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1. Introduction  

„How can proper controller adjustments be quickly determined on any control 
application?” The question posed by authors of the first published PID tuning method 
J.G.Ziegler and N.B.Nichols in 1942 is still topical and challenging for control engineering 
community. The reason is clear: just every fifth controller implemented is tuned properly 
but in fact: 
 30% of improper performance is due to inadequate selection of controller design 

method, 
 30% of improper performance is due to neglected nonlinearities in the control loop,  
 20% of improper closed-loop dynamics is due to poorly selected sampling period. 
Although there are 408 various sources of PID controller tuning methods (O´Dwyer, 2006), 
30% of controllers permanently operate in manual mode and 25% use factory-tuning 
without any up-date with respect to the given plant (Yu, 2006). Hence, there is natural need 
for effective PID controller design algorithms enabling not only to modify the controlled 
variable but also achieve specified performance (Kozáková et al., 2010), (Osuský et al., 2010). 
The chapter provides a survey of 51 existing practice-oriented methods of PID controller 
design for specified performance. Various options for design strategy and controller 
structure selection are presented along with PID controller design objectives and 
performance measures. Industrial controllers from ABB, Allen&Bradley, Yokogawa, Fischer-
Rosemont commonly implement built-in model-free design techniques applicable for 
various types of plants; these methods are based on minimum information about the plant 
obtained by the well-known relay experiment. Model-based PID controller tuning 
techniques acquire plant parameters from a step-test; useful tuning formulae are provided 
for commonly used system models (FOPDT – first-order plus dead time, IPDT – integrator 
plus dead time, FOLIPDT – first-order lag and integrator plus dead time and SOPDT –   
second-order plus dead time). Optimization-based PID tuning approaches, tuning methods 
for unstable plants, and design techniques based on a tuning parameter to continuously 
modify closed-loop performance are investigated. Finally, a novel advanced design 
technique based on closed-loop step response shaping is presented and discussed on 
illustrative examples. 
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2. PID controller design for performance 

Time response of the controlled variable y(t) is modifiable by tuning proportional gain K, 
and integrating and derivative time constants Ti and Td, respectively; the objective is to 
achieve a zero steady-state control error e(t) irrespective if caused by changes in the 
reference w(t) or the disturbance d(t). This section presents practice-oriented PID controller 
design methods based on various perfomance criteria. Consider the control-loop in Fig. 1 
with control action u(t) generated by a PID controller (switch SW in position “1”). 
 
 
 
 
 
                     n(t) 
 
 
 

Fig. 1. Feedback control-loop with load disturbance d(t) and measurement noise n(t) 

A controller design is a two-step procedure consisting of controller structure selection (P, PI, 
PD or PID) followed by tuning coefficients of the selected controller type.  

2.1 Selection of PID controller structure 

Appropriate structure of the controller GR(s) is usually selected with respect to zero steady-
state error condition (e()=0), type, and parameters of the controlled plant. 

2.1.1 Controller structure selection based on zero steady-state error condition 

Consider the feedback control loop in Fig. 1 where G(s) is the plant transfer function. 
According to the Final Value Theorem, the steady-state error  
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is zero if in the open-loop L(s)=G(s)GR(s), the integrator degree L=S+R is greater than the 
degree q of the reference signal w(t)=wqtq, i.e.  

 L q   (2) 

where S and R are integrator degrees of the plant and controller, respectively, KL is open-
loop gain and wq is a positive constant (Harsányi et al., 1998). 

2.1.2 Principles of controller structure selection based on the plant type 

Industrial process variables (e.g. position, speed, current, temperature, pressure, humidity, 
level etc.) are commonly controlled using PI controllers. In practice, the derivative part is 
usually switched off due to measurement noise. For pressure and level control in gas tanks, 
using P controller is sufficient (Bakošová & Fikar, 2008). However, adding derivative part 
improves closed-loop stability and steepens the step response rise (Balátě, 2004). 

SW 3 
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PID controller 
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2.1.3 PID controller structure selection based on plant parametres  

Consider the FOPDT (j=1) and FOLIPDT (j=3) plant models given as GFOPDT=K1e-D1s/[T1s+1] 
and GFOLIPDT=K3e-D3s/{s[T3s+1]} with following parameters  
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where Kc and c are critical gain and frequency of the plant, respectively. Normed time 
delay j and parameter j can be used to select appropriate PID control strategy. According 
to Tab. 1 (Xue et al., 2007), the derivative part is not used in presence of intense noise and a 
PID controller is not appropriate for plants with large time delays. 
 

Ranges for  and  
No precise 

control 
necessary 

Precise control needed 
High 
noise 

Low 
saturation 

Low measu-
rement noise 

1>1; 1<1,5 I I+B+C PI+B+C PI+B+C 
0,6<1<1; 1,5<1<2,25 I or PI I+A PI+A (PI or PID)+A+C 
0,15<1<0,6; 2,25<1<15 PI PI PI or PID PID 
1<0,15; 1>15 or 3>0,3; 3<2 P or PI PI PI or PID PI or PID 
3<0,3; 3>2 PD+E F PD+E PD+E 

Table 1. Controller structure selection with respect to plant model parameters:  
A: forward compensation suggested, B: forward compensation necessary, C: dead-time 
compensation suggested, D: dead-time compensation necessary, E: set-point weighing 
necessary, F: pole-placement 

2.2 PID controller design objectives  

Consider the following most frequently used PID controller types: ideal PID (4a), real 
interaction PID with derivative filtering (4b) and ideal PID in series with a first order filter 
(4c) 
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In practical cases N8;16 (Visoli, 2006). The PID controller design objectives are: 
1. tracking of setpoint or reference variable w(t) by y(t), 
2. rejection of disturbance d(t) and noise n(t) influence on the controlled variable y(t).  
The first objective called also „servo-tuning” is frequent in motion systems (e.g. tracking 
required speed); techniques to guarantee the second objective are called „regulator-tuning“. 

2.3 Performance measures in the time domain 

Performance measures indicating satisfactory quality of setpoint tracking (Fig. 2a) and 
disturbance rejection (Fig. 2b) are small maximum overshoot and small decay ratio, 
respectively, given as 
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where y() denotes steady state of y(t). The ratio of two successive amplitudes Ai+1/Ai is 
measure of y(t) decaying, where i=1...N, and N is half of the number of y() crossings by 
y(t) (Fig. 2b). A time-domain performance measure is the settling time ts, i.e. the time after 
which the output y(t) remains within % of its final value (Fig. 2a); typically 
=[1%÷5%]y(), DR(1:4;1:2), max(0%;50%). Fig. 2c depicts underdamped (curve 1), 
overdamped (curve 2) and critically damped (curve 3) closed-loop step responses. 
 

 
 
 
 
 
 

Fig. 2. Performance measures: DR, ts, max and e(); a) setpoint step response; b) load 
disturbance step response; c) over-, critically- and underdamped closed-loop step-responses 

2.4 Model-free PID controller design techniques with guaranteed performance 
Model-free tuning PID controller techniques are used if plant dynamics is not complicated 
(without oscillations, vibrations, large overshoots) or if plant modelling is time demanding, 
uneconomical or even unfeasible. To find PID controller coefficients, instead of a full model 
usually 2-4 characteristic plant parameters are used obtained from the relay test.  

2.4.1 Tuning rules based on critical parameters of the plant 
Consider the closed-loop in Fig. 1 with proportional controller. If the controller gain K is 
successively increased until the process variable oscillates with constant amplitudes, critical 
parameters can be specified: the period of oscillations Tc and the corresponding gain Kc. If 
the controller (4a) is considered, coefficients of P, PI and PID controllers are calculated 
according to Tab. 2, where c=2/Tc is critical frequency of the plant.  
 

No. Design method, year Cont-
roller K Ti Td Performance or 

response 
1. (Ziegler & Nichols, 1942) P 0,5Kc - - Quarter decay ratio 
2. (Ziegler & Nichols, 1942) PI 0,45Kc 0,8Tc - Quarter decay ratio 
3. (Ziegler & Nichols, 1942) PID 0,6Kc 0,5Tc 0,125Tc Quarter decay ratio 
4. (Pettit & Carr, 1987) PID Kc 0,5Tc 0,125Tc Underdamped 
5. (Pettit & Carr, 1987) PID 0,67Kc Tc 0,167Tc Critically damped 
6. (Pettit & Carr, 1987) PID 0,5Kc 1,5Tc 0,167Tc Overdamped 
7. (Chau, 2002) PID 0,33Kc 0,5Tc 0,333Tc Small overshoot 
8. (Chau, 2002) PID 0,2Kc 0,55Tc 0,333Tc Without overshoot 
9. (Bucz, 2011) PID 0,54Kc 0,79Tc 0,199Tc Overshoot max20% 
10. (Bucz, 2011) PID 0,28Kc 1,44Tc 0,359Tc Settling time ts13/c 

Table 2. Controller tuning based on critical parametres of the plant 

Rules No. 1 – 3 represent the famous Ziegler-Nichols frequency-domain method with fast 
rejection of the disturbance d(t) for DR=1:4 (Ziegler & Nichols, 1942). Related methods (No. 
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4 – 10) use various weighing of critical parameters thus allowing to vary closed-loop 
performance requirements. Methods (No. 1 – 10) are applicable for various plant types, 
easy-to-use and time efficient. 

2.4.2 Specification of critical parameters of the plant using relay experiment 

To quickly determine critical parameters Kc and Tc, industrial autotuners apply a relay test 
(Rotach, 1984) either with ideal relay (IR) or a relay with hysteresis (HR). In the loop in Fig. 1 
when adjusting the setpoint w(t) in manual mode and switching SW into „3“, a stable limit 
cycle around y() arises. Due to switching between the levels –M, +M, G(s) is excited by a 
periodic rectangular signal u(t), (Fig. 3a). Then, c and Kc can be calculated from  

 
2
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  ;  _
4

c IR
c

M
K

A
 ;  _

4( 0,5 )DB
c HR
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K

A





   (6) 

where the period and amplitude of oscillations Tc and Ac, respectively, can be obtained from 
a record of y(t) (Fig. 3b); DB is the width of the hysteresis. Relay amplitude M is usually 
adjusted at 3%10% of the control action limit. A relay with hysteresis is used if y(t) is 
corrupted by measurement noise n(t) (Yu, 2006); the critical gain is calculated using (6c). 
 

 
   
 
 
 
 

Fig. 3. A detailed view of u(t) and y(t) to determine critical parameters Kc and Tc  

2.5 Model-based PID controller design with guaranteed performance 

Steday-state and dynamic properties of real processes are described by simple FOPDT, 
IPDT, FOLIPDT or SOPDT models. Model parameters further used to calculate PID 
controller coefficients can be found e.g. from the plant step responses (Fig. 4 and 5). 

2.5.1 Specification of FOPDT, IPDT and FOLIPDT plant model parameters  

According to Fig. 1, the plant step response is obtained by switching SW into „2“ and 
performing a step change in u(t). Plant model parameters are obtained by evaluating the 
particular step response (Fig. 4).  
 
 
 
 
 
 
 
 

Fig. 4. Typical step responses of a) FOPDT; b) IPDT and c) FOLIPDT models 

From the read-off parameters, transfer functions of individual models have been obtained  
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2.5.2 Tuning formulae for FOPDT models  

FOPDT models (7a) are used for chemical processes, thermal systems, manufacturing 
processes etc. Corresponding P, PI and PID coefficients are calculated using formulae in Tab. 3. 
 

No. Design method, year, 
control purpose 

Cont-
roller K Ti Td Performance 

11. 
(Ziegler & Nichols, 
1942) 

P 1/1 - - 
Quarter decay 
ratio (δDR=1:4) 12. PI 0,9/1 3D1 - 

13. PID 1,2/1 2D1 0,5D1 
14. 

(Chien et al., 1952), 
Regulator tuning 

PI 0,6/1 4D1 - max=0%, 
D1/T1(0,1;1) 15. PID 0,95/1 2,38D1 0,42D1 

16. PI 0,7/1 2,33D1 - max=20%, 
D1/T1(0,1;1) 17. PID 1,2/1 2D1 0,42D1 

18. 
(Chien et al., 1952), 
Servo tuning 

PI 0,35/1 1,17D1 - max=0%, 
D1/T1(0,1;1) 19. PID 0,6/1 D1 0,5D1 

20. PI 0,6/1 D1 - max=20%, 
D1/T1(0,1;1) 21. PID 0,95/1 1,36D1 0,47D1 

22. (ControlSoft Inc., 
2005) 

PID 2/K1 T1+D1 max(D1/3;T1/6) Slow loop 
23. PID 2/K1 T1+D1 min(D1/3;T1/6) Fast loop 

Table 3. PID tuning rules based on FOPDT model; 1=K1D1/T1 is the normed process gain 

Formulae No. 11 – 13 represent the time-domain (or reaction curve) Ziegler-Nichols method 
(Ziegler & Nichols, 1942) and usually give higher open-loop gains than the frequency-
domain version. Algorithms by Chien-Hrones-Reswick provide different settings for 
setpoint regulation and disturbance rejection for two representative maximum overshoot 
values. 

2.5.3 Tuning formulae for IPDT and FOLIPDT models  

While dynamics of slow industrial processes (polymer production, heat exchangers) can be 
described by IPDT model (7b), electromechanic subsystems of turning machines and 
servodrives are typical examples for using FOLIPDT model (7c).  
 

No. Design method, year, model 
Cont-
roller

K Ti Td 
Perfor-
mance 

24. (Haalman, 1965), IPDT P 0,66/(K2D2) - - Ms=1,9 
25. (Ziegler & Nichols, 1942), IPDT PI 0,9/(K2D2) 3,33D2 - δDR=1:4 
26. (Ford, 1953), IPDT PID 1,48/(K2D2) 2D2 0,37D2 δDR=1:2,7 
27. (Coon, 1956), FOLIPDT P x3/[K3(D3+T3)] - - δDR=1:4 
28.  (Haalman, 1965), FOLIPDT PD 0,66/(K3D3) - T3 Ms=1,9 

Table 4. Tuning rules based on IPDT and FOLIPDT model parameters 
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According to Haalman (rules No. 24 and 28), controller transfer function GR(s)=L(s)/G(s), 
where L(s)=0,66e-Ds/(Ds) is the ideal loop transfer function guaranteeing maximum closed-
loop sensitivity Ms=1,9 to disturbance d(t), (see subsection 2.8.1). For various G(s), various 
controller structures are obtained. The gain K in rule No. 27 depends on the normed time 
delay 3=D3/T3 of the FOLIPDT model; for corresponding couples hold: (3;x3)={(0,02;5), 
(0,053;4); (0,11;3); (0,25;2,2); (0,43;1,7); (1;1,3); (4;1,1)}. Due to integrator contained in IPDT 
and FOLIPDT models, I-term in the controller structure is needed just to achieve zero 
steady-state error e() under steady-state disturbance d(). 

2.5.4 Tuning formulae for SOPDT plant models 

Flexible systems in wood processing industry, automotive industry, robotis, shocks and 
vibrations damping are often modelled by SOSPTD models with transfer functions 
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  (8) 

For SOPDT model (8b), the relative damping 6(0;1) indicates oscillatory step response.  
 
 
 
 
 
 
 
 
 

Fig. 5. Step response of SOPDT model: a) non-oscillatory, b) oscillatory  

If 6>1, SOPDT model (8a) is used; its parameters are found from the non-oscillatory step 
response in Fig. 5a using the following relations 
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where S=K4(T4+T5+D4) denotes the area above the step response of y(t), and y() is its 
steady-state value. Parameters of the SOPDT model (8b) can be found from evaluation of 2-4 
periods of step response oscillations (Fig. 5b) using following rules (Vítečková, 1998) 
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Quality of identification improves with increasing number of read-off amplitudes N. If N>2 
several values 6, T6 and D6 are obtained and their average is taken for further calculations. 
Tab. 5 summarizes useful tuning formulae for both oscillatory and non-oscillatory systems 
with SOPDT model properties. 
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No. Method, 
year 

Cont-
roller K Ti Td Performance for 

29. (Suyama, 
1992)  PID 4 5

4 42
T T

K D


 T4+T5 

4 5

4 5

T T

T T
 Closed-loop step response 

overshoot max=10% 

30. Vítečková, 
(1999), 
Vítečková  
et al., (2000)

PID 4 5
4

4 4

T T
x

K D


 T4+T5 

4 5

4 5

T T

T T
 

Overdamped plants; T5>T4 
max=0%: x4=0,368 
max=30%: x4=0,801 

31. PID 6 6 6

6 6

x T

K D


 26T6 

6

62
T


 

Underdamped plants (0,5<61) 
max=0%: x6=0,736 
max=30%: x6=1,602 

32. (Wang & 
Shao, 1999) PID 6 6 6

6 6

x T

K D


 26T6 

6

62
T


 [GM=2, M=45]: x6=1,571 

[GM=5, M=72]: x6=0,628 

33. (Chen  
et al., 1999) 

PID 6 6 6

6 6

x T

K D


 26T6 

6

62
D


 [GM;M;Ms]=[3,14;61,4;1]: x6=1,0 

[GM;M;Ms]=[1,96;44,1;1,5]: x6=1,6 

Table 5. Tuning rules based on SOPDT model parameters 

2.6 PID controller design based on optimization techniques 

Optimal PID controller tuning can be found by minimizing the performance index  

 
2

0

( , , ) ( , , , )n
i d i dI K T T t e K T T t dt


      (11) 

Its particular cases are known as integral square error (ISE) for n=0; integral squared time 
weighed error (ISTE) for n=1, and integral squared time-squared weighed error (IST2E) for 
n=2. Some tuning formulae for PID controller in form (4a) are shown in Tab. 6. Settling time 
ts in rules No. 40 and 41 is affected by D2. 
 
No. Method, year, model K Ti  Td Performance 
34. (Zhuang & Atherton, 

1993), FOPDT model, 
10,1;1  

1,47310,970/K1 0,897T110,753 0,550T110,948 Minimum ISE 
35. 1,46810,970/K1 1,062T110,725 0,443T110,939 Minimum ISTE 
36. 1,53110,960/K1 1,030T110,746 0,413T110,933 Minimum IST2E 
37. (Zhuang & Atherton, 

1993), FOPDT model, 
11,1;2  

1,52410,735/K1 0,885T110,641 0,552T110,851 Minimum ISE 
38. 1,51510,730/K1 1,045T110,598 0,444T110,847 Minimum ISTE 
39. 1,59210,705/K1 1,045T110,597 0,414T110,850 Minimum IST2E 
40. (Wang a Cluett, 1997), 

IPDT model 
0,9588/[K2D2] 3,0425D2  0,3912D2  ts=D2 

41. 0,3144/[K2D2] 11,1637D2  0,1453D2  ts=5D2 

Table 6. Tuning rules based on minimizing performance indices 

2.7 PID controller setting for unstable FOPDT models 

Minimization of performance indices can be applied also for unstable FOPDT models  

 
1

1
_

1
( )

1

D s

FOPDT US
K e

G s
T s





 (12) 
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leading to simple tuning rules for PID controller (4a) (No. 42 – 44 in Tab. 7). Tuning rules 
No. 45 and 46 for PID controller (4c) show that settling time ts increases with growing 
normed time delay 1=D1/T1 of the FOPDT model (12). 
 

No. Method, year K Ti Td Tf Performance 
42. (Visoli, 2001), 

Regulator 
tuning 

1,371/K1 2,42T111,18  0,60T1 - Minimum ISE 
43. 1,371/K1 4,12T110,90  0,55T1 - Minimum ISTE 
44. 1,701/K1 4,52T111,13  0,50T1 - Minimum IST2E 
45. (Chandrashekar 

et al., 2002) 
10,3662/K1 0,3874T1 0,0435T1 0,0134T1 ts=0,1T1: 1=0,1 

46. 2,0217/K1 4,65T1 0,2366T1 0,0696T1 ts=0,8T1: 1=0,5 

Table 7. Tuning rules for unstable FOPDT model 

Using tuning methods shown in Tab. 2 – 7, achieved performance is a priori given by the 
chosen metod (e.g. a quarter decay ratio if using Ziegler-Nichols methods No. 11 – 13 in 
Tab. 3), or guaranteed performance however not specified by the designer (e.g. in Chen 
method No. 33 in Tab. 5, a gain margin GM=1,96, a phase margin M=44,1, and a maximum 
peak of the sensitivity to disturbance d(t) Ms=1,5). 

2.8 PID controller design for specified performance  

These methods provide tuning rules are based on a single tuning parameter that enables to 
systematically affect closed-loop performance by step response shaping. 

2.8.1 Performance measures used as a PID tuning parameter 

Most frequent parameters for tuning PID controllers are following performance measures 
(Åström & Hägglund, 1995):  
 M and GM:  phase and gain margins, respectively, 
 Ms and Mt:  maximum peaks of sensitivity S(j) and complementary sensitivity T(j) 

magnitudes, respectively, 
 :  required closed-loop time constant.   
If a controller GR(j) guarantees that S(j) or T(j) do not overrun prespecified values Ms 
or Mt, respectively, defined by 

 
1

sup ( ) sup
1 ( )sM S j

L j 



 


;   

( )
sup ( ) sup

1 ( )t
L j

M T j
L j 





 


 (13) 

over 0,), then the Nyquist plot L(j) of the open-loop L(s)=G(s)GR(s) avoids the 
respective circle MS or MT , each given by the their center and radius as follows  

  1, 0SC j  , 
1

S
s

R
M

 ;    
2

2 , 0
1

t
T

t

M
C j

M

 
  

  
, 

21
t

T

t

M
R

M
 


 (14) 

If L(j) avoids entering the circles corresponding to MS or MT, a safe distance from the point 
CS is kept (Fig. 6a). Typical S(j) and T(j) plots for properly designed controller are 
plotted in Fig. 6b. The disturbance d(t) is sufficiently rejected if Ms(1,2;2). The reference 
w(t) is properly tracked by the process output y(t) if Mt(1,3;2,5). With further increasing of 
Mt the closed-loop tends to be oscillatory.  

www.intechopen.com



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

12

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. a) Definition and geometrical interpretation of M and GM in the complex plane;  
b) Sensitivity and complementary sensitivity magnitudes S(j), T(j) and performance 
measures Ms, Mt 

From Fig. 6a results, that increasing open-loop phase margin M causes moving the gain 
crossover L(ja*) lying on the unit circle M1 away from the critical point (-1,j0). Increasing 
open-loop gain margin GM causes moving the phase crossover L(jf*) away from (-1,j0). 
Therefore, parameters M or GM given by 

 *180 arg ( )M aL    ;   
*

1

( )
M

f

G
L j

  (15) 

are frequently used performance measures, their typical values are M(20;90), GM(2;5). 
Relations between them are given by following inequalities 

 
1

2arcsin
2M

sM


 
  

 
;   

1
2arcsin

2M
tM


 

  
 

;   
1

s
M

s

M
G

M



;   

1
1M

t

G
M

      (16) 

The point at which the Nyquist plot L(j) touches the MT circle defines the closed-loop 
resonance frequency Mt.  

2.8.2 Tuning formulae with performance specification 

Table 8 shows open formulae for PID controller design. The coefficients tuning is carried out 
with respect to closed-loop performance specification. Rules No. 47 – 49 consider tuning of 
ideal PID controller (4a). To apply the Rotach method, knowledge of the plant magnitude 
G(j) is supposed as well as of the roll-off of argG() at =Mt, where the maximum peak 
Mt of the complementary sensitivity is required. Method No. 50 is based on so-called 
-tuning, with the resulting closed-loop expressed as a 1st order system with time constant ; 
this rule considers a real PID controller (4b) with filtering constant in the derivative part 
Tf=Td/N=0,5D1/(1+D1) where  is to be chosen to meet following conditions: >0,25D1; 
>0,25T1 (Morari & Zafiriou, 1989). The -tuning technique is used also in the rule No. 51 to 
design interaction PI controller. 

Re 
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No. 
Design method, 
year,  
model 

K Ti Td 

47. 
(Hang & Åström,  
1988),  
Non-model 

KcsinM 
(1 cos )

sin
c M

M

T  
 

 
(1 cos )
4 sin

c M

M

T  
 

 

48. (Rotach, 1994), 
Non-model 2

( )

1

t Mt

t

M G j

M




  2

2
arg Mt
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d G

d
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
     
 

 arg1
2
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


    

49. 
(Wojsznis  
et al., 1999),  
FOPDT 

cosc M

M
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
  21c

M M
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tg tg  
  21

4
c

M M
T

tg tg  


 

50. 
(Morari & Zafiriou, 
1989),  
FOPDT  

1 1

1 1

0,5T D

K D



 1 1

1
2

T D  1 1

1 12
T D

T D
 

51.  
(Chen & Seborg, 
2002),  
FOPDT   

2
1 1 1

2
1 1

2T D T

K D

   

 

2
1 1 1

1 1

2T D T

T D

   


 - 

Table 8. PID design formulae for specified performance based on tuning parameters M, GM, 
Mt and   

2.8.3 Performance evaluation 

Phase margin M is the most wide-spread performance measure in PID controller design. 
Maximum overshoot max and settling time ts of the closed-loop step response are related 
with M according to Reinisch relations 

 max
0,91 64,55 38 ;71
1,53 88,46 12 ;38

M M

M M

for

for

 


 
         

;  
22

max 100 tb Me   ;  * *
4

,s
a a

t
 
 

 
  
 

  (17) 

valid for 2nd order closed-loop with relative damping (0,25;0,65) where a* is the gain 
crossover frequency (Hudzovič, 1982). Relations 

 max
1.18 (0)

100
(0)
tM T

T



  [%];   *

3
1,3;1,5s t

a

t for M


   (18) 

(Hudzovič, 1982); (Grabbe et al., 1959-61) are general for any order of the closed-loop T(s); if 
the controller has the integral part then T(0)=T(=0)=1.  
The engineering practice is persistently demanding for PID controller design methods 
simultaneously guaranteeing several performance criteria, especially maximum overshoot 
ηmax and settling time ts. However, we ask the question: how to suitably transform the 
above-mentioned engineering requirements into frequency domain specifications applicable 
for PID controller coefficients tuning? The response can be found in Section 3 where a novel 
original PID controller design method is presented.  
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3. Advanced PID controller design method based on sine-wave identification 

The presented method is applicable for linear stable SISO systems even with unknown 
mathematical model. The control objective is to provide required maximum overshoot max 
and settling time ts of the process variable y(t). The method enables the designer to prescribe 
max and ts within following ranges (Bucz et al., 2010b, 2010c), (Bucz, 2011)  
 max0%; 90% and ts6,5/c; 45/c for systems without integrator, 
 max9,5%; 90% and ts11,5/c; 45/c for systems with integrator,  
where c is the plant critical frequency. The PID controller design provides guaranteed 
phase margin M. The tuning rule parameter is a suitably chosen point of the plant 
frequency response obtained by a sine-wave signal with excitation frequency n. The 
designed controller then moves this point into the gain crossover with the required phase 
margin M. With respect to engineering requirements, the pair (n;M) is specified on the 
closed-loop step response in terms of ηmax and ts according to parabolic dependencies in 
Fig. 11 and Fig. 14-16. A multipurpose loop for the proposed sine-wave method is in Fig. 7. 
 
 
 
 
 
 
 
 

Fig. 7. Multipurpose loop for identification and control using the sine-wave method 

3.1 Plant identification by a sinusoidal excitation input 

By switching SW into “4”, the loop in Fig. 7 opens; a stable plant with unknown model G(s) 
is excited by a persistent sinusoid u(t)=Unsin(nt) (Fig. 8a) where Un denotes the amplitude 
and n excitation frequency. The plant output y(t)=Ynsin(nt+) is also a persistent sinusoid 
with the same frequency n, amplitude Yn and phase shift  with respect to the input 
excitation sinusoid (Fig. 8b). From the stored records of y(t) and u(t) it is possible to read-off 
the amplitude Yn and phase shift n and thus to identify a particular point of the plant 
frequency response G(j) under excitation frequency n with coordinates G≡G(jn)  

 arg ( ) arg ( )( )
( ) ( )

( )
n nj G j Gn n

n n
n n

Y
G j G j e e

U

  


    (19) 

where =argG(n). The point G(jn) can be plotted in the complex plane (Fig. 8c).  
 
 
 
 
 
 
 

Fig. 8. Time responses of a) u(t); b) y(t), and c) location of G(jn) in the complex plane 

SW

w(t) e(t) u(t) y(t) 

-
3 

Relay 

Sine-wave generator

PID controller 

4 
5 G(s) 

Yn

Tn  

y(t)

t 

Tn=2/n 

Un

t 

u(t) 

 

G(jn) 
n

n

Y
U

Im Re 

www.intechopen.com



 
PID Controller Design for Specified Performance 

 

15 

The output sinusoid amplitude Yn can be affected by the amplitude Un of the excitation 
sinusoid generated by the sine wave generator; it is recommended to use Un=37%umax. 
Identified plant parameters are represented by the triple n,Yn(n)/Un(n),φ(n). In the 
SW position „4“, identification is performed in the open-loop. Hence, this method is 
applicable only for stable plants. The excitation frequency n is to be adjusted prior to 
identification and taken from the empirical interval (29) (Bucz et al., 2010a, 2010b, 2011). 

3.2 Sine-wave method tuning rules 

In the control loop in Fig. 7, let us switch SW in „5“and put the PID controller into manual 
mode. The closed-loop characteristic equation 1+L(j)=1+G(j)GR(j)=0 at the gain 
crossover frequency a* can be broken down into the amplitude and phase conditions as 
follows 

 * *( ) ( ) 1a R aG j G j   ;   * *arg ( ) arg ( ) 180a R a MG G         (20) 

where M is the required phase margin, L(jn) is the open-loop transfer function. Denote 
=argGR(a*). We are searching for K, Ti and Td of the ideal PID controller (4a). Comparing 
frequency transfer functions of the PID controller in parallel and polar forms 

 
1

( )R d
i

G j K jK T
T

 


 
   

 
;   ( ) ( ) ( ) cos ( ) sinj

R R R RG j G j e G j j G j         (21) 

coefficients of PID controller can be obtained from the complex equation 

 *
* * *

1 cos sin

( ) ( )
d a

i a a a

K jK T j
T G j G j

 
  

 
    

  
,  (22) 

at =a* using the substitution GR(ja*)=1/G(ja*) resulting from the amplitude condition 
(20a). The complex equation (22) is solved as a set of two real equations  

 
*

cos

( )a

K
G j




 ;   *
* *

1 sin

( )
d a

i a a

K T
T G j


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 
  

  
 (23) 

where (23a) is a general rule for calculation of the controller gain K. Using (23a) and the ratio 
of integration and derivative times =Ti/Td in (23b), a quadratic equation in Td is obtained 
after some manipulations 

  22 * * 1
0d a d aT T tg    


 (24) 

A positive solution of (24) yields the rule for calculating the derivative time Td 
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* *
1 1

42
d

a a

tg tg
T

 
 

   ;    *180 arg ( )M aG        (25) 
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where =argGR(a*) is found from the phase condition (20b). Thus, using the PID controller 
with coefficients {K;Ti=Td;Td}, the identified point G(jn) of the plant frequency response 
with coordinates (19) can be moved on the unit circle M1 into the gain crossover LA≡L(ja*); 
the required phase margin M is guaranteed if the following identity holds between the 
excitation and amplitude crossover frequencies n and a*, respectively 

 *
a n   (26) 

Thus 

 *( ) ( )a nG j G j  ;   *arg ( ) arg ( )a nG G    ;   180 M        (27) 

and coordinates of the gain crossover LA are 

 *( ) ( ) ,arg ( ) 1 , 180A a n n n ML L j j L j L                 (28) 

Substituting (27a) and (27b) into (23a) and (23b), respectively, and (26) into (25a), tuning 
rules in Table 9 are obtained (Bucz et al., 2010a, 2010b, 2010c, 2011), (Bucz, 2011). Resulting 
PID controller coefficients guarantee required phase margin M for =4. 
 

No. Design 
method, year 

Cont- 
roller K Ti Td Range of ; 

=180+M 

52. Sine-wave 
method, 2010 PI 
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53. Sine-wave 
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54. Sine-wave 
method, 2010 PID 
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


 dT  
21 1

2 4n n

tg tg 
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   ;
2 2
   

 
 

Table 9. PI, PD and PID controller tuning rules according to the sine-wave method 

Note that PI controller tuning rules were derived for Td=0, and PD tuning rules for Ti in 
(21a). The excitation frequency is taken from the interval (Bucz et al., 2011), (Bucz, 2011) 

 0,2 ;0,95n c c    (29) 

obtained empirically by testing the sine-wave method on benchmark examples (Åström & 
Hägglund, 2000). Shifting the point G(jn)=G(jn)ej into the gain crossover LA(jn) on the 
unit circle M1 is depicted in Fig. 9a. 

3.3 Controller structure selection using the „triangle ruler“ rule 

The argument Θ appearing in tuning rules in Tab. 9 indicates, what angle is to be 
contributed to the identified phase φ by the controller at n to obtain the resulting open-loop 
phase (-180°+M) needed to provide the required phase margin M. The working range of 
PID controller argument is the union of PI and PD controllers phase ranges symmetric with 
respect to 0 
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The working range (30) can be interpreted by means of an imaginary transparent triangular 
ruler turned as in Fig. 9b; its segments to the left and right of the axis of symmetry represent 
the PD and PI working ranges, respectively. Put this ruler on Fig. 9a, the middle of the 
hypotenuse on the complex plane origin and turn it so that its axis of symmetry merges with 
the ray (0,G). Thus, the ruler determines in the complex plane the cross-hatched area 
representing the full working range of the PID controller argument. The controller type is 
chosen depending on the situation of the ray (0,LA) forming the angle M with the negative 
real halfaxis: situation of the ray (0,LA) in the left-hand-sector suggests PD controller, and in 
the right-hand sector the PI controller. The case when the phase margin M is achievable 
using both PI or PID controller is shown in Fig. 9b (Bucz et al., 2010b, 2011), (Bucz, 2011).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. a) Graphical interpretation of M, a* and shifting G into LA at a*=n; b) controller 
structure selection with respect to location of G and LA using the „triangle ruler“ rule 

3.4 Evaluation of closed-loop performance under the sine-wave type PID controller 

This subsection answers the following question: how to transform required the maximum 
overshoot max and settling time ts into the couple of frequency-domain parametres (n,M) 
needed for identification and PID controller coefficients tuning (Bucz, 2011)?  

3.4.1 Systems without integrator 

Looking for appropriate transformation : (max,ts)(n,M) we have considered typical 
phase margins M given by the set 

    20 ,30 ,40 ,50 ,60 ,70 ,80 ,90Mj          ,  j=1...8 (31) 

split into 5 equal sections n=0,15c; let us generate the set of excitation frequencies 

    0,2 ;0,35 ;0,5 ;0,65 ;0,8 ;0,95nk c c c c c c       , k=1...6 (32) 

Elements of (32) divided by the plant critical frequency c determine the set of so-called 
excitation levels  
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  k nk c      0,2;0,35;0,5;0,65;0,8;0,95k  ,  k=1...6 (33) 

Fig. 10 shows closed-loop step responses under PID controllers designed for the plant  

 1
1

( )
( 1)(0,5 1)(0,25 1)(0,125 1)

G s
s s s s


   

 (34) 

for three different phase margins M=40,60,80 each on three excitation levels 
1=n1/c=0,2; 3=n3/c=0,5 and 5=n5/c=0,8. Qualitative effect of nk and Mj on 
closed-loop step response is demonstrated. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Closed-loop step responses of G1(s) under PID controllers designed for various M 
and n 

Achieving ts and ηmax was tested by designing PID controller for a vast set of benchmark 
examples (Åström & Hägglund, 2000) at excitation frequencies and phase margins 
expressed by a Cartesian product Mj×nk of (31) and (32) for j=1...8, k=1...6. Acquired 
dependencies ηmax=f(M,n) and ts=(M,n) are plotted in Fig. 11 (Bucz et al., 2010b, 2011). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Dependencies: a) ηmax=f(M,n); b) τs=cts=f(M,n) for nk×Mj, j=1...8, k=1...6 
(relative settling time τs is ts weighed by the critical frequency c of the plant) 
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Considering (26) resulting from the assumptions of the engineering method, the settling 
time can be expressed by the relation 

 s
n

t



  (35) 

similar to (17c) (Hudzovič, 1989),  is the curve factor of the step response. In (17c) valid for 
a 2nd order closed-loop,is from the interval (1;4) and depends on the relative damping 
(Hudzovič, 1989). In case of the proposed sine-wave method,  varies in a considerably 
broader interval (0,5;16) found empirically, and strongly depends on M, i.e. =f(M) at the 
given  excitation  frequency  n. To examine closed-loop settling times of plants with various 
dynamics, it is advantageous to define the relative settling time (Bucz et al., 2011) 

 s s ct   (36) 

Substituting n=c into (35), the following relation for the relative settling time is obtained 

 s ct
 


  s
 


  (37) 

where ts is related to the critical frequency c. By substituting c in (37) its left-hand side is 
constant for the given plant, independent of n. Fig. 11b depicts (37b) empirically evaluated 
for different excitation frequencies nk; it is evident that at every excitation level k with 
increasing phase margin M the relative settling time τs first decreases and after achieving its 
minimum s_min it increases again. Empirical dependencies in Fig. 11 were approximated by 
quadratic regression curves and called B-parabolas. B-parabolas are a useful design tool to 
carry out the transformation :(max,ts)(n,M) that enables choosing appropriate values of 
phase margin and excitation frequencies M and n, respectively, to provide performance 
specified in terms of maximum overshoot max and settling time ts (Bucz et al., 2011). Note 
that pairs of B-parabolas at the same level (Fig. 11a, Fig. 11b) are always to be used. 

Procedure 1. Specification of M and n from max and ts from B-parabolas prior to 
designing the controller  

1. Set the PID controller into manual mode. Find the plant critical frequency c using the 
multipurpose loop in Fig. 7 (SW in position „3“). 

2. From the required settling time ts calculate the relative settling time τs=cts. 
3. On the vertical axis of the plot in Fig. 11b find the value of τs calculated in Step 2. 
4. Choose the excitation level  (e.g. 5=n5/c=0,8). 
5. For τs, find the corresponding phase margin M on the parabola τs=f(M,n) with the 

chosen excitation level found in Step 4.  
6. Find M from Step 5 on the horizontal axis of the plot in Fig. 11a. 
7. For M, find the corresponding maximum overshoot ηmax on the parabola ηmax=f(M,n) 

with the chosen excitation level found in Step 4. 
8. If the found ηmax is inappropriate, repeat Steps 4 to 7 for other parabolas τs=f(M,n) and 

ηmax=f(M,n) corresponding to other levels k=nk/c (related with the choice 
5=n5/c=0,8 for k=0,2;0,35;0,50;0,65;0,95, k=1...4,6). Repeat until both the required 
performance measures ηmax and ts are satisfied. 
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9. Calculate the excitation frequency n according to the relation n=c using the critical 
frequency c (from Step 1) and the chosen excitation level  (from Step 4). 

Discussion 

When choosing M=40 on the B-parabola corresponding to the excitation level 
5=n5/c=0,8 (further denoted as B0,8 parabola), maximum overshoot max=40% and 
relative settling time τs10 are expected. Point  corresponding to these parameters is 
located on the left (falling) portion of B0,8 yielding oscillatory step response (see response  
in Fig. 10c). If the phase margin increases up to M=60, the relative settling time decreases 
up to the point  on the right (rising) portion of the B0,8 parabola; the corresponding step 
response  in Fig. 10c is weakly-aperiodic. For the phase margin M=80 the B0,8 parabola 
indicates a zero maximum overshoot, the relative settling time τs=20 corresponds to the 
position  on the B0,8 parabola with aperiodic step response  (Fig. 10c). If the maximum 
overshoot max=20% is acceptable then M=53 yields the least possible relative settling time 
τs=6,5 on the given level 5=0,8 (“at the bottom” of B0,8) (Bucz et al., 2011), (Bucz, 2011).  

Procedure 2. PID controller design using the sine-wave engineering method  

1. From the required values (ηmax,ts) specify the couple (n;M) using Procedure 1. 
2. Identify the plant using the sinusoidal excitation signal with frequency n specified in 

Procedure 1. The switch SW is in position „4“. 
3. Specify =argG(n), andG(jn). Calculate the controller argument  by substituting  

and M into (27c); if  is within the range shown in the last column of Tab. 9, go to 
Step 4, if not, change (n;M) and repeat Steps 1-3. 

4. Substitute the identified values =argG(n), G(jn) and specified M into the tuning 
rules in Tab. 9 to calculate PID controller parameters. 

5. Adjust the resulting PID controller values, switch into automatic mode and complete 
the controller by switching SW into position „5“. 

Example 1 

Using the sine-wave method, ideal PID controller (4a) is to be designed for the operating 
amplifier modelled by the transfer function GA(s)  

 3 3
1 1

( )
( 1) (0,01 1)

A
A

G s
T s s

 
 

 (38) 

The controller has to be designed for two values of the maximum overshoot of the closed-
loop step response max1=30% (Design No. 1) and max2=5% (Design No. 2) and maximum 
relative settling time τs=12 in both cases. 

Solution 

1. Critical frequency of the plant identified by the Rotach test is c=173,216[rad/s] (the 
process is “fast”). The prescribed settling time is ts=τs/c=12/173,216[s]=69,3[ms]. 

2. For the Design No. 1 (max1;τs)=(30%;12), a suitable choice is (M1;n1)=(50;0,5c) 
resulting from the B0,5 parabola in Fig. 11. The performance in Design No. 2 
(max2;τs)=(5%;12) can be achieved for (M2;n2)=(70;0,8c) chosen from the B0,8 parabola 
in Fig. 11. 

3. Identified points for the Designs No. 1 and No. 2 are GA(j0,5c)=0,43e-j120 and 
GA(j0,8c)=0,19e-j165, respectively. According to Fig. 12a, both points are located in the 
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Quadrant II of the complex plane, on the Nyquist plot GA(j) (solid line) which verifies 
the identification. 

4. Using the PID controller designed for (M1;n1)=(50;0,5c), the point GA(j0,5c) is moved 
into the gain crossover LA1(j0,5c)=1e-j130 on the unit circle M1, which verifies achieving the 
phase margin M1=180-130=50 (dashed line in Fig. 12a). The point GA(j0,8c) has been 
moved into LA2(j0,8c)=1e-j110 by the PID controller designed for (M2;n2)=(80;0,8c) 
yielding the phase margin M2=180-110=70 (dotted line in Fig. 12a). 

5. Achieved performance according to the closed-loop step response in Fig. 12b (dashed 
line) is max1*=29,7%, ts1*=58,4[ms]. Performance in terms of max2*=4,89%, ts2*=60,5[ms] 
identified from the closed-loop step response in Fig. 12b (dotted line) fulfils the 
performance requirements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. a) Open-loop Nyquist plots; b) closed-loop step responses of the operational 
amplifier, required performance max1=30%, max2=5% and τs=12 

3.4.2 Systems with time delay 

The sine-wave method is applicable also for plants with time delay considered as difficult-
to-control systems. It is a well-known fact, that the time delay D turns the phase at each 
frequency n0,) by nD with respect to the delay-free system. For time delayed plants, 
phase condition of the sine-wave method (20b) is extended by additional phase φD=-nD  

  ´ 180D M          (39) 

where φ´ is the phase of the delay-free system and  

 ´
D     (40) 

is the identified phase of the plant including the time delay. The added phase φD=-nD can 
be associated with the required phase margin M  
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  ´ 180 M nD          (41) 

The only modification in using the PID tuning rules in Tab. 9 is that increased required 
phase margin is to be specified (Bucz, 2011) 

 ´
M M nD     (42) 

and the controller working angle Θ is computed using the relation 

  ´180 M nD          (43) 

The phase delay nD increases with increasing frequency of the sinusoidal signal n.  
To lessen the impact of time delay on closed-loop dynamics, it is recommended to use the 
smallest possible added phase φD=-nD.  

Discussion 

Time delay D can easily be specified during critical frequency identification as the time 
D=Ty-Tu, that elapses since the start of the test at time Tu until time Ty, when the system 
output starts responding to the excitation signal u(t). A small added phase φD=-nD due to 
time delay can be secured by choosing the smallest possible n attenuating effect of D in (43) 
and subsequently in the PID controller design. 
Therefore, when designing PID controller for time delayed systems according to Procedure 
1, in Step 4 it is recommended to choose the lowest possible excitation level on the 
performance B-parabolas (most frequently n/c=0,2 resp. 0,35) and corresponding couples 
of B-parabolas in Fig. 11. Procedure 2 is used for plant identification and PID controller 
design. M is specified from the given couple (max;ts) using the chosen couple of B-
parabolas, however its increased value M´ given by (42) is to be supplied in the design 
algorithm thus minimizing effect of the time delay on closed-loop dynamics.  

Example 2 

Using the sine-wave method, ideal PID controllers (4a) are to be designed for the distillation 
column modelled by the transfer function GB(s)  

 
6,51,11

( )
1 3,25 1

BD s s
B

B
B

K e e
G s

T s s

 
 

 
 (44) 

Control objectives are the same as in Example 1. 

Solution 

1. Critical frequency of the plant is c=0,3521[rad/s]. Based on comparison of critical 
frequencies, GB(s) is 500-times slower than GA(s). Required settling time is ts=τs/c= 
=12/0,3521[s]=34,08[s]. 

2. Because DB/TB=2>1, the plant is a so-called „dead-time dominant system“. Due to a 
large the time delay, it is necessary to choose the lowest possible excitation frequency 
n to minimize the added phase nDB in (43). Hence, for the required performance 
(max2;τs)=(5%;12) (Design No. 2) we choose the B0,2 parabolas in Fig. 11 at the lowest 
possible level n/c=0,2 to find (M2;n2)=(70;0,2c). The added phase is 
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n2DB(180/)=0,2cDB(180/)=0,2.0,3521.6,5.180/=26,2, hence the phase supplied 
to the PID design algorithm is ´M2=M2+n2DB(180/)=70+26,2=96,2 (instead of 
M2=70 for a delay-free system). The required performance (max1;τs)=(30%;12) (Design 
No. 1) can be achieved by choosing (M1;n1)=(55;0,35c) from the B0,35 parabolas in  
Fig. 11 (i.e. n/c=0,35). The phase margin ´M1=55+45,9 supplied into the design 
algorithm was increased by n1DB(180/)=0,35cDB(180/)=0,35.0,3521.6,5.180/= 
=45,9 compared with M1=55 in case of delay-free system. 

3. Identified points GB(j0,35c)=1,03e-j23 and GB(j0,2c)=1,09e-j13 in Fig. 13a are located in 
the Quadrant I of the complex plane at the beginning of the frequency response GB(j) 
(solid line). The point GB(j0,2c) (Design No. 2) was shifted by the PID controller to the 
open-loop gain crossover LB2(j0,2c)=1e-j110 (dotted line in Fig. 13a). Note that LB2 has 
the same location in the complex plane as LA2 in Fig. 12a, however at a considerably 
lower frequency n2B=0,2.0,3521=0,07[rad/s] compared to n2A=0,8.173,216= 
=138,6[rad/s] (ts2_B*=28,69[s] is almost 500 times larger than ts2_A*=0,0584[s] which 
demonstrates the key role of the excitation frequency n in achieving required closed-
loop dynamics). The identified point GB(j0,35c) (Design No. 1) was moved into the 
gain crossover LB1(j0,35c)=1e-j125 (dashed line in Fig. 13a).  

4. Achieved performances (max1*=18,6%, ts1*=24,78[s], dashed line), (max2*=0,15%, 
ts2*=28,69[s], dotted line) in terms of closed-loop step responses in Fig. 13b comply with 
the required performance specification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.  a) Open-loop Nyquist plots; b) closed-loop step responses of the distillation column, 
required performance max1=30%, max2=5% and τs=12 

3.4.3 Systems with 1
st

 order integrator  

By testing the sine-wave method on benchmark systems with 1st order integrator, the 
B-parabolas in Fig. 14 – 16 were obtained (for Cartesian product Mj×nk of sets (31) and (32), 
j=1...8, k=1...6 and three various ratios Ti/Td: =4, 8 and 12). 
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Discussion 

Inspection of Fig. 14a, 15a and 16a reveals, that increasing  results in decreasing of the 
maximum overshoot max, narrowing of the B-parabolas of relative settling times τs=f(M,n) 
for each identification level n/c, and consequently settling time increasing. Consider e.g. 
the B0,95 parabolas in Fig. 14b, Fig. 15b and Fig. 16b: if M=70 and =4, relative settling time 
is τs=30, for =8 it grows to τs=40, and for =12 even to τs=45. If a 10% maximum overshoot 
is acceptable, then the standard interaction PID controller can be used with no need to use a 
setpoint filter; however a larger settling time is to be expected. 
Procedure 1 is used to specify the performance in terms of (M,n) from (max,ts) using 
pertinent B-parabolas in Fig. 14 – 16. Procedure 2 is used for plant identification and PID 
controller design. 

Example 3 

Using the sine-wave method, design ideal PID controller for the flow valve modelled by the 
transfer function GC(s) (system with integrator and time delay)  

 
2,11,3

( )
( 1) (7,51 1)

CD s s
C

C
C

K e e
G s

s T s s s

 
 

 
 (45) 

Control objective is to provide the maximum overshoots of the closed-loop step response 
max1=30%, max2=20% and a maximum relative settling time τs=20. 

Solution 

1. Critical frequency of the plant identified by the Rotach test is c=0,2407[rad/s]. Then, 
the required settling time is ts=τs/c=20/0,2407[s]=83,09[s]. 

2. For GC(s) the time delay/time constant ratio is DC/TC=2,1/7,51=0,28<1, hence, the 
influence of the time constant prevails - GC(s) is a so-called „lag-dominant system“ with 
integrator, therefore B-parabolas are to be chosen carefully. From one side, due to time 
delay it would be desirable to choose B-parabolas from Fig. 14, Fig. 15 or Fig. 16 with 
the lowest identification level n/c=0,2. However, the minima of B0,2 parabolas in 
Fig. 14b (for =4), Fig. 15b (for =8) and Fig. 16b (for =12) indicate the smallest 
achievable relative settling time τs=36,5 (for =4), τs=33 (for =8) and τs=34 (for =12), 
which do not satisfy the required value τs=20. 

3. Identified points GC(j0,35c)=12,7e-j122 and GC(j0,5c)=8,10e-j129 are located on the plant 
frequency response GC(j) (solid line) in Fig. 17a, verifying correctness of the sine-wave 
type identification. 

4. The first performance specification (max1;τs)=(30%;20) can be provided using the B0,35 
parabolas for =12 (Fig. 16b) at the level n/c=0,35 and for parameters (M1;n1)= 
=(53;0,35c) (Design No. 1), supplying the augmented open-loop phase margin 
´M1=M1+(180/)n1DC=53+10,1=63,1 into the controller design algorithm. The 
second performance specification (max2;τs)=(20%,20) is achievable using the B0,5 
parabolas in Fig. 16 for =12 and n/c=0,5 and parametres (M2;n2)=(62;0,5c) 
(Design No. 2). To reject the influence of DC, instead of M2=62 the augmented open-
loop phase margin ´M2=M2+(180/)n2DC=62+14,5=76,5 was supplied into the PID 
controller design algorithm. 
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Fig. 14. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =4 

 
Fig. 15. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =8 

 
Fig. 16. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =12 
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Fig. 17. a) Open-loop Nyquist plots; b) closed-loop step responses of the flow valve, required 
performance max1=30%, max2=20% and τs=20 

5. Using the PID controller, the first identified point GC(j0,35c) (Design No. 1) was moved 
into the gain crossover LC1(j0,35c)=1e-j127 located on the unit circle M1; this verifies 
achieving the phase margin M1=180-127=53 (dashed line in Fig. 17a). Achieved 
performance in terms of the closed-loop step response in Fig. 17b is max1*=29,6%, 
ts1*=81,73[s] (dashed line). The second identified point GC(j0,5c) (Design No. 2) was 
moved into LC2(j0,5c)=1e-j118 achieving the phase margin M2=180-118=62 (dotted 
line in Fig. 17a). Achieved performance in terms of the closed-loop step response 
parameters max2*=19,7%, ts2*=82,44[s] (dotted line in Fig. 17b) meets the required 
specification. Frequency characteristics LC1(j), LC2(j) begin near the negative real half-
axis of the complex plane, because both open-loops contain a 2nd order integrator. 

Discussion 

All data necessary to design two PID controllers of all three plants GA(s), GB(s) and GC(s) 
along with specified and achieved performance measure values are summarized in Tab. 10 
where max and ts in the last two columns marked with „*“ indicate closed-loop performance 
complying with the required one. 
 
Model max;τs c[rad/s] ts[s] B-par. M n/c G(jn) GR(jn) max* ts*[s] 
GA(s) 30%;12 173,22 0,0693 Fig. 11 50 0,5 0,43e-j120 2,31e-j10 29,7% 0,0584 
GA(s) 5%;12 173,22 0,0693 Fig. 11 70 0,8 0,19e-j165 5,20ej55 4,89% 0,0605 
GB(s) 30%;12 0,3521 34,08 Fig. 11 55+45,9 0,35 1,03e-j23 0,97e-j56 18,6% 24,78 
GB(s) 5%;12 0,3521 34,08 Fig. 11 70+26,2 0,2 1,09e-j13 0,92e-j71 0,15% 28,69 
GC(s) 30%;20 0,2407 83,09 Fig. 16 53+10,1 0,35 12,7e-j122 0,08ej5,8 29,6% 81,73 
GC(s) 20%;20 0,2407 83,09 Fig. 16 62+14,5 0,5 8,10e-j129 0,12e-j28 19,7% 82,44 

Table 10. Summary of required and achieved performance measure values, identification 
parametres and PID controller tunings for GA(s), GB(s) and GC(s) 
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4. Conclusion 

The proposed new engineering method based on the sine-wave identification of the plant 
provides successful PID controller tuning. The main contribution has been construction of 
empirical charts to transform engineering time-domain performance specifications 
(maximum overshoot and settling time) into frequency domain performance measures 
(phase margin). The method is applicable for shaping the closed-loop response of the 
process variable using various combinations of excitation signal frequencies and required 
phase margins. Using B-parabolas, it is possible to achieve optimal time responses  
of processes with various types of dynamics and improve their performance. When 
applying digital PID controller, it is recommended to set the sampling period Ts from the 
interval  

 
0 2 0 6

s
c c

, ,
T ,

 
 (46) 

where c is the critical frequency of the controlled plant (Wittenmark, 2001). 
By applying appropriate PID controller design methods including the above presented 51+3 
tuning rules for prescribed performance, it is possible to achieve cost-effective control of 
industrial processes. The presented advanced sine-wave design method offers one possible 
way to turn the unfavourable statistical ratio between properly tuned and all implemented 
PID controllers in industrial control loops. 
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