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1. Introduction 

Robust stability of uncertain dynamic systems has major importance when real world 
system models are considered. A realistic approach has to consider uncertainties of various 
kinds in the system model. Uncertainties due to inherent modelling/identification 
inaccuracies in any physical plant model specify a certain uncertainty domain, e.g. as a set of 
linearized models obtained in different working points of the plant considered. Thus, a basic 
required property of the system is its stability within the whole uncertainty domain denoted 
as robust stability. Robust control theory provides analysis and synthesis approaches and 
tools applicable for various kinds of processes, including multi input – multi output 
(MIMO) dynamic systems. To reduce multivariable control problem complexity, MIMO 
systems are often considered as interconnection of a finite number of subsystems. This 
approach enables to employ decentralized control structure with subsystems having their 
local control loops. Compared with centralized MIMO controller systems, decentralized 
control structure brings about certain performance deterioration, however weighted against 
by important benefits, such as design simplicity, hardware, operation and reliability 
improvement. Robustness is one of attractive qualities of a decentralized control scheme, 
since such control structure can be inherently resistant to a wide range of uncertainties both 
in subsystems and interconnections. Considerable effort has been made to enhance 
robustness in decentralized control structure and decentralized control design schemes and 
various approaches have been developed in this field both in time and frequency domains 
(Gyurkovics & Takacs, 2000; Zečevič & Šiljak, 2004; Stankovič et al., 2007).  
Recently, the algebraic approach has gained considerable interest in robust control, (Boyd et 
al., 1994; Crusius & Trofino, 1999; de Oliveira et al., 1999; Ming Ge et al., 2002; Grman et al., 
2005; Henrion et al., 2002). Algebraic approach is based on the fact that many different 
problems in control reduce to an equivalent linear algebra problem (Skelton et al., 1998). By 
algebraic approach, robust control problem is formulated in algebraic framework and 
solved as an optimization problem, preferably in the form of Linear Matrix Inequalities 
(LMI). LMI techniques enable to solve a large set of convex problems in polynomial time 
(see Boyd et al., 1994). This approach is directly applicable when control problems for linear 
uncertain systems with a convex uncertainty domain are solved. Still, many important 
control problems even for linear systems have been proven as NP hard, including structured 
linear control problems such as decentralized control and simultaneous static output 
feedback (SOF) designs. In these cases the prescribed structure of control feedback matrix 
(block diagonal for decentralized control) results in nonconvex problem formulation. There 
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are basically two approaches to solve the respective nonconvex control problem: 1) to 
reformulate the problem as LMI using certain convex relaxations (e.g. deOliveira et al., 2000; 
Rosinová & Veselý, 2003) or, alternatively, adopt an iterative procedure; 2) to formulate and 
solve the bilinear matrix inequalities (BMI) respective to robust control design problem. A 
nice review and basic characteristics of LMI and BMI in various control problems can be 
found in (Van Antwerp & Braatz, 2000). 
To reduce the problem size in decentralized control design for large scale systems, the 
diagonal dominance or block diagonal dominance concept can be adopted. Recently, the so 
called Equivalent Subsystems Method has been developed for decentralized control in 
frequency domain, (Kozáková & Veselý, 2009). The main concept of the Equivalent 
Subsystems Method, originally developed as a Nyquist based frequency domain 
decentralized controller design technique, is the so called equivalent subsystem; equivalent 
subsystems are generated by shaping Nyquist plot of each decoupled subsystem using any 
selected characteristic locus of the matrix of interactions. The point of this approach consists 
in that local controllers of equivalent subsystems can be independently tuned for stability 
and required performance specified in terms of a suitable (preferably frequency domain) 
performance measure  (e.g. degree of stability, phase margin, bandwidth), so that the 
resulting decentralized controller guarantees equivalent performance of  the full system.  
When designing decentralized control, besides robust stability, performance requirements 
have to be considered. Performance objectives can be of two basic types: a) achieving 
required performance in different subsystems; or b) achieving plant-wide desired 
performance. In this chapter two alternative approaches belonging to the latter group are 
presented, based on recent research results on robust decentralized PID controller design in 
the frequency and time domains. 
The present chapter further extends the robust decentralized PID controller design 
techniques from (Kozáková et al., 2009; 2010; 2011; Rosinová et al., 2003; Rosinová & Veselý, 
2007; 2011), bringing novel robust control design approaches. The results are illustrated on 
the case study dealing with robust decentralized controller design for the quadruple tank 
process. This laboratory process recently presented in (Johansson, 2000; Johansson et al., 
1999) is an illustrative two input - two output laboratory plant for studying multivariable 
dynamic systems for both minimum and nonminimum-phase configurations.  
The first presented approach is based on formulation and solution of BMI or LMI for 
uncertain linear polytopic system to design robust controller in the state space. In the time 
domain, we introduce the augmented model for closed-loop linear uncertain system with 
PID controller; this model is in general form, comprising both continuous- and discrete-time 
cases. For both cases, a general robust stability condition is formulated; the particular design 
procedures differ only in parameterization of augmented model matrices. A decentralized 
control design strategy is adopted, where robust PID control design approach is applied for 
structured - block diagonal controller matrices respective to decentralized controller. 
The second approach is based on the Nyquist-type decentralized control design technique 
for uncertain MIMO systems described by a transfer function matrix. The decentralized 
controller is designed on subsystem level using the recently developed Equivalent 
Subsystem Method (Kozáková et al., 2009). Application of this method in the design for 
robust stability and nominal performance can be found e.g. in (Kozáková & Veselý, 2009) 
within a two-stage design scheme: 1. design of decentralized controller for nominal 
performance; 2. controller redesign with modified performance requirements to meet the 
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robust stability conditions. A direct “one-shot” robust DC design methodology based on 
integration of robust stability conditions in the Equivalent Subsystems Method enables to 
design local controllers of equivalent subsystems with regard to robust stability of the full 
system. The frequency domain approach is applicable for both continuous- and discrete-
time PID controller designs. 

2. Motivation: Case study - Quadruple tank process 

This section aims at description, and analysis of two input - two output process from 
literature, which will be later used to demonstrate our proposed methods for 
decentralized PID controller design. The quadruple-tank process shown in Fig.1 has been 
introduced in (Johansson et al., 1999; Johansson, 2000) to provide a case study to analyze 
both minimum and nonminimum phase MIMO systems on the same plant. The aim is to 
control the level in the lower two tanks using two pumps. The inputs 1  and 2  are 

pump 1 and 2 flows respectively, the controlled outputs y1 and y2 are levels in lower tanks 
1 and 2 respectively.  
 

 
Fig. 1. Quadruple tank process scheme. 

The nonlinear model of the four tanks can be described by state equations 
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where Ai is cross-section of tank i, ai is cross-section of the outlet hole of tank i, hi is water 
level in tank i, g is acceleration of gravity, the flow corresponding to pump i is kivi. 
Parameter 1  denotes position of the valve dividing the pump 1 flow into the lower tank 1 
and related upper tank 4 and similarly 2  divides flow from pump 2 to the tanks 2 and 3. 
The flow to tank 1 is 1 1 1k v  and to tank 4 it is 1 1 1(1 )k v , analogically for the tanks 2 and 3. 
The nonlinear model (1) can be linearized around the working point given by the water 
levels in tanks 10 20 30 40, , ,h h h h . The deviation state space model was considered with 

0i i ix h h   and the respective control variables 0i i iu v v  . The linearized state space 
model for quadruple tank (1) is then 
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where 02
, 1,..., 4i i

i
i

A h
T i

a g
  . 

The argument t has been omitted; the state variables corresponding to levels in tanks 2 and 3 
have been interchanged in state vector so that subsystems respective to input u1 from pump 
1 (tanks 1 and 3) and  u2 from pump 2 (tanks 2 and 4) are more apparent. This 
decomposition into two subsystems is used for decentralized control design. 
The respective transfer function matrix having inputs v1 and v2 and outputs y1 and y2 is 
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( 1)( 1) 1

c c
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 (3) 

where 02
, 1,2i i i

i
i

T k h
c i

A g
  . 

The plant can be shifted from minimum to nonminimum phase configuration and vice versa 
simply by changing a valve controlling the flow ratios 1  and 2 between lower and upper 
tanks. The minimum-phase configuration corresponds to 1 21 2     and the 
nonminimum-phase one to 1 20 1    . 

2.1 Decentralized control of quadruple tank – problem formulation and pairing 
selection 

The basic control aim for quadruple tank is to reach the given level in the lower two tanks, 
i.e. prescribed values of y1 and y2 by controlling input flows v1 and v2 delivered by two 
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pumps. To achieve this aim, the decentralized control structure is employed, with two 
control loops respective to output values y1 and y2.  
Decentralized control design consists of several steps, the crucial ones for controller design 
are 
- choice of appropriate pairing of inputs to outputs; 
- structural stability test respective to chosen pairing; 
- robust decentralized controller design.  
We consider the standard approach for the former two steps presented below; in Sections 3 
and 4 we concentrate on the last step – robust decentralized control design.  

Pairing and structural stability 

Frequently used index to assess input-output pairing is the Relative Gain Array (RGA) 
index, see e.g. (Ogunnaike & Ray, 1994), (Skogestad & Postletwhaite, 2009), computed  
as 

 1( ) ( ). * [ ( ) ]TRGA s G s G s   (4) 

where G(s) is a square transfer function matrix of the linearized system. 
Individual subsystems are then specified by the chosen pairing and their transfer functions 
are placed in the diagonal of the transfer function matrix. To check structural stabilizability 
using the chosen control configuration, the Niederlinski index is applied: 

 
 det (0)

( ( (0))

G
NI

diag G
  (5) 

If 0NI  , the system cannot be stabilized using the chosen pairing and the pairing must be 
modified. 
In our case study, the steady state RGA(0) is considered to choose appropriate pairing with 
the respective RGA elements positive and closest possible to 1. 

     1 1
(0) 0 . * 0

1

T
RGA G G

          

 
 

 (6) 

where 1 2

1 2 1
 

 


 
depends on valve parameters 1 and 2 exclusively. The diagonal 

elements λ are positive for 1 21 2     (minimum phase system) and the respective 

pairing is 1 1 2 2,v y v y  . For 1 20 1     (nonminimm phase system), the opposite 

pairing 1 2 2 1,v y v y   is indicated. This result is approved by Niederlinski index. 

2.2 Quadruple tank process – uncertainty domain 

For quadruple tank system (1), we consider the uncertainty to be a change of valve position, 
i.e. change of 1  and 2 , uncertainty domain is specified by three working points.  

In minimum phase region:                               In nonminimum phase region:  
WP1: 1 = 0.4, 2 = 0.8; WP2: 1 = 0.8, 2 = 0.4   WP1: 1 = 0.1, 2 = 0.3; WP2: 1 = 0.3, 2 = 0.1 

WP3:  1 = 0.8, 2 = 0.8           (7)                               WP3:  1 = 0.1, 2 = 0.1  (8) 
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 a) minimum phase configuration                b) nonminimum phase configuration 

Fig. 2. Uncertainty domain specified by working points 

3. Robust decentralized PID controller design in the time domain 

In this section, robust decentralized controller in time domain is designed based on robust 
stability conditions formulated and solved as linear (or bilinear) matrix inequalities. To 
include performance evaluation, the quadratic performance index is used. Decentralized 
robust control problem is formulated in general framework for augmented system, 
including the model of controlled system as well as controller dynamics. The robust stability 
conditions from literature are recalled, using D-stability concept which enables unified 
formulation for continuous-time and discrete-time cases. Our modification of these results 
includes derivative term of PID controller as well as a term for guaranteed cost.  Thus, the 
decentralized control design procedure is presented in the general form comprising both 
continuous and discrete-time system models.  
Notation: for a symmetric square matrix X, X > 0 denotes positive definiteness; * in matrices 
denotes the respective transposed term to make the matrix symmetric, 0 in matrices denotes 
zero block of the corresponding dimensions, In denotes identity matrix of dimensions nxn; 
dimension index is often omitted, when the dimension is clear from the context. Argument t 
denotes either continuous time for continuous-time, or sampled time for discrete-time 
system models; we intentionally use the same symbol t for both cases to underline that the 
formulation of developed results is general, applicable for both cases. 

3.1 Preliminaries and problem formulation  
3.1.1 Decentralized control of uncertain system, guaranteed cost control 

Consider a linearized model of interconnected system, where subsystems with polytopic 
uncertainty are assumed, described by 

Si:  
1

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ))
N

i i i i i ij j ij j
j
j i
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  ( ) ( )i i iy t C x t ;  i=1,...,N (9) 
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where ( ) ( )x t x t   for continuous-time system model; ( ) ( 1)x t x t    for discrete-time 

system model; ( ) in
ix t R , ( ) im

iu t R , ( ) ip
iy t R are the subsystem state, control and output 

vectors respectively, 
1

N

i
i

n n


 , 
1

N

i
i

m m


 , 
1

N

i
i

p p


 ; iC are matrices with corresponding 

dimensions. Uncertain model matrices ( )iA  , ( )iB  , ( )ijA  , ( )ijB   are from polytopic 

uncertainty domains 

1 1
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K K
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k k
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 
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  
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1 1
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K K

i k ik k k
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 
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  
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 
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 
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 
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  . (10) 

The whole interconnected system model in the compact form is  

   S: ( ) ( ) ( ) ( ) ( )x t A x t B u t     

 ( ) ( )dy t C x t  (11) 

uncertain system matrix   ( ) ( )d mA A A    ,    ( ) ( )d mB B B     and 

 ( )
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k k k k
k k
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 
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   (12) 

where ( )kA  has diagonal blocks ikA and off-diagonal blocks ijkA , ( )kB  has diagonal blocks 

ikB and off-diagonal blocks ijkB respective to (10); and 

1 2 1 2 1 2( ) ( ... ), ( ) ( ... ), ( ) ( ... )T T T T T T T T T
N N Nx t x x x u t u u u y t y y y    are state, control and output vectors 

of the overall system S;  

1( ) { ( ),..., ( )},d NA diag A A   1( ) { ( ),..., ( )},d NB diag B B   1{ ,..., }d NC diag C C  are overall 

system matrices of corresponding dimensions respective to the subsystems, matrices 
( )mA  , ( )mB  correspond to interconnections. 

A closed loop system performance is assessed considering the guaranteed cost notion; the 
quadratic cost function known from LQ theory is used.  

          
0
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cJ x t Qx t u t Ru t dt
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        for a continuous-time and 

 
0

[ ( ) ( ) ( ) ( )]T T
d

k

J x t Qx t u t Ru t



   for a discrete-time systems  (13) 
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where ,n n m mQ R R R   are symmetric positive semidefinite and positive definite block 
diagonal matrices respectively, with block dimensions respective to the subsystems. The 
concept of guaranteed cost control is used in a standard way: let there exist a control law 

( )u t  and a constant 0J   such that  

 0J J  (14) 

holds for the closed loop system (9). Then the respective control ( )u t  is called the guaranteed 

cost control and the value 0J  is the guaranteed cost.  

Decentralized Control Problem 

The control design aim is to find decentralized control law ( ( ))i iu x t , or ( ( ))i iu y t , i=1,…,N , 

i.e. the overall system is controlled using local control loops for subsystems, such that 
uncertain dynamic system (11) is robustly stable in uncertainty domain (12) with guaranteed 
cost.  
Basically, control design problem will be transformed into the output feedback form: 

( ) ( )i i iu t F y t , employing augmented system model to include controller dynamics, as it is 

using PID controller.   

3.1.2 Augmented system model for continuous and discrete-time PID controller 

The augmented system model including PID controller dynamics is developed in this 
section in general form appropriate both for continuous and discrete-time PID controllers. 
Firstly, recall PID control algorithms for both cases.   
Control algorithm for continuous-time PID is  

 
0

( ) ( ) ( ) ( )
t

P I Du t K e t K e t dt K e t     (15) 

where ( ) ( ) ( )e t y t w t  is control error, ( )w k  is reference value (negative feedback sign is 

included in matrices , ,P I DK K K ); , ,P I DK K K  are controller parameter matrices (for SISO 

system they are scalars) to be designed.  
Generally, different output variables can be considered for proportional, integral and 
derivative controller terms, for better readability we assume that all outputs enter all three 
controller terms. We further assume that the reference value is constant, ( )w k w  and that 

the system states in model (11) correspond to the deviations from working point (these 
assumptions correspond to step change of reference value). Then the control law (15) can be 
rewritten as  

 
0

( ) ( ) ( ) ( )
t

P I Du t K y t K y t dt K y t    . (16) 

Integral term can be included into the state vector in the common way defining the auxiliary 

state 
0

( )
t

z y t  , i.e. ( ) ( ) ( )dz t y t C x t   and PID controller algorithm is 
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 ( ) ( ) ( ) ( )P d I d D du t K C x t K C z t K C x t    . (17) 

Then the closed-loop system (11) with PID controller (17) can be described by augmented 
model 

   

( ) 0 ( )

0 0

( ) 0 ( ) ( )
0

0 0 0

       
          
       

           
             
           

 

  








n
d

P d I d D d
d

x A x B
x u

z C z

A x B x B x
K C K C K C

C z z z

  

or 

 0 ( ) 0 ( ) 0 ( )

0 0 0 0 0
D d

P d I d
d

I B K C x A x B x
K C K C

I z C z z

                
                               




 

which in a compact form yields 

 ( ) ( )d n C nM x A x   (18) 
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A K K

C C




 


      
              
     

      
     

 (19) 

argument t is omitted for brevity.  
A discrete-time PID (often denoted as PSD) controller is described by control algorithm 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
t

P I D
i

u t k e t k e i k e t e t


      (20) 

where ( )u t , ( ) ( ) ( )e t y t w t  , ( )w t  are discrete time counterparts to the continuous time 

signals; , ,P I Dk k k  are controller parameter matrices to be designed. By analogy with 

continuous time case, for constant ( )w t  we write 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
t

P I D
i

u t k y t k y i k y t y t


      (21) 

State space description of PID controller can be derived in the following way. The dynamics 

of PID controller (21) requires two state variables, since besides 
0

( )
t

i

y i

 , also y(t-1) is 

needed. One possible choice of controller state variables is: 1 2( ) [ ( ) ( )]T T Tz t z t z t , 
2 1

1 2
0 0

( ) ( ), ( ) ( )
t t

i i

z t y i z t y i
 

 
   , then 2 1( 1) ( ) ( )y t z t z t   . Rewriting (21) as  
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1

0

2 2 1

( ) ( ) ( ) ( ) [ ( ) ( 1)]

( ) ( ) ( ) ( ( ) ( ))

t

P I I D
i

P I D I D

u t k y t k y i k y t k y t y t

k k k y t k z t k z t z t




     

     

  (21) 

we obtain the respective description of the discrete-time PID controller in state space as 

  

0 0
( 1) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

( ) ( )

R R

D I D P I D

R R

I
z t z t y t A z t B y t

I I

u t k k k z t k k k y t

C z t D y t

   
       

   
     

 

 (22) 

where z(t) is controller dynamics state vector, 2( ) pz t R . 

The respective augmented model for discrete-time version of system (11) with PID 
controller is 

  ( 1) ( ) 0 ( ) ( ) ( )
( 1) (

( 1) ( ) 0 ( )n R d R
R d R

x t A x t B x t
x t D C C

z t B C A z t z t

          
                     

 (23) 

where 2 2 0
,

0
p p

R R

I
A R A

I
  

   
 

, 
2 0

,p p
R RB R B

I
  

   
 

,  2 ,m p
R R D I DC R C k k k   , 

R P I DD k k k   . 

Analogically as in continuous time case, the augmented system (23) can be rewritten in a 
compact form as 

 ( 1) ( ) ( )n C nx t A x t   (24) 

where   
2

0( ) 0 ( )
( )

00
d

C R R
pR d R

CA B
A D C

IB C A

 


    
      

      
.      (25) 

Summarizing the augmented closed loop system models (18), (19) and (24), (25) for 
continuous and discrete-time PID controllers respectively, we can finally, using denotation 

( )x t , introduced in (9), rewrite both of them in general form 

 ( ) ( ) ( ) ( )d n C nM x t A x t    (26) 

where ( )dM   is assumed to be invertible, 

 1 2
( )

( ) ( ) ( ) ( )
0C aug aug aug aug aug

B
A A F F C A B FC


   

 
    

 
 and  

for a continuous PID:  
( ) 0

( )
0aug

d

A
A

C




 
  
 

, 
0

0
d

aug
d

C
C

C

 
  
 

 and   

 
0 ( ) 0

( )
0 0 0

D d
d

I B K C
M

I




    
          

; (27a) 
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 for a discrete-time PID: 
( ) 0

( )aug
R d R

A
A

B C A




 
  
 

, 
2

0

0
d

aug
p

C
C

I

 
  
  

  and ( )dM I  . (27b) 

PID controller parameters are:  

    1 2 P IF F F K K   and DK included in ( )dM  for a continuous-time case; (28a) 

    1 2 1 2; ,P I D D I DF F F F k k k F k k k       for a discrete-time case. (28b) 

In a decentralized PID controller design, controller gain matrices are restricted to block 
diagonal structure respective to subsystem dimensions. 
The presented general closed loop augmented system polytopic model (26) is 
advantageously used in next developments.  

3.1.3 Robust stability  
In this section we recall several recent results on robust stability for linear uncertain systems 
with polytopic model. These results are formulated as robust stability conditions in LMI 
form. Let us start with basic notions concerning Lyapunov stability and D-stability concept 
(Peaucelle et al., 2000; Henrion et al., 2002), used to receive the robust stability conditions in 
more general form. 
Definition 3.1 (D-stability) 
Consider the D-domain in the complex plain defined as 

 
*

11 12
*
12 22

1 1
{ iscomplex  number : 0}

r r
D s

s sr r

    
     

     
 (29) 

Linear system is D-stable if and only if all its poles lie in the D-domain.  
(For simplicity, we use in Def. 3.1 scalar values of parameters rij, in general, the stability 
domain can be defined using matrix values of parameters rij with the respective 
dimensions.) The standard choice of rij  is r11 = 0, r12 = 1, r22 = 0 for a continuous-time system; 
r11 = -1, r12 = 0, r22 = 1 for a discrete-time system, corresponding to open left half plane and 
unit circle respectively.  
The D-stability concept enables to formulate robust stability condition for uncertain 
polytopic system in general way, (deOliveira et al., 1999; Peaucelle et al., 2000).  The 
following robust stability condition is based on the existence of Lyapunov function 

( ) ( ) ( ) ( )V t x t P x t for linear uncertain polytopic system 

 ( ) ( ) ( )x t A x t   (30) 

where ( )A  is from uncertainty domain (12). 

Definition 3.2 (Robust stability) 

Uncertain system (30) is robustly D-stable in the convex uncertainty domain (12) if and only if 

there exists a matrix ( ) ( ) 0TP P   such that 

 *
12 12 11 22( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T Tr P A r A P r P r A P A            (31) 
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For one Lyapunov function for the whole uncertainty domain, i.e. ( ) 0P P   , the 

quadratic D-stability is guaranteed by (31). Generally, robust stability condition (31) with 
parameter dependent matrix ( )P   is less conservative (provides bigger stability domain 

for ( )A  than quadratic stability one), however stability is guaranteed only for relatively 

slow changes of system parameters within uncertainty domain (12) (in comparison with 
system dynamics). On the other hand, quadratic stability guards against arbitrary quick 
changes of system parameters within uncertainty domain (12) at the expense of sufficient, 
relatively strong, stability condition; which can be overly conservative for the case of slow 
parameter changes.  
We consider the parameter dependent Lyapunov function (PDLF) defined as 

 ( ) ( ) ( ) ( )V t x t P x t  (32) 

 
1

( ) where 0
K

T
k k k k

k

P P P P 


    (33) 

PDLF given by (32), (33) enables to transform robust stability condition (31) for uncertain 
linear polytopic system (9), (10) into the set of N Linear Matrix Inequalities (LMIs). Several 
respective sufficient robust stability conditions have been developed in the literature, e.g. 
(deOliveira et al., 1999; Peaucelle et al., 2000; Henrion et al., 2002).  Recall the sufficient 
robust D-stability condition proposed in (Peaucelle et al., 2000), which to the authors best 
knowledge belongs to the least conservative (Grman et al., 2005). 

Lemma 3.1 

If there exist matrices ,nxn nxnH R G R   and K symmetric positive definite matrices 
nxn

kP R  such that for all k = 1,…, K: 

 
11 ( ) ( ) 12 ( )

*
12 ( ) 22

0
( )

T T T
k k k k k

T T T
k k k

r P A H HA r P H A G

r P H G A r P G G

    
  
     

  


 (34) 

then uncertain system (30) is robustly D-stable in uncertainty domain (12). 
Note that matrices H and G are not restricted to any special form; they were included to 
relax the conservatism of the sufficient condition. Robust stability condition for more 
general dynamic system model (26), including also the term for guaranteed cost will be 
presented in the next section. 

3.2 Robust decentralized PID controller design 

In this section, the robust decentralized PID controller is designed, based on robust stability 
condition developed in our recent papers, (Rosinová & Veselý, 2007; Veselý & Rosinová, 
2011). Robust stability condition with guaranteed cost for closed loop uncertain system (26) 
is provided in the next theorem. 

Theorem 3.1 

Consider uncertain linear system (26) with cost function (13). If there exist symmetric matrix 
( ) 0P    and matrices H, G and F of the respective dimensions such that  
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 11 12
*
12 22

( ) ( ) ( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( ) ( )

T T T T T
C C d C

T T T T T
d C k d d

r P A H HA Q C F RFC r P HM A G

r P M H G A r P M G G M

     

    

      
 

     
 (35) 

then the system (26) is robustly D-stable with  guaranteed cost: 0 (0) ( ) (0)TJ J x P x  . 

Proof.  The proof is analogical to the one presented in (Rosinová & Veselý, 2007) for the 
continuous-time PID. Firstly, we formulate the sufficient stability condition for uncertain 
system (26) using the respective Lyapunov function. The assumption that ( )dM  is 

invertible, enables us to rewrite (26) as 1( ) ( ) ( ) ( )dx t M A x t   and use parameter 

dependent Lyapunov function (32) to write robust stability condition.  

Denote ( ) ( )V t V t    for a continuous-time system, ( ) ( 1) ( )V t V t V t    for a discrete-time 

system.  Then the sufficient D-stability condition (31) can be rewritten in the following form 
(known from LQ theory, for details see e.g. Rosinová et al., 2003)  

 
 

 

1 * 1
12 12 11

1 1
22

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 0

T
T

d d

TT T T
d d d d

r P M A r A M P r P

r A M P M A Q C F RFC

      

    

 

 

  

  
 (36) 

where the term T T
d dQ C F RFC has been appended to ( )V t to consider the guaranteed cost. 

To prove Theorem 3.1, it is sufficient to prove that (35) implies (36). This can be shown 
applying congruence transformation on (35): 

      
1

1( ) ( ) (35) 0
( ) ( )

T
T
C d

d C

I
I A M left handside of

M A
 

 




           
 (37) 

which immediately yields (36).  
It is important to note that robust stability condition (35) is linear with respect to 
parameter . Therefore, for convex polytopic uncertainty domain (12) and PDLF (33), 
matrix inequality (35) is equivalent to the set of matrix inequalities respective to the 
polytope vertices, as summarized in Corollary 3.1. 

Corollary 3.1 

Uncertain linear system (26) with cost function (13) is robustly D-stable with parameter 

dependent Lyapunov function (32), (33) and guaranteed cost 0 (0) ( ) (0)TJ J x P x   if the 
following matrix inequalities hold 

 11 12
*
12 22

0
T T T T T

k Ck Ck k dk Ck

T T T T T
k dk Ck k dk dk

r P A H HA Q C F RFC r P HM A G

r P M H G A r P M G G M

      
 

     
,  k=1,...,K (38) 

  where 
1 1

( ) ( ) ( ) , 1, 0
K K

C aug aug aug k Ck k k
k k

A A B FC A     
 

       
  
  , 

Ck aug k aug k augA A B FC  ,  and aug kA , aug kB  correspond to the k-th vertex of uncertainty 

domain of the overall system (10), (12); 
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1 1

( ) , 1, 0
K K

d k dk k k
k k

M M   
 

     
  
  , dkM is for PID controller given by (27a) or (27b), and 

( )B   is given by (12). 
Robust stability condition (38) is LMI for stability analysis, for controller synthesis it is in the 
BMI form. Therefore, (38) can be used for robust controller design either directly – using 
appropriate BMI solver (Henrion et al., 2005) or using some convexifying approach, (for 
discrete-time case see e.g. (Crusius & Trofino, 1999; deOliveira et al., 1999)). We have 
relatively good experience with the following simple convexified LMI procedure for static 
output feedback discrete-time controller design, which is directly applicable for discrete-
time PID controller design problem formulated by (26), (27b), (28b). 
The controller gain block diagonal matrix F is obtained by solving LMIs (39) for unknown 
matrices F, M, G and Pk of appropriate dimensions, the Pk being block diagonal symmetric, 
and M, G block diagonal with block dimensions conforming to subsystem dimensions. This 
convexifying approach does not allow including a term corresponding to performance 
index, therefore the resulting control guarantees only robust stability within considered 
uncertainty domain. 

0,
k aug k aug k aug

T T T T T T
aug k aug k k

P A G B KC

G A C K B G G P

  
  
     

,  k=1,...,K 

 aug augMC C G  (39) 

1F KM  

F is the corresponding output feedback gain matrix. 
The main advantage of the use of LMI (39) for controller design is its simplicity. The major 
drawbacks are, that the performance index cannot be considered, and that due to 
convexifying constraint ( aug augMC C G ), it need not provide a solution even in a case when 

feasible solution is received through BMI (38). (This is the case in our example in Section 3.3, 
in nonminimum phase configuration.) 
To conclude this section we summarize the described decentralized PID controller design 
procedure, assuming that the state space model is in the form of (9) with polytopic 
uncertainty domain given by (10), where columns of control input matrix B are arranged 
respectively to chosen pairing. 

Design procedure for decentralized PID design in time domain 

Step 1. Formulate the augmented state space model (26) for given system and chosen type of 
PID controller. 
Step 2. Compute decentralized PID controller parameters using one of design alternatives: 
 LMI alternative for discrete-time case – guarantees robust stability: solve LMI (39) for 

unknown block diagonal matrices F, M, G and Pk>0, of appropriate dimensions; PID 
controller parameters are given by F respectively to (28b). 

 BMI alternative – guarantees robust stability and guaranteed cost for quadratic 
performance index (13): solve BMI (38) for unknown block diagonal matrices F, Pk>0 
and matrices G, H, of appropriate dimensions, PID controller parameters are given by F 
and dkM respectively to (28) and (27), dkM is for PID controller given by (27).  
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3.3 Decentralized PID controller design for the Quadruple tank process 

We consider quadruple tank linearized model (2) with parameters: 

2
1 3 30[ ];A A cm  2

2 4 35 [ ];A A cm    

2
1 3 0.0977 [ ];a a cm  2

2 4 0.0785 [ ]a a cm  ; 

10 20 30 4020 [ ]; 2.75 [ ]; 2.22 [ ]h h cm h cm h cm   
; 

 
2981 [ / ];g cm s  1 21.790; 1.827k k  . 

1 1 1

3 3 2 1

2 22 2

14 4

0.0161 0.0435 0 0 0.0596 0

0 0.0435 0 0 0 0.0595(1 )

0 0 0.0111 0.0333 0 0.0522

0 0 0 0.0333 0.052(1 ) 0

x x

x x u

ux x

x x







      
                                  

          






  

1

1 2

2 3

4

1 0 0 0

0 0 1 0

x

y x

y x

x

 
                
 

 

Subsystems are indicated via the splitting dashed lines. Polytope vertices respective to 
working points (7) or (8) for minimum phase or nonminimum phase configurations 
respectively determine the corresponding uncertainty domains indicated in Fig.2. State 
space model has been discretized with sampling period  5[ ]sT s  (sampling period was 

chosen with respect to the process dynamics). 

Minimum phase configuration 

In the minimum phase case, robust decentralized controller is designed for chosen pairing 

1 1 2 2,v y v y  (see Section 2.1) using alternatively solution of LMI (39) or BMI (38) for 

decentralized discrete-time PI controller design. The resulting controller parameters are in 
Tab.1, the respective simulation results are illustrated and compared on step responses in 
one tested point from uncertainty domain, in Fig. 3. 
 

Design approach 
1st subsyst. 
controller  

2nd  subsyst. 
controller 

LMI (39) 
1

1
5.862 2.602

1

z

z







 

1

1
6.45 2.578

1

z

z







 

BMI (38) 
Q=0.01*I, R=5*I 

1

1
1.3002 1.0351

1

z

z








1

1
1.3833 1.1361

1

z

z








Table 1. Decentralized PID controller parameters – minimum phase case 
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Fig. 3. Step response of y1 and y2  to setpoint step changes: w1 in 400s and w2 in 800s; 
comparison of LMI and BMI design results from Tab.1 

Obviously, the results for the BMI solution including performance index outperform the 
ones obtained using simpler LMI approach. 

Nonminimum phase configuration 

In the nonminimum phase case, robust decentralized controller is designed for chosen pairing 

1 2 2 1,v y v y  (see Section 2.1) using a solution of BMI (38) for decentralized discrete-time PI 
controller design, (in this case LMI procedure (39) does not provide a feasible solution). The 
resulting controller parameters are in Tab.2, the respective simulation results are illustrated on 
step responses in one tested point from uncertainty domain, in Fig. 4. 
 

Design approach 
1st subsyst. 
controller  

2nd  subsyst. 
controller 

BMI (38) 
Q=0.01*I, R=5*I 

1

1
0.5371 0.5099

1

z

z







 

1

1
0.7221 0.6941

1

z

z








Table 2. Decentralized PID controller parameters – nonminimum phase case 
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Fig. 4. Step response of y1 and y2  to setpoint step changes: w1 (for y2) in 1000s and w2  
(for y1) in 2000s 

www.intechopen.com



 
Robust Decentralized PID Controller Design 

 

149 

Comparison of simulation results for minimum and nonminimum phase cases shows the 
deteriorating influence of nonminimum phase on settling time.  

4. Robust decentralized PID controller design in the frequency domain 

This section deals with an original frequency domain robust decentralized controller design 
methodology applicable for uncertain systems described by a set of transfer function 
matrices. The design methodology is based on the Equivalent Subsystems Method (ESM) - a 
frequency domain decentralized controller design technique to guarantee stability and 
specified performance of multivariable systems and is applicable for both continuous- and 
discrete-time controller designs (Kozáková et al., 2009). In contrast to the two stage robust 
decentralized controller design method based on the M-structure stability conditions 
(Kozáková & Veselý, 2009), the recent innovation (Kozáková et al., 2011) consists in that 
robust stability conditions are directly integrated into the ESM, thus providing a one-step 
(direct) robust decentralized controller design for robust stability and plant-wide 
performance.  

4.1 Preliminaries and problem formulation  

Consider a MIMO system described by a transfer function matrix ( ) m mG s R  and a 

controller ( ) m mR s R  in the standard feedback configuration according to Fig. 5,  

 

w e yu

d

R(s) G(s) 

 
Fig. 5. Standard feedback configuration 

where w, u, y, e, d are respectively vectors of reference, control, output, control error and 
disturbance of compatible dimensions. Necessary and sufficient conditions for closed-loop 
stability are given by the Generalized Nyquist Stability Theorem applied to the closed-loop 
characteristic polynomial   

 det ( ) det[ ( )]F s I Q s   (40) 

where ( ) ( ) ( )Q s G s R s m mR  is the open-loop transfer function matrix. 

Characteristic functions of ( )Q s are the set of m algebraic functions ( ), 1,...,iq s i m defined 

as follows: 

 det[ ( ) ( )] 0 1,...,i mq s I Q s i m    (41) 

Characteristic loci (CL) are the set of loci in the complex plane traced out by the 
characteristic functions of  Q(s), s j .  

Theorem 4.1 (Generalized Nyquist Stability Theorem) 

The closed-loop system in Fig. 1 is stable if and only if  
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a. det ( ) 0F s s   

b. 
1

[0,det ( )] {0,[1 ( )]}
m

i q
i

N F s N q s n


    
(42)

where ( ) ( ( ))F s I Q s  and nq is the number of unstable poles of Q(s).   

Let the uncertain plant be given as a set  of N transfer function matrices  

 { ( )}, 1,2,...,kG s k N      where    ( ) ( )k k
ij

m m
G s G s


  (43) 

The simplest uncertainty model is the unstructured perturbation. A set of unstructured 
perturbations DU is defined as  

 max max: { ( ) : [ ( )] ( ), ( ) max [ ( )]}U
k

D E j E j E j           (44) 

where ( ) is a scalar weight on the norm-bounded perturbation   m ms R  , 

max[ ( )] 1j     over given frequency range, max( )  is the maximum singular value of (.), 

hence 

 ( ) ( ) ( )E j j      (45) 

Using unstructured perturbation, the set  can be generated by either additive (Ea), 
multiplicative input (Ei) or multiplicative output (Eo) uncertainties, or their inverse 
counterparts (Skogestad & Postlethwaite, 2009) thus specifying pertinent uncertainty 
regions. In the sequel, just additive (a) and multiplicative output (o) perturbations will be 
considered; results for other uncertainty types can be obtained by analogy. 
Denote ( )G s any member of a set of possible plants , ,k k a i  ; 0( )G s the nominal model 

used to design the controller, and ( )k  the scalar weight on a normalized perturbation. The 

sets k generated by the two considered uncertainty forms are: 
Additive uncertainty: 

 
0

max 0

: { ( ) : ( ) ( ) ( ), ( ) ( ) ( )}

( ) max [ ( ) ( )], 1,2, ,

a a a a

k
a

k

G s G s G s E s E j j

G j G j k N

    

   

   

  



   (46) 

Multiplicative output uncertainty: 

 
0

1
max 0 0

: { ( ) : ( ) [ ( )] ( ), ( ) ( ) ( )}

( ) max {[ ( ) ( )] ( )}, 1,2, ,

o o o

k
o

k

G s G s I E s G s j j j

G j G j G j k N

     

    

   

  



   (47) 

Standard feedback configuration with uncertain plant modelled using any unstructured 
uncertainty form can be recast into the M   structure (for additive perturbation see  
Fig. 6) where M(s) is the nominal model and  s is the norm-bounded complex 

perturbation.  
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w e y 

-

u

y

G0(s) R(s) 

a (s)

 
Fig. 6. Standard feedback configuration with additive perturbation (left) recast into the 
M   structure (right) 

According to the general robust stability condition (Skogestad & Postlethwaite, 2009), if both 
the nominal closed-loop system M(s) and the perturbations ( )s  are stable, the M   

system in Fig. 2 is stable for all perturbations ( )s : max( ) 1    if and only if   

 max[ ( )] 1 ,M j     (48) 

For individual uncertainty forms ( ) ( ), ,k kM s M s k a o   the corresponding matrices 

( )kM s are given by (49) and (50), respectively (disregarding negative signs which do not 

affect resulting robustness condition). The nominal model 0( )G s is usually obtained as a 

model of mean parameter values.  

 1
0( ) ( ) ( )[ ( ) ( )] ( ) ( )a a aM s s R s I G s R s s M s      (49) 

 1
0 0( ) ( ) ( ) ( )[ ( ) ( )] ( ) ( )o o oM s s G s R s I G s R s s M s      (50) 

4.1.1 Problem formulation 

Consider an uncertain system that consists of m subsystems and is given as a set of N 
transfer function matrices obtained in N working points of plant operation. Let the 
uncertain system be described by a nominal model 0( )G s  and any unstructured uncertainty 

form (46), (47). Consider the following splitting of 0( )G s : 

 0( ) ( ) ( )d mG s G s G s   (51) 

where  

 ( ) { ( )} , det ( ) 0d i m m dG s diag G s G s   (52) 

 0( ) ( ) ( )m dG s G s G s   (53) 

A decentralized controller  

 ( ) { ( )}i m mR s diag R s      det ( ) 0R s   (54) 

is to be designed to guarantee stability over the whole operating range of the plant specified 
by (46) or (47) (robust stability) and a specified plant-wide performance (nominal 
performance).  

u 

M(s) 

y 

(s) 
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To solve this problem, a frequency domain robust decentralized controller design technique 
has been developed (Kozáková and Veselý, 2009; Kozáková et. al., 2011); the core of it is the 
Equivalent Subsystems Method (ESM). 

4.2 Decentralized controller design for performance: Equivalent Subsystems Method 

The Equivalent Subsystems Method (ESM) is a Nyquist-based technique to design 
decentralized controller for stability and specified plant-wide performance. According to it, 
local controllers ( ), 1,...,iR s i m  are designed independently for so-called equivalent 

subsystems obtained from frequency responses of decoupled subsystems by shaping each of 
them using one of m characteristic loci of the interactions matrix Gm(s). If local controllers 
are independently tuned for specified degree-of-stability of equivalent subsystems, the 
resulting decentralized controller guarantees the same degree-of-stability plant-wide 
(Kozáková et al., 2009). Unlike standard robust approaches, the proposed technique 
considers full nominal model of mean parameter values, thus reducing conservatism of 
resulting robust stability conditions. In the context of robust decentralized controller design, 
the Equivalent Subsystems Method is directly applicable to design DC for the nominal 
model (Fig. 3). 
 

w e u y+ + 

- 

G0(s)  

Gd(s) 

Gm(s) 

R(s) 

R1  0    …   0
0     R2    …   0 
……………….. 
0     0   …   Rm 

G11 0    …  0
0     G22   …  0 
………………... 
0     0  …  Gmm 

0 G12 … G1m 

G21  0 …  G2m 

……………….… 
Gm1 Gm2 …  0 

 
Fig. 7. Standard feedback loop under decentralized controller  

The key idea behind the method is factorization of the closed-loop characteristic polynomial 
(40) in terms of the nominal system (51) under the decentralized controller (54). Then 

 1det ( ) det[ ( ) ( ) ( )]det ( )d mF s R s G s G s R s    (55) 

Denote the sum of the diagonal matrices in (55) as 

 1( ) ( ) ( )dR s G s P s    (56) 

where  ( ) { ( )}i m mP s diag p s  . 

In order to “counterbalance” interactions ( )mG s , consider the closed-loop being at the limit 

of instability and choose the diagonal matrix ( ) ( )kP s p s I  to have identical entries pk(s); 

then by similarity with (41)  the bracketed term  in (55) defines the k-th of the m 
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characteristic functions of [ ( )]mG s  (the set of characteristic functions are denoted  

( ), 1,2,...,ig s i m ); thus 

 
1

det[ ( ) ( )] det[ ] [ ( ) ( )] 0, 1,2,...
m

m k m k i
i

P s G s p I G g s g s k m


         (57) 

With respect to stability, the interactions matrix ( )mG s can thus be replaced by [-P(s)] 

yielding the important relationship 

 1

det[ ( ) ( )] det{ [ ( ) ( )] ( )}

det[ ( ) ( ) ( )]det ( ) det[ ( ) ( )]

d m

eq
d

I G s R s I G s G s R s

R s G s P s R s I G s R s

    

    
 (58) 

where 

 ( ) { ( )}eq eq
m miG s diag G s   (59) 

is a diagonal matrix of m equivalent subsystems generated as follows 

 ( ) ( ) ( ), 1,2, ,eq
i kikG s G s g s i m     (60) 

As all matrices are diagonal, on subsystems level (58) breaks down into m equivalent closed-
loop characteristic polynomials (CLCP) 

 ( ) 1 ( ) ( ) 1,2,... ,eq eq
ii iCLCP s R s G s i m    (61) 

Considering (58)-(61), stability conditions stated in the Generalized Nyquist Stability 
Theorem modify as follows: 

Corollary 4.1  

The closed-loop in Fig. 3 comprising the system (51) and the decentralized controller (54) is 
stable if and only if there exists a diagonal matrix ( ) ( ) ( )kP s p s I s  such that 

1. det[ ( ) ] 0,k mp s I G  for a fixed {1,..., }k m  

2. all equivalent characteristic polynomials (61) have roots with Re{ } 0s  ; 

3. [0,det ( )] qN F s n  

(62)

where N[0,g(s)] is number of anticlockwise encirclements of the complex plane origin by the 
Nyquist plot of g(s);  qn is number of open loop poles with Re{ } 0s  . 

The decentralized controller design technique for nominal stability resulting from Corollary 

4.1 enables to independently design stabilizing local controllers for individual single input-
single output equivalent subsystems using any standard frequency-domain design method, 
e.g. (Bucz et al., 2010; Drahos, 2000). In the originally developed ESM version (Kozáková et 
al., 2009) it was proved that local controllers tuned for a specified feasible degree-of-stability 
of equivalent subsystems constitute the decentralized controller guaranteeing the same 
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degree-of-stability plant-wide. To design local controllers of equivalent subsystems, the 
general conditions in Corollary 4.1 allow using any frequency domain performance measure 
that can appropriately be interpreted for the full system. In the next subsection, the plant 
wide performance is specified in terms of maximum overshoot which is closely related to 
phase margins of equivalent subsystems. 

4.2.1 Decentralized controller design for guaranteed maximum overshoot and 
specified settling time 

The ESM can be applied to design decentralized controller to guarantee specified maximum 
overshoot of output variables of the multivariable system. The design procedure evolves 
from the known relationship between the phase margin (PM) and the maximum peak of the 
complementary sensitivity (Skogestad & Postlethwaite, 2009) 

1 1
2arcsin [ ]

2 T T

PM rad
M M

 
  

 
 (63) 

where  

 max[ ( )]TM T j   (64) 

is the maximum peak of the complementary sensitivity T(s) defined as  

 
1( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s    (65) 

Relation between the maximum overshoot max  and  MT is given by (Bucz et al., 2010) 

 max
1.18 (0)

100[%]
(0)

TM T

T



  (66) 

According to the ESM philosophy, local controllers are designed using frequency domain 
methods; if PID controller is considered, the most appropriate ones are e.g. the Bode 
diagram design or the Neymark D-partition method. If using the Bode diagram design, in 
addition to max it is also possible to specify the required settling time ts related with the 

closed-loop bandwidth frequency 0 defined as the gain crossover frequency. The following 

relations between ts and 0  are useful (Reinisch, 1974). 

0

3
st 
 for (1.3; 1.5)TM   

 0
4

s st t

    (67) 

In general, a larger bandwidth corresponds to a smaller rise time, since high frequency 
signals are more easily passed on to the outputs. If the bandwidth is small, the time 
response will generally be slow and the system will usually be more robust.  
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Design procedure: 

1. Generating frequency responses of equivalent subsystems. 
2. Specification of performance requirements in terms of max , ts and MT using (66), (67). 

3. Specification of  a minimum phase margin PM for equivalent subsystems using (63). 
4. Local controller design for specified PM in equivalent subsystems using appropriate 

frequency domain method. 
5. Verification of achieved performance by evaluating frequency domain performance 

measure and via simulation. 

4.3 Decentralized controller design for robust stability using the Equivalent 
Subsystems Method  

In the context of robust control approach, the ESM method in its original version is 
inherently appropriate to design decentralized controller guaranteeing stability and 
specified performance of the nominal model (nominal stability, nominal performance). If, in 
addition, the decentralized controller has to guarantee closed-loop stability over the whole 
operating range of the plant specified by the chosen uncertainty description (robust 
stability), the ESM can be used either within a two-stage design procedure or a direct design 
procedure for robust stability and nominal performance. 
1. Two stage robust decentralized controller design for robust stability and nominal 

performance 
In the first stage, the decentralized controller for the nominal system is designed using ESM, 
afterwards, fulfilment of the M-stability condition (48) is examined; if satisfied, the design 
procedure stops, otherwise in the second stage the controller parameters are modified to 
satisfy robust stability conditions in the tightest possible way, or local controllers are 
redesigned using modified performance requirements (Kozáková & Veselý, 2009). 
2. Direct decentralized controller design for robust stability and nominal performance 
By direct integration of robust stability condition (48) in the ESM, a “one-shot” design of 
local controllers for both nominal performance and robust stability can be carried out. In 
case of decentralized controller design for guaranteed maximum overshoot and specified 
settling time, the upper bound for the maximum peak of the nominal complementary 
sensitivity over the given frequency range 

 0T maxM max{ [T ( j )]}


        1
0 0 0( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s    (68) 

can be obtained using the singular value properties in manipulations of the M-condition 
(48) considering (49) or (50). The following bounds for the nominal complementary 
sensitivity have been derived: 

 min 0
max 0

[ ( )]
[ ( )] ( )

( ) A
a

G j
T j L

 
   


  


 additive uncertainty  (69) 

 max 0
1

[ ( )] ( )
( ) O

o

T j L   


  


  multiplicative output uncertainty  (70) 

Expressions on the r.h.s. of (69) and (70) do not depend on a particular controller and can be 
evaluated prior to designing the controller. In this way, if  
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 max 0max{ [ ( )]}TM T j


    (71) 

is used in the Design procedure, the resulting decentralized controller will simultaneously 
guarantee achieving the required maximum overshoot of all output variables (nominal 
performance) and stability over the whole operating range of the plant specified by selected 
working points (robust stability). 

4.4 Discrete-time robust decentralized controller design using the Equivalent 
Subsystems Method  

Controllers for continuous-time plants are mostly implemented as discrete-time controllers. 
A common approach to discrete-time controller design is the continuous controller redesign 
i.e. conversion of the already designed continuous controller into its discrete counterpart. 
This approach, however, is only an approximate scheme; performance under these 
controllers deteriorates with increasing sampling period. This drawback may be improved 
by modifying the continuous controller design before it is discretized which can often allow 
significantly larger sampling periods (Lewis, 1992). Then, the ESM design methodology can 
be applied in a similar way as in the continuous-time case using discrete characteristic loci, 
discrete Nyquist plots and discrete Bode diagrams of equivalent subsystems. Local 
controllers designed as continuous-time ones are subsequently converted into their discrete-
time counterparts. Closed-loop performance under a discrete-time controller is verified 

using simulations and the discrete-time maximum singular value of the sensitivity [ ( )]M S z  

where 

 
1( ) [ ( ) ( )] , sj TS z I G z R z z e     (72) 

The maximum singular value 
j T

maxmax [S( e )]


  plotted as function of frequency  should 

be small at low frequencies where feedback is effective, and approach 1 at high 
frequencies, as the system is strictly proper, having a peak larger than 1 around the 
crossover frequency. The peak is unavoidable for real systems. Bandwidth frequency is 

defined as frequency where [ ( )]sj T
M S e  crosses 0.7 from below (Skogestad & 

Postlethwaite, 2009). Similarly, a discretized version of robust stability conditions (69), 
(70) based on (46) and (47) is applied.  

4.4.1 Design of continuous controllers for discretization  

The crucial step for the discrete controller design is proper choice of the sampling time T. 
Then, frequency response of the discretized system matches the one of the continuous time 

system up to a certain frequency / 2S  , and the discrete controller can be obtained by 

converting the continuous–time controller designed from the discrete frequency responses 
to its discrete-time counterpart. 
The sampling period T is to be selected according to the Shannon-Kotelnikov sampling 
theorem, or using common rules of thumb, e.g. as ~ 1/10 of the settling time of the plant 
step response, or from control system bandwidth according to the relation 
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0

20 40s


   (72) 

where s is sampling frequency, and 0 is control system bandwidth, i.e. the maximum 
frequency at which the system output still tracks and input sinusoid in a satisfactory 
manner (Lian et al., 2002). A proper choice of sampling period is crucial for achievable 
bandwidth and feasibility of the required phase margin. Given a discrete-time transfer 
function ( )G z , the frequency response can be studied by plotting Nyquist or  Bode plots of 

( ) j Tz e
G z   . The discrete-time robust controller design for maximum overshoot and settling 

time is described in the next Section. 

4.5 Decentralized discrete-time PID Controller design for the Quadruple tank process 

In the frequency domain, the direct robust decentralized PID design procedure has been 
applied for the transfer function matrix (3) identified in three working points within the 
minimum and nonminimum phase regions (7) and (8), respectively. In both cases the 
nominal model is a mean value parameter model.  

Minimum phase configuration 

From three plant models (3) evaluated in working points taken from the minimum phase 
uncertainty region as specified in (7), the resulting continuous-time nominal model is  

 0

2.4667 1.2333
62 1 (23 1)(62 1)

( )
1.5667 3.1333

(30 1)(90 1) 90 1

s s s
G s

s s s

 
    
 
    

 (73) 

All three transfer function matrices were discretized using the sampling period 
30ST s chosen as approx. 1/10 of the settling time of plant step responses in Fig. 8. 
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Fig. 8. Step response of the quadruple tank process 

Discrete-time transfer function matrix of the nominal plant is 
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1 1 2

1 1 2

1 2 1

1 2 1

0.9462 0.2221 0.1226

1 0.6164 1 0.8877 0.1673( )
0.1710 0.1097 0.8882

1 1.0840 0.2636 1 0.7165

z z z

z z zG z
z z z

z z z

  

  

  
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 
 

   
  
    

 (74) 

From the discretized transfer function matrices and the nominal model (74), upper bounds 
for max 0[ ( )]T j  were evaluated according to (69) and (70). 
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Fig. 9. Upper bounds  for max 0[ ( )]T j  evaluated according to (69) and (70) 

Inspection of Fig. 9 reveals, that _ min 0.77 1T A AM L


    is not feasible for the local controller 

design (closed-loop design magnitude less than 1 does not guarantee proper setpoint tracking, 
even at =0); hence  _ min 1.22T T O OM M L


    has been considered in the sequel.  

Characteristic loci g1(z), g2(z) of  Gm(z) were calculated; 2( )g z  was selected to generate the 

equivalent subsystems according to (60). Bode plots of resulting equivalent subsystems are 
shown in Fig. 10. 
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Fig. 10. Discrete Bode plots of equivalent subsystems generated by g2(z): 12( )eqG z (left),  

22( )eqG z  (right) (min. phase case) 
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Relevant parameters read form discrete Bode plots of uncompensated equivalent 
subsystems in Fig. 10 are summarized in Tab. 3. 
 
 
 
 

Equivalent 
subsystem 

PM 
Crossover 
frequency 

12( )eqG z  53.90 0.048 rad/ s-1 

22( )eqG z  58.350 0.0448 rad/s-1 

 
 

Table 3. Relevant parameters of equivalent subsystems generated by g2(z) 

For both equivalent subsystems the required settling time and maximum overshoot were 
chosen with respect to plant dynamics: 600 , 1.05s Tt s M   corresponding to max 5%  . 

Related values of other design parameters obtained from (63) and (67) respectively are: 
0

min 56.87PM   and required crossover frequency 0 0.0131  . The required phase margin 

minreqPM PM  was chosen 065reqPM  .  To design local controllers, Bode design procedure 

(Kuo, 2003) has been applied independently for each equivalent subsystem to achieve the 
required phase margin: 0( )PM  is found on the magnitude Bode plot; if 0( ) reqPM PM  , a 

PI controller ( ) I
PI P

K
G s K

s
   is designed. If 0( ) reqPM PM  , a PD controller 

( ) 1PD DG s K s   is designed first, to provide 0( )reqPM  , and subsequently a PI controller is 

designed. The resulting PID controller is obtained in the series form 

( ) ( )(1 )I
PID P D

K
G s K K s

s
   . Achieved design results are summarized in Tab. 4. 

 
 
 
 

Eq. 
subsyst. 

Ri(s) Ri(z) PMachieved achieved 

12( )eqG z  1
0.0039

( ) 0.1988R s
s

   
1

1 1
0.199 0.082

( )
1

z
R z

z









 58.350 
0.0122 
rad/s-1 

22( )eqG z  2
0.0034

( ) 0.2212R s
s

   
1

2 1
0.221 0.119

( )
1

z
R z

z









 65.70 
0.0121 
rad/s-1 

 
 

Table 4. Design results and achieved frequency domain performance measures (minimum 
phase configuration) 
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Design results in Tab. 4 along with Bode plots of compensated equivalent subsystems in 
Fig.11 prove achieving required design parameters. Closed-loop step responses are in  
Fig. 12. 
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Fig. 11. Discrete Bode plots of equivalent subsystems under designed PI controllers: 

12( )eqG z (left),  22( )eqG z  (right) 
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Fig. 12. Nominal closed-loop step responses of the quadruple tank process (reference steps 
0.1m occurred at t=0s at the input of the 1st subsystem, and at t=300s and t=10s, respectively, 
at the input of the 2nd subsystem). Maximum overshoot and settling time (600s) were kept in 
both cases. 

Nominal closed-loop stability was verified both by calculating closed-loop poles and using 
the Generalized Nyquist encirclement criterion (Fig. 13).   

 Roots_of_CLCP { 0.7019  0.2572i,0.8313, 0.7167, 0.7165, 0.6164, 0.3720, 0.2637                
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Fig. 13. Stability test using the Nyquist plot of det[ ( ) ( )]I G z R z  

Achieved nominal performance was verified via plotting sensitivity magnitude plot in Fig. 
14. Sensitivity peak  max{ [ ( )]} 2M S j


    around the crossover frequency proves good 

closed-loop performance. 
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Fig. 14. [ ( )] j TM z e

S z   - versus –frequency plot  

Fulfilment of robust stability condition (70) is examined in Fig. 15. The closed-loop system is 
stable over the whole minimum phase region (7). 
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Fig. 15. Verification of the robust stability condition  max 0
1
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( ) O

o

T j L  


 


 

Non-minimum phase configuration 

To design robust decentralized PI controller for the non-minimum phase configuration, the 
continuous-time nominal model was evaluated for 1 2,  taken from the non-minimum 
phase uncertainty region (8) and interchanged columns of the transfer function matrix (due 
to opposite pairing as suggested in Section 2):  

 0

3.0830 0.6167
(23 1)(62 1) 62 1

( )
0.7833 3.9170
90 1 (30 1)(90 1)

s s s
G s

s s s

 
    
 
    

 (73) 

Discrete-time transfer function matrix of the nominal plant obtained for 30ST s  is 

 

1 2 1

1 2 1

1 1 2

1 1 2

0.5554 0.3065 0.2366

1 0.8877 0.1673 1 0.6164( )
0.2220 0.4275 0.2743

1 0.7165 1 1.0840 0.2636

z z z

z z zG z
z z z

z z z

  

  

  

  

 
 

   
  
    

 (74) 

Upper bounds for max 0[ ( )]T j  evaluated according to (69) and (70) are in Fig. 16. 
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Fig. 16. Upper bounds  for max 0[ ( )]T j  evaluated according to (69) and (70) 
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Obviously, proper setpoint tracking can be guaranteed for both uncertainty types, just on a 
limited frequency range. Hence, 1.05TM   and multiplicative output uncertainty will be 

considered in the sequel.  
Bode plots of equivalent subsystems generated using 2( )g z  are shown in Fig. 17, and their 

relevant parameters are summarized in Tab. 5. 
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Fig. 17. Discrete Bode plots of equivalent subsystems generated by g2(z): 12( )eqG z (left), 

22( )eqG z  (right) (non-minimum phase case) 

 
Equivalent 
subsystem 

PM 
Crossover 
frequency 

12( )eqG z  43.810 0.040rad/s-1 

22( )eqG z  44.040 
0.0344 
rad/s-1 

Table 5. Relevant parameters of equivalent subsystems generated by g2(z). 

For both equivalent subsystems the required settling time and maximum overshoot were 
chosen the same as in the minimum phase case: 600 , 1.05s Tt s M   corresponding to 

max 5%  . Related values of other design parameters are: 0
min 56.87PM   and required 

crossover frequency 0 0.0131  . The required phase margin minreqPM PM  was chosen 

060reqPM  . Achieved design results are summarized in Tab. 6 and Bode plots of 

compensated equivalent subsystems in Fig.18 prove achieving required design 
parameters. 
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Eq. 
subsyst. 

Ri(s) Ri(z) PMachieved achieved 

12( )eqG z  1
0.0039

( ) 0.2083R s
s

   
1

1 1
0.2083 0.0923

( )
1

z
R z

z









 54.170 
0.0122 
rad/s-1 

22( )eqG z  2
0.0030

( ) 0.2376R s
s

   
1

2 1
0.2376 0.1832

( )
1

z
R z

z









56.89 
0.0120 
rad/s-1 

Table 6. Design results and achieved frequency domain performance measures for the non-
minimum phase case 
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Fig. 18. Discrete Bode plots of equivalent subsystems under designed PI controllers: 

12( )eqG z (left),  22( )eqG z  (right)  
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Fig. 19. Nominal closed-loop step responses of the quadruple tank system in non-minimum 
phase configuration (reference steps 0.1m occurred at t=0s at the input of the 1st subsystem, 
and at t=300s and t=10s, respectively, at the input of the 2nd subsystem). Maximum 
overshoot and settling time (600s) were kept in both cases. 

Nominal closed-loop poles verify nominal stability.   
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Roots_of_CLCP { 0.6768   0.2761i, 0.7335 0.2262i,  0.7165, 0.6164, 0.5876, 0.3313                 

The sensitivity magnitude plot in Fig. 20 with the peak max{ [ ( )]} 2M S j


    around the 

crossover frequency proves good closed-loop nominal performance. 
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Fig. 20. [ ( )] j TM z e

S z   - versus –frequency plot  

Fulfilment of robust stability condition (70) is examined in Fig. 21. The closed-loop system is 
stable over the whole non-minimum phase region (8). 
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Fig. 21. Verification of the robust stability condition  max 0
1
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5. Conclusion 

The robust decentralized PID controller design procedures have been developed both in 
frequency and time domains. The proposed controller design schemes are based on different 
principles, with the same control aim: to achieve robust stability and specified performance. 
The comparative study of both approaches is presented on robust decentralized discrete-
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time PID controller design for quadruple-tank process model, for minimum and 
nonminimum phase configurations. Both proposed approaches provide promising results 
verified by simulation on nonlinear process model.  
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