodes, i.e., v1
i ↔ Q2

i = {v2
i1
} (i = Pr +

1, Pr + 2, . . . , N), are firstly matched by the iterative 1-to-1 node matching algorithm.
• Candidate nodes selection. Denote by X1

i the neighbor set of node v1
i in G1, which has a

matched node set X2
i in G2 where the nodes are 1-to-1 matched to those in X1

i , then denote
by Y2

i the neighbor set of X2
i , including all the nodes directly connected to those in X2

i .
Based on the definition of similarity, only the similarities between node v1

i (i = Pr + 1, Pr +

2, . . . , N) and the nodes in Y2
i can be larger than 0 and thus are recalculated. Then the top

M − 1 nodes with largest similarities are selected as the candidate corresponding nodes of
v1

i . It should be noted that v2
i1

is not reconsidered here, and if Y2
i only contains fewer than

M − 1 nodes, other M − 1 − |Y2
i | nodes can be randomly selected from G2 to be consistent

with Eq. (20).

2) A2: Ensembling. In the area of machine learning, it is a common way to improve
the generalization performance of an algorithm by combining the results of many different
predictors (Breiman, 1996; Freund & Schapire, 1997; Krogh & Sollich, 1997; Miyoshi et al.,
2005). However, the above iterative one-to-one node matching algorithm is totally
deterministic, i.e., for a given pair of target networks and certain revealed matched nodes,
the algorithm must produce the same matching result. Therefore, it cannot be directly
used for ensemble, and thus a new statistical iterative one-to-one node matching algorithm
have to be introduced first, where a pair of newly revealed matched nodes is adopted only
with probability p(p < 1) to calculate the similarities between those unrevealed nodes of
different networks in the succeeding iterative process. Then a group of different one-to-one
matching results can be obtained by implementing such a statistical iterative one-to-one node
matching algorithm for several rounds, and the obtained results can be merged into a unique
one-to-many matching result by a voting strategy. In particular, the algorithm A2 is defined
by the following three steps (Du et al., 2010):

• Iterative 1-to-1 node matching. N − Pr pairs of nodes, i.e., v1
i ↔ Q2

i = {v2
i1
} (i = Pr +

1, Pr + 2, . . . , N), are firstly matched by the deterministic iterative 1-to-1 node matching
algorithm.

• Implement and vote. The statistical 1-to-1 node matching algorithm with parameter p(p <

1) is implemented for B (B ≫ M) rounds and a group of B different 1-to-1 matching results
are obtained. All of the correspondences in G2 of v1

i in G1 are grouped by a node set Z2
i
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Fig. 4. The matching precision φ as the function of the sample ratio γ for M = 1, 2, 5 (M = 1
means the one-to-one matching result) between the friendship network and the chat network
obtained from the database of Alibaba trademanager (Du et al., 2010). Here, the chat network is
taken as the reference network.

with its size (the number of nodes) satisfying |Z2
i | ≤ B. It should be noted that each node

in Z2
i is attached by a positive integer as its weight representing the times that it is matched

to v1
i in the total B rounds, and similarly v2

i1
is excluded here.

• Candidate nodes selection. The top M − 1 nodes with largest weights in Z2
i are selected

as the M − 1 candidate corresponding nodes of v1
i . Sometimes, there may be only fewer

than M − 1 nodes in Z2
i , i.e., |Z2

i | ≤ M − 1, in such a situation, other M − 1 − |Z2
i | nodes

can be randomly selected from G2 to be consistent with Eq. (20).

Similarly, these two one-to-many iterative node matching algorithms are tested on the
real-world interactional chat network and friendship network introduced in Section 2.3, and
the matching results are shown in Fig. 4. As we can see, both the proposed one-to-many
algorithms (especially the random algorithm A2) can significantly improve the matching
precision, and thus can be considered to partially overcome the limitation of one-to-one
node-matching algorithms.

5. Conclusion

Since an individual may appear in different systems with different identities, many real-world
complex systems are considered to be interacted with each other all the time. Revealing these
identities of the same individual is a common task in many areas such as sociology, linguistics,
biology, etc, by their dedicated methods. When these complex systems are described by
networks, this common task can be changed to a node matching problem between different
complex networks, and thus can be solved in the framework of graph theory.

In this chapter, we reviewed the overall process to solve such node-matching problems
between different networks: We first calculated the similarities between nodes of different
networks through their connections to several pairs of preliminarily revealed matched nodes
and transferred the node matching problem between two different networks to a maximum
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weighted bipartite matching problem; then we proposed several node-matching algorithms to
solve such problem. By comparison, the iterative node-matching algorithm has approximately
linear complexity and behaves much better than the traditional KM algorithm in graph theory.
However, it seems that almost all of the network structure-based one-to-one node-matching
algorithms lose their efficiencies when the target networks are highly symmetric, e.g.,
the iterative node-matching results are not that good on real-world chat network and
friendship network obtained from the database of Alibaba trademanager. Such limitation
can be partially overcome by the proposed one-to-many node-matching algorithms, which
mainly focus on quickly narrowing down the searching range, rather than revealing exact
one-to-one mapping between nodes of different networks. Meanwhile, we also introduced
several degree-based revealed matched nodes selecting strategies for optimal and iterative
node-matching algorithms, respectively, in order to further improve the matching results. In
the future, more information about individuals and connections may be adopted to create
more efficient node-matching algorithms.
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