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Discrete PID Controller Tuning Using  
Piecewise-Linear Neural Network 

Petr Doležel, Ivan Taufer and Jan Mareš 
University of Pardubice & Institute of Chemical Technology Prague 

Czech Republic 

1. Introduction  

PID controller (which is an acronym to “proportional, integral and derivative”) is a type of 

device used for process control. As first practical use of PID controller dates to 1890s 

(Bennett, 1993), PID controllers are spread widely in various control applications till these 

days. In process control today, more than 95% of the control loops are PID type (Astrom et 

al., 1995). PID controllers have experienced many changes in technology, from mechanics 

and pneumatics to microprocessors and computers. 

Especially microprocessors have influenced PID controllers applying significantly. They 

have given possibilities to provide additional features like automatic tuning or continuous 

adaptation – and continuous adaptation of PID controller via neural model of controlled 

system (which is considered to be significantly nonlinear) is the aim of this contribution. 

Artificial Neural Networks have traditionally enjoyed considerable attention in process 

control applications, especially for their universal approximation abilities (Montague et al., 

1994), (Dwarapudi, et al., 2007). In next sections, there is to be explained how to use artificial 

neural networks with piecewise-linear activation functions in hidden layer in controller 

design. To be more specific, there is described technique of controlled plant linearization 

using nonlinear neural model. Obtained linearized model is in a shape of linear difference 

equation and it can be used for PID controller parameters tuning.  

2. Continuous-time and discrete PID controller 

The basic structure of conventional feedback control using PID controller is shown in Fig. 1 

(Astrom et al., 1995), (Doyle et al., 1990). In this figure, the SYSTEM is the object to be 

controlled. The aim of control is to make controlled system output variable yS(t) follow the 

set-point r(t) using the manipulated variable u(t) changes. Variable e(t) is control error and is 

considered as PID controller input and t is continuous time. 

Continuous-time PID controller itself is defined by several different algorithms (Astrom et 

al., 1995), (Doyle et al., 1990). Let us use the common version defined by (Eq. 1). 
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PID
CONTROLLER

SYSTEM
u(t)           y

S(t)e(t)r(t) +

-

 

Fig. 1. Conventional feedback control loop 

The control variable is a sum of three parts: proportional one, integral one and derivative 

one – see Fig. 2. The controller parameters are proportional gain Kp, integral time Ti and 

derivative time Td. 

 

e(t) u(t)

 

Fig. 2. Continuous-time PID controller 

In applications, all three parameters have to be tuned to solve certain problem most 

appropriately while both stability and quality of control performance are satisfied. Many 

tuning techniques have been published in recent decades, some of them experimental, the 

others theoretically based. 

As microprocessors started to set widely in all branches of industry, discrete form of PID 

controller was determined. Discrete PID controller computes output signal only at discrete 

time instants k·T (where T is sapling interval and k is an integer). Thus, conventional control 

loop (Fig. 1) has to be upgraded with zero order hold (ZOH), analogue-digital converter 

(A/D) and digital-analogue converter (D/A) – see Fig. 3 (k·T is replaced by k for formal 

simplification). 
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Fig. 3. Feedback control loop with discrete PID controller 
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Formula of discrete PID controller can be obtained by discretizing of (Eq. 1). From a purely 

numerical point of view, integral part of controller can be approximated by (Eq. 2) and 

derivative part by (Eq. 3). 
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Then, discrete PID controller is defined by (Eq. 4). 
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For practical application, incremental form of discrete controller is more suitable. Let us 

assume 

 ( ) ( ) ( 1)u k u k u k     (5) 

Then, with respect to (Eq. 4) 
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In the Z domain (Isermann, 1991), discrete PID controller has the following transfer 

function. 
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 (7) 

As well as for continuous-time PID controller, there have been introduced several methods 
for q0, q1, q2 tuning (Isermann, 1991). Most of them require mathematical model of controlled 
system (either first principle or experimental one) and if the system is nonlinear, the model 
has to be linearized around one or several operating points. 
In next paragraph, the way how to tune discrete PID controller using Pole Assignment 
technique is described. 
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3. Discrete PID controller tuning using Pole Assignment technique 

Suppose conventional feedback control loop with discrete PID controller (7) and controlled 
system described by nominator B(z-1) and denominator A(z-1) – see Fig. 4.  
 

Q(z-1)
P(z-1)

B(z-1)
A(z-1)

U(z-1)           Y
S(z

-1)E(z-1)R(z-1) +

-

DISCRETE PID 
CONTROLLER

SYSTEM

 

Fig. 4. Feedback control loop with discrete PID controller 

Then, Z – transfer function of closed control loop is 
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( ) ( ) ( )
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

 (8) 

Denominator of Z – transfer function (8) is the characteristic polynomial 

 1 1 1 1 1( ) ( ) ( ) ( ) ( )D z A z P z B z Q z       (9) 

It is well known that dynamics of the closed loop behaviour is defined by the characteristic 
polynomial (9). It has three tuneable variables which are PID controller parameters q0, q1, q2. 
The roots of the polynomial (9) are responsible for control dynamics and one can assign 
those roots (so called poles) (see Fig. 5) by suitable tuning of the parameters q0, q1, q2. 
Thus, discrete PID controller tuning using Pole Assignment means choosing desired control 
dynamics (desired definition of characteristic polynomial) and subsequent computing of 
discrete PID controller parameters. 
Let us show an example: suppose we need control dynamics defined by characteristic 
polynomial (10), where d1, d2, … are integers (there are many ways how to choose those 
parameters, one of them is introduced in the case study at the end of this contribution). 

 1 1 2
1 2( ) 1D z d z d z       (10) 

So we have to solve Diophantine equation (11) to obtain all controller parameters. 

 1 2 1 1 1 1
1 21 ( ) ( ) ( ) ( )d z d z A z P z B z Q z           (11) 

If any solution exists, it provides us expected set of controller parameters. 
Comprehensive foundation to pole assignment technique is described in (Hunt, 1993). 

4. Continuous linearization using artificial neural network 

The tuning technique described in section 3 requires linear model of controlled system in form 
of Z – transfer function. If controlled system is highly nonlinear process, linear model has to be 
updated continuously with operating point shifting. Except some classical techniques of 
continuous linearization (Gain Scheduling, Recurrent Least Squares Method, …), there has 
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been introduced new technique (Doležel et al., 2011), recently. It is presented in next 
paragraphs. 

4.1 Artificial neural network for approximation 

According to Kolmogorov's superposition theorem, any real continuous multidimensional 

function can be evaluated by sum of real continuous one-dimensional functions (Hecht-

Nielsen, 1987). If the theorem is applied to artificial neural network (ANN), it can be said 

that any real continuous multidimensional function can be approximated by certain three-

layered ANN with arbitrary precision. Topology of that ANN is depictured in Fig. 6. Input 

layer brings external inputs x1, x2, …, xP   into ANN. Hidden layer contains S neurons, which 

process sums of weighted inputs using continuous, bounded and monotonic activation 

function. Output layer contains one neuron, which processes sum of weighted outputs from 

hidden neurons. Its activation function has to be continuous and monotonic. 

 

10.5-0.5-1 Re(z)

Im(z)

0 5 10

0

1

2

 

 

R(z-1)

YS(z-1)

R(z-1)
YS(z-1)

 

Fig. 5. The effect of characteristic polynomial poles to the control dynamics 

So ANN in Fig. 6 takes P inputs, those inputs are processed by S neurons in hidden layer 

and then by one output neuron. Dataflow between input i and hidden neuron j is gained by 

weight w1j,i. Dataflow between hidden neuron k and output neuron is gained by weight w21,k. 

Output of the network can be expressed by following equations. 
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  2 2
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In equations above, φ1(.) means activation functions of hidden neurons and φ2(.) means 
output neuron activation function. 
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Fig. 6. Three-layered ANN 

As it has been mentioned, there are some conditions applicable for activation functions. 

To satisfy those conditions, there is used mostly hyperbolic tangent activation function 

(Eq. 16) for neurons in hidden layer and identical activation function (Eq. 17) for output 

neuron. 

  1 1tanhj a jy y  (16) 

www.intechopen.com



 
Discrete PID Controller Tuning Using Piecewise-Linear Neural Network 

 

199 

 2
1ay y  (17) 

Mentioned theorem does not define how to set number of hidden neurons or how to tune 

weights. However, there have been published many papers which are focused especially on 

gradient training methods (Back-Propagation Gradient Descend Alg.) or derived methods 

(Levenberg-Marquardt Alg.) – see (Haykin, 1994). 

4.2 System identification by artificial neural network 

System identification means especially a procedure which leads to dynamic model of the 
system. ANN is used widely in system identification because of its outstanding 
approximation qualities. There are several ways to use ANN for system identification. One 
of them assumes that the system to be identified (with input u and output yS) is determined 
by the following nonlinear discrete-time difference equation. 

 ( ) [ ( 1), , ( ), ( 1), , ( )],S S Sy k y k y k n u k u k m m n        (18) 

In equation (18), ψ(.) is nonlinear function, k is discrete time (formally better would be k·T) 
and n is difference equation order. 
The aim of the identification is to design ANN which approximates nonlinear function ψ(.). 
Then, neural model can be expressed by (eq. 19). 

 ˆ( ) [ ( 1), , ( ), ( 1), , ( )],M M My k y k y k n u k u k m m n        (19) 

In (Eq. 19), ̂  represents well trained ANN and yM is its output. Formal scheme of neural 

model is shown in Fig. 7. It is obvious that ANN in Fig. 7 has to be trained to provide yM as 
close to yS as possible. Existence of such a neural network is guaranteed by Kolmogorov's 
superposition theorem and whole process of neural model design is described in detail in 
(Haykin, 1994) or (Nguyen et al., 2003). 
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y
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z-1

z-1

z-1

u(k)

z-1

y
M(k)

z-1

z-1

z-1

u(k)

 

Fig. 7. Formal scheme of neural model 

4.3 Piecewise-linear neural model for discrete PID controller tuning 

As mentioned in section 4.1, there is recommended to use hyperbolic tangent activation 

function for neurons in hidden layer and identical activation function for output neuron in 
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ANN used in neural model. However, if linear saturated activation function (Eq. 20) is used 

instead, ANN features stay similar because of resembling courses of both activation 

functions (see Fig. 8). 

 1
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1

1 1

1
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for 1 1
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a j

a j a j
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y y
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Fig. 8. Activation functions comparison 

The output of linear saturated activation function is either constant or equal to input so 

neural model which uses ANN with linear saturated activation functions in hidden neurons 

acts as piecewise-linear model. One linear submodel turns to another when any hidden 

neuron becomes saturated or becomes not saturated. 

Let us presume an existence of a dynamical neural model which uses ANN with linear 

saturated activation functions in hidden neurons and identic activation function in output 

neuron – see Fig. 9. Let us also presume m = n = 2 for making process plainer. ANN output 

can be computed using Eqs. (12), (13), (14), (15). However, another way for ANN output 

computing is useful. Let us define saturation vector z of S elements. This vector indicates 

saturation states of hidden neurons – see (Eq. 21). 

 iz      

1

1

1
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0 for 1 1

1 for 1

i

i

i

y

y

y



  
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 (21) 

Then, ANN output can be expressed by (Eq. 22). 

 1 2 1 2( ) ( 1) ( 2) ( 1) ( 2)M M My k a y k a y k b u k b u k c               (22) 
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where  2 1
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Thus, difference equation (22) defines ANN output and it is linear in some neighbourhood 
of actual state (in that neighbourhood, where saturation vector z stays constant). Difference 
equation (22) can be clearly extended into any order. 
In other words, if the neural model of any nonlinear system in form of Fig. 9 is designed, 
then it is simple to determine parameters of linear difference equation which approximates 
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Fig. 9. Piecewise-linear neural model 
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system behaviour in some neighbourhood of actual state. This difference equation can be 
used then to the actual control action setting due to many of classical or modern control 
techniques. 
In following examples, discrete PID controller with parameters tuned according to 
algorithm introduced in paragraph 3 is studied. As it is mentioned above, controlled system 
discrete model in form of Z – transfer function is required. So first, difference equation (22) 
should be transformed in following way. Let us define 

 0( ) ( )u k u k u   (23) 

where u0 is constant. Then, (Eq. 22) turns into 

 1 2 1 2 1 2 0( ) ( 1) ( 2) ( 1) ( 2) ( )M M My k a y k a y k b u k b u k c b b u                   (24) 

Equation (24) becomes constant term free, if (Eq. 25) is satisfied. 

 0
1 2

c
u

b b
 


 (25) 

In Z domain, model (24) witch respect to (Eq. 25) is defined by Z – transfer function (26). 

 
1 1 2

1 2
1 1 2

1 2
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( ) 1
MY z b z b z

U z a z a z

  

  



   (26) 

5. Algorithm of discrete PID controller tuning using piecewise-linear neural 
network 

Whole algorithm of piecewise-linear neural model usage in PID controller parameters 
tuning is summarized in following terms (see Fig. 10, too). 
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Fig. 10. Control algorithm scheme for second order nonlinear system 
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1. Create neural model of controlled plant in form of Fig. 9. 
2. Determine polynomial D(z-1) of (10). 
3. Set k = 0. 
4. Measure system output yS(k). 
5. Determine the parameters ai, bi and c of difference equation (22). 
6. Transform (Eq. 22) into Z – transfer function (26). 
7. Determine discrete PID controller parameters by solving of (Eq. 11) where A(z-1) and 

B(z-1) are denominator and nominator of Z – transfer function (26), respectively. 

8. Determine ( )u k  using discrete PID controller tuned in previous step. 

9. Transform ( )u k  into u(k) using (Eq. 23) and perform control action. 

10. k = k + 1, go to 4. 
Introduced algorithm is suitable to control of highly nonlinear systems, especially. 

6. Case study 

Discrete PID controller tuned continuously by technique introduced above is applied now to 
control of two nonlinear systems. Both of them are compiled by a combination of nonlinear 
static part and linear dynamical system – see Fig. 11. 
 

NONLINEAR
STATIC

ELEMENT

LINEAR
DYMANICAL

ELEMENT

u*(t)  yS(t)u(t)

 

Fig. 11. System to control 

6.1 First order nonlinear system 

The static element of the first demo system is defined by (Eq. 27) and dynamical system is 
defined by differential equation (28). 

 
3

2 ( )

2
* ( ) 1

1 u t
u t

e
    

 (27) 

 
( )

( ) 10 * ( )
dy t

y t u t
dt

   (28) 

Graphic characteristics of the system are shown in Fig. 12. 
Control loop is designed as shown in paragraph 5. At first, dynamical piecewise-linear 

neural model in shape of Fig. 9 is created. This procedure involves training and testing set 

acquisition, neural network training and pruning and neural model validating. As this 

sequence of processes is illustrated closely in many other publications (Haykin, 1994), 

(Nguyen, 2003) it is not referred here in detail. Briefly, training set is gained by controlled 

system excitation by set of step functions with various amplitudes while both u and yS are 

measured (sampling interval T = 1 s) – see Fig. 13. Then, order of the neural model is set: 

n = 1 (Eq. 19) because the controlled system is first order one, too. After that, artificial neural 

network is trained by Backpropagation Gradient Descent Algorithm repeatedly (see Fig. 14) 

while pruning is applied – optimal neural network topology is determined as two inputs, 
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four neurons in hidden layer and one output neuron. Finally, the neural model is validated 

(Fig. 15). 
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Fig. 12. Graphic characteristics of the first order nonlinear system 
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Fig. 13. Training set for the neural model 
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Fig. 14. Neural network training 
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Fig. 15. Neural model validating 

Next step is to determine polynomial D(z-1). Common ways of D(z-1) determination are 
mentioned below (Hunt, 1993). 

 Dead beat is achieved 

 Quadratic criterion is satisfied 

 Control dynamics of closed loop equals to dynamics of defined second order system 

 Special dynamics of closed control loop (defined by customer) is achieved 
Let us use the c) possibility and define the standard for control dynamics as second order 
system with Z – transfer function (29). 

 
-1 -2

-1
-1 -2

0.2642z  0.1353z
(z )

1 0.7358z  0.1353z
F




 
 (29) 

Thus, 

 -1 -1 -2 -1 -2
1 2(z ) 1 z  z 1 0.7358z  0.1353zD d d       (30) 

Mean Square Error 
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Polynomial D(z-1) is stable with double pole equal to 0.3679. 
Essential part of next three steps of the control algorithm is to solve Diophantine equation 
(11). In this particular example, (Eq. 31) is to be solved. 

     -1 -2 -1 -1 -1 -1 -2
1 2 1 1 0 1 21 z z 1 z 1 z z z zd d a b q q q         (31) 

Method of undetermined coefficients is one possibility how to solve this equation. The 
initial matrix equation is  

 
1 0 1 1

1 1 2 2

1 2 2

0 0 1

0 0

0 0

b q d a

b q d a

b q a

      
           
          

 (32) 

And the solution is 

 

1 1
0

1

1 2
1

1

2

1

0

d a
q

b

a d
q

b

q

 







 (33) 

Now it is possible to perform control simulation. For defined reference variable course 
(combination of step functions and linearly descending and ascending functions), the 
control performance is shown in Fig. 16. Comparison of system output to standard (Eq. 29) 
is shown then in Fig. 17. 

0 50 100 150 200 250 300 350 400 450
-5

0

5

k

u

0 50 100 150 200 250 300 350 400 450
-1

-0.5

0

0.5

1

k

r,
 y

S

 

 
r

y
S

 

Fig. 16. Control performance – first order nonlinear system 
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As shown in Figs. 16 and 17, control performance is stable and desired dynamics of the 
closed loop is close to defined standard. 
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Fig. 17. Comparison to standard – first order nonlinear system 

6.2 Second order nonlinear oscillative system 

Second demo system is structurally identical as the previous one (Fig. 11). Even the static 

element is the same. However, the dynamic system is defined now by differential equation 

(34). 

 
2

2

( ) ( )
( ) 5 50 * ( )

dy t d y t
y t u t

dt dt
    (34) 

Graphic characteristics of the system are shown in Fig. 18. 
The system is controlled on equal terms as previous one. However, the neural model now 

has four inputs as original system is second order one. Thus, Diophantine equation (35) 

should be solved. 

      -1 -2 -1 -2 -1 -1 -2 -1 -2
1 2 1 2 1 2 0 1 21 z z 1 z z 1 z z z z zd d a a b b q q q           (35) 

However, equation (35) is unsolvable. Thus, algorithm of discrete PID controller has to be 
extended into Z – transfer function (36) which is kind a filtered discrete PID controller. 

 
1 21

0 1 2
1 1 1

( )

( ) (1 )(1 )

q q z q zQ z

P z z z

 

  
 


 

 (36) 

Now, Diophantine equation (11) turns to (Eq. 37). 

       -1 -2 -1 -2 -1 -1 -1 -2 -1 -2
1 2 1 2 1 2 0 1 21 z z 1 z z 1 z 1 z z z z zd d a a b b q q q            (37) 
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Fig. 18. Graphic characteristics of the second order nonlinear oscillative system 

After applying of method of undetermined coefficients, solution can be obtained by solving 
of following matrix equation. 

 

1 0 1 1

2 1 1 1 2 1 2

2 1 2 1 2 2

2 2

0 0 1 1

0 1

0

0 0 0

b q d a

b b a q d a a

b b a a q a

b a 

      
            
     
     

     

 (38) 

And the solution is 

 

1
0 1 1 1

1 2 1 1 2 1 2

2 2 1 2 1 2

2 2

0 0 1 1

0 1

0

0 0 0

q b d a

q b b a d a a

q b b a a a

b a

       
            
     
     

     

 (39) 

Now it is possible to perform control simulation. For defined reference variable course, the 
control performance is shown in Fig. 19. Comparison of system output to standard (Eq. 29) 
is shown then in Fig. 20. 
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Fig. 19. Control performance – Second order nonlinear oscillative system 
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Fig. 20. Comparison to standard – Second order nonlinear oscillative system 

As shown in Figs. 19 and 20, control performance is stable and satisfying. On the other 
hand, oscillative nature of the controlled system is not fully stifled. 
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7. Conclusion 

There is introduced the technique above, which performs continuous adaptation of PID 
controller via neural model of controlled system. Neural model is used for controlled system 
continuous linearization and that linearized model is used for discrete PID controller tuning 
using pole assignment. The technique is suitable for highly nonlinear systems control, while 
it brings no advantages to control of the systems which are close to linear ones. 
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