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1. Introduction  

In the metal and mechanical industry, grinding is usually the last step of the manufacturing 
chain, when it comes to precision components. This process is used in the fabrication of 
parts of a wide variety of materials, which require low surface roughness, strict dimensional 
and shape tolerances, while maintaining maximum tool life and the shortest operation time, 
along with minimum costs. 

Damage of the workpiece during grinding is very costly, since it has already a high 
aggregated value from the previous manufacturing processes. The most common types of 
damage in grinding are burning, cracking, and undesirable residual stresses. In the case of 
metals, the most common cause of damage is excessive heat generation on the ground 
surface. 

The high temperatures generated in the grinding zone may cause several types of damage to 
the workpiece, e.g., burns (in the case of metals), excessive hardening of the surface layer, 
with possible rehardening and increased brittleness, undesirable residual tensile stresses, 
reduced fatigue strength, and cracking (Malkin, 1989). 

The combination of acoustic emission signals and cutting power have been used successfully 
to determine indicative parameters of burning (Kwak & Ha, 2004). These signals, properly 
manipulated, allow for the implementation of a burn control system in real time, optimizing 
thus the grinding process (Dotto et al., 2006). This would be highly beneficial for companies 
that strictly depend on this process, since the requisite of quality and international 
competitiveness increases continually with globalization (Brinksmeier et al., 2006). 

On the other hand, the growing interest in the use of artificial intelligence for the solution of 
engineering problems is visible from the considerable number of articles published in the 
last decade. These problems are normally difficult to solve analytically or through 
mathematical modelling, and usually require human intelligence (D.T. Pham & P.T.N. 
Pham, 1999). 

Thus, the present chapter aims to present results of statistical tools and fuzzy modelling to 
detect burn in grinding, by digitally processing the acoustic emission signals generated 
during the process. 
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2. Monitoring and process control 

The implementation of intelligent processes in industries utilizing computer numerically 

controlled machining is increasing rapidly. However, these systems are not enough 

reliable to operate without human interference so far. It is common to observe operators 

of CNC machines correct the process parameters or identify the end of the tool life 

(Aguiar et al., 1999).  

When it comes to grinding, there are three main goals related to process monitoring: 

detection of problems during machining; provision of information necessary to optimize 

the process; and the contribution to the development of a database needed to determine 

the control parameters (Inasaki, 1999). For example, in external plunging grinding, many 

parameters are involved and need to be determined, which are related to the choice of the 

grinding wheel and coolant. The wheel and work speeds, and feed rate are one of these 

aforementioned parameters. Among these, the feed rate is the most critical in influencing 

the results.  

The choice of the grinding cycle, the satisfactory end of the operation and spark-out time are 

other important parameters to be considered, in order to obtain the desired surface quality.  

The information obtained during monitoring may be used, thus, to minimize the grinding 

cycle time and increase the overall process quality (Inasaki, 1999).  

The use of acoustic emission (AE) to monitor and control the grinding process is a relatively 

recent technology (Bennett, 1994), besides being more sensitive to the grinding condition 

variations, when compared with the force and power measurements (Webster et al., 1994), 

standing as a promising technique to the process monitoring.  

The relatively easiness of digitally processing the root mean square (RMS) of the acoustic 

emission signal has led to approaches in which this type of statistic is employed. However, 

the inherent average operation involved in determining the RMS makes it to a certain extent 

insensitive to impulsive events, such as cracks and burn of the workpieces, although this 

kind of parameter carries a lot of useful information. 

2.1 Burn control in grinding 

Grinding burn occurs during the cutting process when the amount of energy generated in 

the contact zone produces a sufficiently high increase in temperature in order to cause a 

localized phase change in the workpiece material. This occurrence can be observed visually 

from the discoloration of the part surface (Nathan et al., 1999; Kwak & Song, 2001). Also, 

burning is expected when a critical temperature (approx. 720°C for steels) is exceeded in the 

grinding zone (Nathan et al., 1999).  

The root mean square (RMS) value of the acoustic emission signal has been the main 

parameter studied in previous researches on grinding over a carefully selected frequency 

band. This signal has provided a reasonable parameter, because it is rich in sound waves 

carrying a lot of useful information (Spadotto et al., 2008). 

Thermal models for grinding can be taken as an example of the theory of a moving heat 
source with various boundary conditions for estimating the distribution of temperature 
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inside the grinding zone. This distribution is used to predict the generation of residual 
stresses, the onset of burning of the workpiece surface, or other characteristics related to 
surface integrity. However, these models require parameters that are often not readily 
known in the production environment. Moreover, several properties of many materials and 
of the cutting fluid are not known exactly in the predominating grinding conditions. In 
addition, the production operation does not require a high precision “absolute” model, 
because such precision is not reproduced in industrial practice (Ali & Zhang, 2004). What is 
needed, is a “relative” model that can guide the user about what should be done and how to 
do it, because there will always be a certain degree of trial and error on the shop floor, and 
this relative model will be a good starting point (Shaw, 1996). 

2.2 Statistical parameters for burn detection 

Acoustic emission and grinding power signals provide a variety of information about the 

grinding process. However, more rigorous analyses can be obtained by the signal processing 

with the help of statistical parameters. Using mathematical manipulation software, these 

signals can be processed to obtain information such as the RMS value, standard deviation, 

autocorrelation, FFT, etc. (Wang et al., 2001; Tönshoff et al., 2000). 

Acoustic emission (AE) can be defined as the elastic stress waves generated by the rapid 

release of deformation energy, inside a material subjected to an external stimulus. These 

stress waves produce surface displacements that can be detected by a piezoelectric sensor, 

which transforms the displacements into electrical signals (Tönshoff et al., 2000). Their 

frequency range varies from 50 kHz to 2MHz, which is above the range of many noises 

originating from sources outside the grinding process. Thus, it is a sensitive and adequate 

method to monitor the grinding process (Tönshoff et al., 2000; Liu et al., 2006). 

The parameter that has been studied predominantly in previous researches using acoustic 

emission has been the root mean square (RMS) of the AE signal (AERMS), filtered over a 

carefully selected frequency band. This signal has been a reasonable study parameter, since 

the grinding process is very rich in sound waves, thus containing a lot of available acoustic 

information (Aguiar et al., 1999). 

The RMS value of AE can be expressed by equation (1) (Kim et al., 2001). 

   2
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T




   (1) 

where ∆t is the integration time constant. 

The mean-value deviance (MVD) statistic was used successfully in burn detection (Wang et 
al., 2001), and is defined by equation (2). 
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where X  is the mean value of  kX ; 2M  is the total number of FFT bins, and kX   is the kth 

magnitude-squared FFT bin. 
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3. In-process grinding monitoring by acoustic emission 

In the following sections, results are presented for the evaluation of the surface integrity of 

AISI 1045 steel parts during grinding, using properly processed acoustic emission signals. 

Furthermore, results from several digital signal processing tools are shown, where those 

with amplitude independent are stressed and then the power of the AE signal does not 

affect the signal characteristic. This is explained due to the fact that the power of the AE 

signal may undergo variations during the grinding process, which have nothing to do with 

the part condition than its geometry. The result analyses from the digital signal processing 

as well as a discussion of the investigation are presented. 

3.1 Materials and methods 

The experimental tests were carried out upon a surface grinding machine (Sulmecânica 

RUAP H 1055-E - Brazil) where raw acoustic emission signals were gathered for fifteen (15) 

different runs, at 2.5 million of samples per second rate. The AISI 1045 steel has been used 

for the tests. The major parameters were kept constant during the runs. However, the depth 

of cut was varied from low to severe material removing. All workpieces were evaluated 

after machining, and the burn marks were then identified. The setup for these tests is shown 

in Figure 1.   

The grinding parameters include: wheel peripheral speed: 27.94 m/s; tool: aluminium oxide 

grinding wheel (38A80-PVS) manufactured by Norton Abrasives, with dimensions of: 296.50 

mm external diameter, 40.21 mm width; workpiece speed: 0.044 m/s; workpiece 

dimensions: 98.58 x 80.12 x 8.74 mm; and coolant type: oil emulsion (4% concentration on 

water). 

 
Fig. 1. Experimental setup 

Data was gathered from a fixed acoustic emission sensor (Sensis PAC U80D-87), which was 

fixed on the part holder. The data acquisition board (National Instruments, PCI-6011) was 

set up to work at 2.5 million of samples per second, with 12 bits precision per sample. Table 

1 shows details of carried out tests.  
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Test 
Depth of cut 

[m] 

Cutting 
Profile 

Comments 

1 10  No burn 

2 30  Slight burn 

3 20  
Severe 
burn 

4 90 10 
Severe 
burn 

5 20 2,5 
 

Severe 
burn 

6 40 5 
Severe 
burn 

7 15  
Burn at 
middle 

Table 1. Tests with AISI 1045 Steel 

3.2 Signal processing 

From acoustic emission data available on the binary files, several routines developed in 
MATLAB for digitally processing the signals were utilized, where many statistical 
correlations such as kurtosis, skewness, autocorrelation, RMS, among others were employed 
and are described as following. 

3.2.1 Root mean square (RMS) of acoustic emission signal 

For a given time t, the RMS value of a raw acoustic emission signal can be expressed by: 

 2 2
, ,

1

1 1
.

t N

rms raw t raw i
it T

AE AE dt AE
T N 

    (3) 

where T  is the integration time and N  is the discrete number of AE data within the 
interval T . In this work, T  was considered equal to 1 ms (Webster et al., 1996). 

3.2.2 Constant false alarm rate (CFAR)  

Constant false alarm rate (CFAR) is a statistic tool employed in detection of events, which is 
described by (Nuttal, 1997): 

  
1

0

M

pl k
k

T X X



   (4) 

Where kX  corresponds to the kth FFT of  X t ,   is a variable exponent and 2M  
corresponds to the data base vector size to get the FFT calculated. Although   between 2 
and 3 provides a good performance for a wide frequency band of the studied signal, this 
statistic needs pre-normalized data. Thus, due to the acoustic emission signal variations 
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during the process, the constant false alarm rate (CFAR) is utilized (Nuttal, 1996). This 
statistic is based on the supposition of flatness of the acoustic emission signal. An alternative 
version of this tool was employed due to system distortions, which is expressed by the 
following equation (Wang, 1999). 

  
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Values for M=1280, and a frequency range between 300 and 700 kHz were considered. 

3.2.3 Kurtosis and skewness statistics 

The measurement, if the distribution tail is longer than other, is made by skewness. In case 

of kurtosis, the tail size is concerned. Both statistics are utilized in this work aiming to find 

an indicator to the acoustic emission variations. Thus, abrupt changes in the AE signal such 

as those in which burn occurs may result in peaks for these statistics. Equations 6 and 7 

show the way of calculating kurtosis and skewness of an x signal, respectively. 
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where   is the mean of x , N  the number of samples in the range considered and   the 

standard deviation. 

3.2.4 Mean value dispersion (MVD) statistic  

The form of MVD statistic is also employed, but in a more convenient form (Wang et al., 

1999), as shown in equation 8. 
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where X  has the same meaning as to CFAR statistic, as well as 1n  and 2n . 

3.2.5 Ratio of power (ROP) 

It is instinctive to think about the different behaviours expected for a satisfactory or non 

satisfactory part by observing the frequency spectrum of the acoustic emission signal. 

Hence, for each block of acoustic emission data, ROP is given by equation 9. 
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where N  set to 1024; 1n  and 2n  in the range of 300 to 700 kHz were chosen. 

3.2.6 Autocorrelation 

The time correlation of a function xy  is defined in equation 10 (Oppenheim et al., 1997). 

      xy t x t y d   




    (10) 

where xx  is commonly referred to as autocorrelation. 

3.3 Results and discussion 

The figures for each workpiece tested were obtained from the digital signal processing of 
acoustic emission signals, in which the statistics previously described were employed. The 
results from tests 1, 5 and 7 for ABNT 1045 steel are presented as shown in Figures 2 to 4, 
respectively. In all figures below, the horizontal axis corresponds to time (in seconds), and 
the vertical axis to Volts (multiplied by a constant). 

 

Fig. 2. Results for test 1 – AISI 1045 steel with no burn 
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Fig. 3. Results for test 5 – AISI 1045 steel with severe burn in practically the whole workpiece  

 

Fig. 4. Results for test 7 – AISI 1045 steel with burn in the midst of the part;  
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From the results for the ABNT 1045 steel, it can be observed that RMS providade a pretty 
steady level for the non-burning workpiece, during all over the grinding pass, while the 
signal had good variation when severe burn occurred, such as in Figure 3. Skewness and 
kurtosis presented variation when burn took place, but positive and negative amplitudes 
were observed, which are not useful for an indicator parameter to burn.  

Surprisingly, the ROP turned out to be a good indicative to burn, since its behavior has 
shown quite sensitive to the studied phenomenon. Besides, its level is low to those non-
burning parts and high to the burning ones. Additionally, it has well characterized the 
beginning of contact between the wheel and part as well as the end of the grinding pass.  

The MVD tool presented a behavior similar to the RMS statistic, but not as satisfactory as 
RMS, due to the low level obtained for test 7. The autocorrelation statistic was very sensitive 
to burn, for the most tests performed, but for a few it has shown itself useless, by virtue of 
the decrease observed when burn occurred. 

Similarly to the autocorrelation, CFAR has behaved quite satisfactory to burn detection, for 
most of the tests, not providing signal decreases at all, except for test 7, where a decrease 
was observed during the grinding pass. This behaviour, however, did not compromise the 
utility of CFAR tool, for the level of test 7 has kept higher than the non-burning test. 

4. Acoustic emission and fuzzy logic to predict grinding burns 

The use of fuzzy logic, which reflects the nature of qualitative and inexact reasoning of 
humans, enables specialist systems to be more flexible. With fuzzy logic, the precise value of 
a variable is substituted by a linguistic description represented by a fuzzy set, and 
inferences are made based on this representation (D.T. Pham & P.T.N. Pham).  

Fuzzy logic has numerous applications in engineering, where the command of knowledge is 
usually imprecise. Interesting results have been achieved in the area of machining processes 
and control, although other sectors have also benefited from this tool. Several engineering 
applications can be cited, such as welding arc height control (Bigand et al., 1994); control of 
robotic hands with multiple fingers (Bas & Erkmen, 1995); prediction of surface roughness 
of ground components (Ali & Zhang, 1999); control of grinding burn (Ali & Zhang, 2004), 
among others. However, the development of an intelligent system for burn detection, 
prediction and classification still poses a challenge for researchers.  

Based on these practical aspects, a fuzzy model was proposed with 37 absolute rules and 
eight relative rules for predicting burn of ground workpiece surfaces. This model is 
designed for practical application, i.e., an operator can infer from the model, engineers can 
use it in process planning, and the model can be part of an intelligent adaptive control, 
without the need for additional information (Ali & Zhang, 1999). 

A fuzzy clustering method was proposed for evaluating the degree of grinding burn 
damage using burn colour spots on the workpiece side surface. This method can replace the 
complicated wet grinding thermometry method. The results can be used to evaluate the 
performance of cutting fluids for restricting grinding burn damage (Ge et al., 2002). 

Others presented a new method of grinding burn identification using a wavelet packet 
transform to extract features from acoustic emission signals and employing fuzzy pattern 
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recognition to optimize features and identify the grinding status. Experimental results 
showed that the accuracy of grinding burn recognition was satisfactory (Liu et al., 2005). 

Other works employing fuzzy logic in the area of manufacturing can be found, including 

estimation of residual stress induced by grinding (Ali & Zhang, 1997), prediction of surface 

roughness of ground components (Ali & Zhang, 1999), classification of the condition of the 

grinding wheel’s cutting ability (Lezanski, 2001), etc. However, only few researches have 

been published about grinding burn using fuzzy logic. Therefore, this work explores not 

only the application of fuzzy logic but also the fusion sensors and grinding burn parameters 

not used to date. 

Therefore, the next sections represent the work which aimed to investigate burning in the 

grinding process based on a fuzzy model. The inputs of the models are obtained from the 

digital processing of the raw acoustic emission and cutting power signals. The parameters to 

be obtained and used in this work include the mean-value deviance (MVD), which proved 

efficient in grinding burn detection (Wang et al., 2001), grinding power, and root mean 

square (RMS) of the acoustic emission signal (Dotto et al., 2006). 

4.1 Materials and methods 

The grinding tests were carried out with a surface grinding machine (Sulmecânica RUAP-

H1055-E, Brazil) equipped with an aluminium oxide grinding wheel (Norton ART-FE-

38A80PVH). A fixed acoustic emission sensor (Sensis DM-42) was placed near the 

workpiece, and the electric power consumed by the wheel three-phase induction motor was 

measured with an electrical power transducer. 

The workpieces for the grinding tests consisted of SAE 1020 laminated steel bars with 

dimensions of 150mm length, 10mm width and 60mm height. Grinding was performed 

along the length of the workpiece. 

The power transducer consisted of a Hall sensor, to measure both the electric current and 

the voltage in the electric motor terminals. Both signals were processed in the power 

transducer module by an integrated circuit, which delivered a voltage signal proportional 

to the electrical power consumed by the motor. The acoustic emission and power signals 

were then sent to the data acquisition board (National Instruments, PCI-6011) installed in 

a personal computer. The signals were captured by LabVIEW software and stored in 

binary files for further processing and analysis. The acoustic emission sensor had a broad-

band sensitivity of 1.0 MHz. Its amplifier also filtered the signal outside the range of 50 

kHz to 1.0 MHz. Figure 5 shows a schematic diagram of the grinding machine and 

instrumentation used. 

The tests were carried out in 12 different grinding conditions, and the degrees of burn (no 

burn, slight burn, medium burn, and severe burn) were evaluated visually on each 

workpiece surface. Dressing parameters, lubrication and peripheral wheel speed were 

controlled to ensure the same grinding condition in the three repetitions of each test. The 

workpiece speed was set at 0.033 m/s and the wheel speed at 30 m/s. The latter was kept 

constant by adjusting the frequency of the induction motor on the frequency inverter, since 

the diameter of the grinding wheel decreased as the tests progressed.  
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Fig. 5. Test bench layout 

The overlapping ratio (Ud), which is the relationship between the effective cutting width and 

the axial dressing feed rate, was set to 1, and the dressing conditions were kept constant in 

all the tests. An emulsion oil (4% concentration on water) was used. Each run consisted of a 

single grinding pass of the grinding wheel along the workpiece length, at a given grinding 

condition. The acoustic emission and grinding power signals were measured in real time at 

a rate of 2.0 million samples per second, and stored in binary data files. It is important to 

mention that the raw acoustic emission signal was acquired instead of the root mean square, 

generally used. 

The digital signals were processed after the 12 tests were carried out, and the data files 

stored. The processing of acoustic emission signals generated the aforementioned statistics, 

i.e., RMS and MVD. 

4.2 Construction of input vectors 

The percentage of burn and the degree of burn of each workpiece were determined using a 

software previously developed (Dotto et al., 2006). This software analyzes the surface 

condition of a workpiece, based on a photograph of the machined workpiece. Thus, aided 

by this software, reliable input data were extracted to represent the levels: no burn, slight 

burn, medium burn, and severe burn. 

The signals were processed using MATLAB. RMS and MVD statistics were generated based 

on the raw acoustic emission signals and the grinding power signals, which served to build 

the input vectors for the fuzzy models. 
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This procedure was carried out for all the tested workpieces. However, it should be noted 
that among the inputs considered in this work (RMS, MVD and power), some were better 
than others, in order to define differences in the degrees of burn. Therefore, the use of fuzzy 
logic is attractive for this application, since it is based on the levels of imprecision generated 
by these inputs. 

The files contained a set of burn data associated with the processed inputs. For example, the 
RMS signal of acoustic emission is represented by the level no burn, slight burn, medium 
burn and severe burn. The same situation applies to the MVD and grinding power statistics. 
The data vectors were standardized, i.e., all the vectors contained the same number of 
collected points. This allows comparisons to be made always among the same points of the 
input variables without distortions occurring among points. 

Subsequently, the data that had been separated by level of burn were combined in a single 
file of a given input. To exemplify, the file of the RMS signal of AE, which previously 
consisted of separate files of no burn, slight burn, medium burn and severe burn, now had a 
single vector containing the data of the aforementioned files. This new vector is in the order 
of burn of the workpiece, i.e., the vector contains the no burn, slight burn, medium burn and 
severe burn data, respectively, in this position of the vector. The vectors for the MVD 
statistic and grinding power were constructed in the same way. 

4.3 Fuzzy modeling 

One of the advantages of using fuzzy logic is the possibility of transforming natural language 

into a set of numbers, allowing for computational manipulation. Linguistic variables can be 

defined as “variables whose values are words or sentences in natural or artificial language” 

(Zadeh, 1965). Linguistic variables assume values called linguistic values, e.g., the values of no 

burn, slight burn, medium burn and severe burn are relative to the burn variable of the 

workpiece. Figure 6 shows a general model of a fuzzy inference system (FIS). 

 

Fig. 6. Block diagram of a fuzzy inference system 

It can be observed from the figure that the FIS includes four components: the fuzzifier, 
inference engine, rule base, and defuzzifier. The rule base contains linguistic rules that are 
provided by experts. It is also possible to extract rules from numeric data. Once the rules 
have been established, the FIS can be viewed as a system that maps an input vector to an 
output vector. The fuzzifier maps input numbers into corresponding fuzzy memberships. 
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This is required in order to activate rules that are in terms of linguistic variables. The 
fuzzifier takes input values and determines the degree to which they belong to each of the 
fuzzy sets via membership functions.  

The inference engine defines mapping from input fuzzy sets into output fuzzy sets. It 
determines the degree to which the antecedent is satisfied for each rule. If the antecedent 
of a given rule has more than one clause, fuzzy operators are applied to obtain one 
number that represents the result of the antecedent for that rule. It is possible that one or 
more rules may fire at the same time. Outputs for all rules are then aggregated. During 
aggregation, fuzzy sets that represent the output of each rule are combined into a single 
fuzzy set.  

The defuzzifier maps output fuzzy sets into a crisp number. Given a fuzzy set that 

encompasses a range of output values, the defuzzifier returns one number, thereby moving 

from a fuzzy set to a crisp number. Several methods for defuzzification are used in practice, 

including the centroid, maximum, mean of maxima, height, and modified height 

defuzzifier. The most popular defuzzification method is the centroid, which calculates and 

returns the center of gravity of the aggregated fuzzy set. 

4.4 Input vectors 

The aforementioned vectors of RMS, MVD and grinding power represent the numerical 

inputs of the fuzzy system. These inputs were transformed into fuzzy inputs. Figure 7 

shows the RMS vector of acoustic emission (expressed in k*Volts), containing all the levels 

of burn and no burn observed in the tests. The k constant is a conversion constant that 

depends on the number of bits of the data acquisition board. 

 
Fig. 7. Acoustic emission (RMS)  
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A clustering process was applied to each numerical input, which consisted of determining 4 
subclusters (Ge et al., 2002). Clustering serves to group input vector data into 4 major 
groups that represent the burn levels of the workpiece. Each group thus determined 
contains a cluster center which best represents the group. For the statistics or signals 
employed here, the clusters were very close to the mean values of each group. Thus, the 
point that best represents a burn group is the mean value of the range of points of a burn 
level. 

After this representative point was attributed and determined, the data vectors were 
normalized with values of 0 to 1. The numerical data vectors were then transformed in 
fuzzy system vectors, and the value of 1 was attributed to the cluster center. This value 
diminishes as the statistic values move away from this cluster point. With this process, the 
further away from the cluster center, the lower the relevance of the information and the 
lower the value attributed to the normalization of the data. 

Figure 8 shows the fuzzified acoustic emission RMS input into the system by means of 
membership functions. The horizontal axis refers to the value of the amplitude of the 
statistic. In other words, the higher the amplitude of the statistic the greater the scope of the 
burn level in the fuzzified set.  

 

Fig. 8. Fuzzified input of the RMS acoustic emission signal 

These membership functions help in converting numeric variables into linguistic terms. 

4.5 Output vector 

A single output vector was then created with the fuzzified input vectors to the fuzzy 
system. This output vector was created according to the various burn levels the workpiece 
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would undergo. The fuzzy output has a totally encompassing set of burn levels of a 
surface. The output set contains the following levels: no burn, super slight, very slight, 
slight, slight +, almost medium, medium, medium +, almost severe, severe, severe +, and 
total damage. 

This scope is due to the fact that the model is not restricted only to 3 or 4 burn levels. By 

extending these levels, the result was decentralized to a broader and strongly detailed vision 

of the problem. The fuzzified output vector represents the fuzzy output set.  

4.6 Inferences and rule base of fuzzy models 

Based on the inputs and the fuzzified output, an inference was established between both 
(Hu & Tzeng, 2003). First, 3 logic system models were created. The first model had two 
inputs: the RMS of AE and the grinding power (GP). The other two models had 3 inputs: the 
RMS of AE, the GP, and the MVD statistic. What differentiates these two models is the 
inference of the rules used. 

The rule sets extracted for all the models were based on the experience of specialists in the 
subject, and are therefore based on a typically fuzzy system. The first model is a simple 
control of two inputs. The rule base is shown in Table 2. Each input analyzed in all the 
models had the same weight relative to the system, i.e., all the inputs affect the system 
equally. 

 

Table 2. Rule base for model 1. Combination of GP and the RMS value 

The second model is based on an inference system of three inputs, combined in pairs. This 
system is widely valid, since, if one of the inputs has an incorrect value, it will not affect the 
output to any appreciable degree. The rules for this model are shown in Table 3. 

The third and last model developed here is a fuzzy control with three fuzzy inputs, namely: 
the RMS value of the acoustic emission signal, the grinding power (GP), and the MVD 
statistic of the signal. What differentiates this model from the second one is the part of rule 
inference. The rule set was developed from a triple combination of inputs, thus providing a 
total of 64 well distributed rules. Table 4 shows the rule set for model 3. 

4.7 Defuzzification of the proposed systems 

Three models of fuzzy systems were presented. Fuzziness helps us to evaluate the rules, but 

the final output of a fuzzy system has to be a crisp number. The input for the defuzzification 

process is the aggregate output fuzzy set and the output is a single number. 
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Table 3. Rule set of model 2, paired combination of the fuzzy inputs 

The center of gravity (COG) or centroid defuzzification method was used in each model. It 

finds the point where a vertical line would cut off the aggregate set into two equal masses. A 

reasonable estimate can be obtained by calculating it over a sample of points and expressed 

by equation 11. 
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 



 (11) 

where  A iy  is the membership function and y  is the variable to be defuzzified. 

It is the most widely used technique because, when it is used, the defuzzified values tend to 

move smoothly around the output fuzzy region. 

4.8 Results and discussion 

The proposed models were developed using the “Fuzzy Logic” toolbox of MATLAB. 

Initially, a model was built with only two fuzzy inputs. Its rule base was edited and placed 

in the software toolbox. 
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Table 4. Third fuzzy model. Triple combination of inputs 
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4.8.1 Model 1: Two-input control 

Based on the rules, a 3D surface was generated, which allowed to visualize the effects of the 
rules on the system inputs and output. Figure 9 shows this surface for the first model. This 
surface indicates how regular the newly developed rule base is. If it is not completely 
consistent, disproportions and coarse irregularities are visible on the generated surface. 

Continuity, transition and symmetry are characteristics well expressed in Figure 9. As can 
be seen, as the values of the RMS signal and grinding power increase, a prediction of high 
burn level on the surface is generated. 

 

Fig. 9. 3D analysis of the surface generated by the rule system of model 1   

Once the consistency of the system inference domain has been verified, it is possible to 
predict the burn level of the workpiece surface, based on values of the applied RMS signal 
and on the system electric power. The simulation was carried out in MATLAB, and is based 
on a low RMS signal and GP. The analysis resulted in a no burn prediction with a maximum 
value of 9.61% of surface burn. This simulation can be made with varied values, presenting 
different levels of prediction. 

The advantage of model 1 is its simplicity. With only two fuzzified inputs having the same 
weight, model 1 produces a reliable and stable prediction in the system. However, if one of 
the variables presents an incorrect value originating from innumerable real factors such as 
reading errors, etc., it will affect the prediction of the control. 

4.8.2 Model 2: Three-input control combined in pairs 

Model 2 was created to minimize the aforementioned error, i.e., an input variable containing 
an incorrect value of the system. This second model, on the other hand, has three fuzzified 
inputs. The idea of this model is that its rule base be combined in pairs, generating a total of 
48 rules (Table 2). With the two main inputs of RMS and GP, the MVD statistic added to this 
model served to aid the system by increasing its robustness. 
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If one of the input variables were to present an incorrect value, the combinations of the other 

two would ensure a logical result for the control. To exemplify, if the RMS is very high, the 

GP is very low and the MVD statistic is also very high, the result will indicate a prediction of 

high burn. The simulation will assume that the GP value, which is outside the standard, is 

incorrect. Thus, the incorrect value will exert little influence in the analysis.  

The three-dimensional analysis of the surface generated by the rules system of this model is 

shown in Figure 10. This analysis indicates that the rule base continues to be logically valid. 

As can be seen from the generated surface, the inputs of the RMS value of the acoustic 

emission signal and the grinding power (GP) exert a stronger influence on the system than 

the MVD statistic that was introduced. 

 

 

Fig. 10. 3D analysis of the surface generated by the rules system of model 2 
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The simulation of model 2 is performed following the same standard as model 1. A very 
high RMS value, a very low GP value, and a high MVD value result in a prediction of severe 
burn of the workpiece, with a value of 70.3% burn. 

4.8.3 Model 3: Three-input control combined in triplets 

The third model is based on the same three inputs described earlier, RMS, GP and MVD. The 
difference between this model and model 2 is the rule system. Its rules are based on the 
combination of three variables, i.e., all the inputs affect the resulting level of prediction. With a 
total of 64 rules described in Table 3, the third model possibly offers the best contribution of 
input signals in relation to the output. The advantage of this system in relation to that of model 
1 is its more comprehensive complexity, which enhances its capacity to predict the burn level. 

 

Fig. 11. 3D surfaces generated by the rules of model 3 

www.intechopen.com



 
Monitoring of Grinding Burn by Acoustic Emission 

 

361 

Figure 11 depicts the 3D surfaces generated by the rules. As can be seen, the rules bases 

are valid due to their symmetry and flexibility. The main change in these surfaces 

compared to those of model 2 in Figure 11 is with respect to the RMS vs. MVD and GP vs. 

MVD analysis.  

Previously, there was a high value in the prediction analysis with high RMS and low MVD. 

Now there is a value that provides equality, i.e., low RMS and low MVD generate a low 

value in the prediction analysis. 

This model is simulated in the same way as the previous processes. A high value of RMS, 

GP and MVD generate an output with a prediction of 97% of burn of the workpiece, 

resulting in total damage of the machined material. 

4.9 Conclusions 

As can be seen, acoustic emission signals can be widely applied in monitoring grinding 

burn. The undeniable significance of this phenomenon stimulated the researchers to study 

different methods predict and even to quantify burn.  

From digital processing of the raw acoustic emission signal, for the AISI 1045 steel, the 

results showed that several statistics have worked quite well to burn detection, as is the 

case of RMS, CFAR, ROP e MVD. Nevertheless, skewness and kurtosis presented an 

interesting behaviour regarding the signal waveform and the variation along the grinding 

pass, though they were not effective to detect burn. These features may be better explored 

in further investigation. The autocorrelation, on its way, has shown itself ineffective to 

detect burn.  

In terms of fuzzy modeling, the results of the proposed models were substantially validated. 

The imprecise information about statistical values of acoustic emission and electric power 

signals was transformed into reliable burn prediction values. Models 1, 2 and 3 differ from 

each other, enabling them to adapt to different circumstances. 

The models may be attractive to the practicing engineer who would like to get fast answers 

for on-line intelligent control and optimization. In its current state, the models are limited to 

SAE 1020 steel and oxide grinding wheel, but they can easily be extended to other types of 

workpiece and tool materials. 

5. Acknowledgment 

The authors are indebted to Univ. Estadual Paulista (UNESP – Bauru campus), and to 

FAPESP (Brazil) and CNPq (Brazil) for their financial support of the researches. 

6. References  

Aguiar, P. R.; Willet, P. & Webster, J. (1999). Acoustic emission applied to detect workpiece 

burn during grinding, In: Acoustic emission: Standards and Technology Update, ASTM 

STP 1353, S. J. Vahaviolos, (Ed.), 107-124, American Society for Testing and 

Materials, ISBN: 0-8031-2498-8, West Conshohocken, Pennsylvania, USA  

www.intechopen.com



 
Acoustic Emission 

 

362 

Ali, Y. M. & Zhang, L. C. (1997). Estimation of residual stresses induced by grinding using a 

fuzzy logic approach, Journal of Materials Processing Technology, Vol.63, No.1-3, pp. 

875-880, ISSN 0924-0136 

Ali, Y. M. & Zhang, L. C. (1999). Surface Roughness Prediction of Ground Components 

using a Fuzzy Logic Approach, Journal of Materials Processing Technology, Vol.89-90, 

pp. 561-568, ISSN 0924-0136 

Ali, Y. M. & Zhang, L. C. (2004). A fuzzy Model for Predicting Burns in Surface Grinding of 

Steel, International Journal of Machine Tools & Manufacture, Vol.44, No.5, pp. 563-571, 

ISSN 0890-6955 

Bas, K. & Erkmen, A. M. (1995). Fuzzy preshape and reshape control of Anthrobot-III 5-

fingered robot hand, Proceedings of the International Conference on Recent Advances in 

Mechatronics, ICRAM’95, pp. 673-677, ISBN 975-518-063-x, Istanbul, Turkey, August 

14-16, 1995 

Bennett, R. T (1994). Acoustic emission in grinding, Master Thesis, University of Connecticut, 

1994 

Bigand, A.; Goureau, P. & Kalemkarian, J. (1994). Fuzzy control of a welding process, 
Proceedings of the 1994 IMACS International Symposium on Signal Processing, Robotics 

and Neural Networks, SPRANN’94, pp. 379-342, ISBN 2950290833, Villeneuve 

d’Ascq, France, April 25-27, 1994 

Brinksmeier, E.; Aurich, J. C. ; Govekar, E. ; Heinzel, C.; Hoffmeister, H. W. ; Klocke, F. ; 

Peters, J. ; Rentch, R. ; Stepenson, D. J. ; Uhlmann, E. ; Weinert, K. & Wittmann, M. 

(2006). Advances in modeling and simulation of grinding process. CIRP Annals - 

Manufacturing Technology, Vol.55, No.2 , pp. 667-696, ISSN 0007-8506 

Dotto, F. R. L. ; Aguiar, P. R. ; Bianchi, E. C. ; Serni, P. J. A. & Thomazella, R. (2006). 

Automatic system for thermal damage detection in manufacturing process with 

internet monitoring. Journal of Brazilian Society of Mechanical Science & Engineering, 

Vol.28, No.2, pp. 153-160, ISSN 1678-5878 

Ge, P. Q.; Liu, W. P.; Liu, Z. C.; Lu, C. H. & Li, J. F. (2002). Fuzzy clustering analysis of the 

grinding burn damage level of a workpiece surface layer, Journal of Materials 

Processing Technology, Vol.129, No.1-3, pp.373-376, ISSN 0924-0136 

Hu, Y. C. & Tzeng, G. H. (2003). Elicitation of classification rules by fuzzy data mining, 

Engineering Applications of Artificial Intelligence, Vol.16, No.7-8, pp. 709-716, ISSN 

0952-1976 

Inasaki, I. (1999). Sensor fusion for monitoring and controlling grinding processes, The 

International Journal of Advanced Manufacturing Technology, Vol.15, No.10, pp. 730-

736, ISSN 0268-3768 

Kim, H. Y.; Kim, S. R.; Ahn, J. H. & Kim, S. H. (2001). Process monitoring of centerless 

grinding using acoustic emission, Journal of Materials Processing Technology, Vol.111, 

No.1-3, pp. 273-278, ISSN 0924-0136 

Kwak, J. S. & Ha, M. K. (2004). Neural network approach for diagnosis of grinding operation 

by acoustic emission and power signals. Journal of Materials Processing Technology, 

Vol.147, No.1, pp. 65-71 

www.intechopen.com



 
Monitoring of Grinding Burn by Acoustic Emission 

 

363 

Kwak, J. S. & Song, J. B. (2001). Trouble diagnosis of the grinding process by using acoustic 

emission signals, International Journal of Machine Tools & Manufacture, Vol.41, No.6, 

pp. 899–913, ISSN  

Lezanski, P. (2001). An intelligent system for grinding wheel condition monitoring, Journal of 

Materials Processing Technology, Vol.109, No.3, pp. 258-263, ISSN 0924-0136 

Liu, Q.; Chen, X. & Gindy, N. (2005). Fuzzy pattern recognition of AE signals for grinding 

burn, International Journal of Machine Tools & Manufacture, Vol.45, No.7-8, pp. 811–

818, ISSN 0890-6955 

Liu, Q.; Chen, X. & Gindy, N. (2006). Investigation of acoustic emission signals under a 

simulative environment of grinding burn, International Journal of Machine Tools & 

Manufacture, Vol.46, No.3-4, pp. 284-292, ISSN 0890-6955 

Malkin, S. (1989). Grinding technology: theory and applications of machining abrasives, Ellis-

Horwood, ISBN 0872634809, Chichester, England 

Nathan, R. D.; Vijayaraghavan, L. & Krishnamurthy, R. (1999). In-process monitoring of 

grinding burn in the cylindrical grinding of steel, Journal of Materials Processing 

Technology, Vol.91, No.1-3, pp. 37–42, ISSN 0924-0136 

Nuttal, A (1997). Performance of power-law processors with normalization for random 

signals of unknown structure, Naval Undersea Warfare Center, NPT Technical 

Report 10,760 

Nuttal, A. (1996). Detection performance of power-law processors for random signals of 

unknown location, structure, extent, and strength, AIP Conference Proceedings, 

Vol.375, No.1, pp. 302-324, ISBN 1-56396-443-0 

Oppenheim, A. V.; Willsky, A. S. & Hamid, S. (1997). Signals and systems, 2nd. Edition, 

Prentice Hall Signal Processing Series, ISBN 0138147574, Upper Saddle River, New 

Jersey, USA 

Pham, D. T. & Pham, P. T. N. (1999). Artificial intelligence in engineering. International 

Journal of Machine Tools & Manufacture, Vol.39, No.6, pp. 937-949, ISSN 0890-6955 

Shaw, M. C. (1996). Principles of Abrasive Processing, Clarendon Press, ISBN 0198590210, 

Gloucestershire, England 

Spadotto, M. M.; Aguiar, P. R.; Souza, C. C. P.; Bianchi, E. C. & Nunes, A. N. (2008). 

Classification of burn degrees in grinding by neural nets, The IASTED International 

Conference on Artificial Intelligence and Applications, AIA 2008, pp. 175-180, ISBN 978-

0-88986-709-3, Innsbruck, Austria, February 11-13, 2008 

Tönshoff, H. M.; Jung, M.; Männel, S. & Rietz, W. (2000). Using acoustic emission signals for 

monitoring of production process, Ultrasonics, Vol.37, No.10, pp. 681-686, ISSN 

0041-624X 

Wang, Z. (1999). Surface grinding monitoring by signal processing of acoustic emission signals, 

Master Thesis, University of Connecticut, 1999 

Wang, Z.; Willet, P; Aguiar, P. R. & Webster, J. (2001). Neural network detection of grinding 

burn from acoustic emission, International Journal of Machine Tools & Manufacture, 

Vol.41, No.2, pp.283-309, ISSN 0890-6955 

Webster, J.; Dong, W. P. & Lindsay, R. (1996). Raw acoustic emission signal analysis of 

grinding process. CIRP Annals – Manufacturing Technology, Vol.45, No.1, pp. 355-

340, ISSN 0007-8506 

www.intechopen.com



 
Acoustic Emission 

 

364 

Webster, J.; Marinescu, I.; Bennett, R. & Lindsay, R. (1994). Acoustic emission for process 

control and monitoring of surface integrity during grinding, CIRP Annals – 

Manufacturing Technology, Vol.43, No.1, pp. 299-304, ISSN 0007-8506 

Zadeh, L. A. (1965). Fuzzy sets, Information and Control, Vol.8, No.3, pp.338-353, ISSN 0019-

9958  

www.intechopen.com



Acoustic Emission

Edited by Dr. Wojciech Sikorski

ISBN 978-953-51-0056-0

Hard cover, 398 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Acoustic emission (AE) is one of the most important non-destructive testing (NDT) methods for materials,

constructions and machines. Acoustic emission is defined as the transient elastic energy that is spontaneously

released when materials undergo deformation, fracture, or both. This interdisciplinary book consists of 17

chapters, which widely discuss the most important applications of AE method as machinery and civil structures

condition assessment, fatigue and fracture materials research, detection of material defects and deformations,

diagnostics of cutting tools and machine cutting process, monitoring of stress and ageing in materials,

research, chemical reactions and phase transitions research, and earthquake prediction.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Paulo Roberto de Aguiar, Eduardo Carlos Bianchi, and Rubens Chinali Canarim (2012). Monitoring of Grinding

Burn by Acoustic Emission, Acoustic Emission, Dr. Wojciech Sikorski (Ed.), ISBN: 978-953-51-0056-0, InTech,

Available from: http://www.intechopen.com/books/acoustic-emission/monitoring-of-grinding-burn-by-acoustic-

emission-



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


