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1. Introduction 

The challenge in aircraft power system architecture is to move towards the electric power 

aircraft subsystems including flight control actuation, environmental control system, and 

utility functions. In this context emerged the concept of “More Electrical Aircraft”, which is 

continuously supported by the new advances in power electronics, electrical motors, digital 

control and communications. 

Traditionally, for primary flight control surfaces only rotary and linear electro-hydraulic 

actuators (EHA) have been considered, however the later trend is to replace them by electro 

mechanical actuators (EMA). An EMA has no internal hydraulic fluid, instead using electric 

motors to directly drive the ram through a mechanical gearbox. Compared to an EHA, the 

EMA has certain advantages. There is a new issue related to the aforesaid new trend with 

the aim of improve system reliability. This is the fault detection and diagnosis of the failures 

that may take place in both, mechanics and electric components. So, it is well assumed that 

the safety is the main issue for the EMAs development. The motor failures, the damaged 

bearings, and the eccentricities existing in the drive train, affects on one hand the air gap 

flux distribution and on the other leads to current and voltage unbalances. However, it is 

difficult to examine EMA faults by analysing only specific fault harmonics due to fault 

signal complexity. 

To ensure Airplane operation every system needs to be tested and have an associated a Test 

Program Set (TPS) System. A lot of work has been done in field of TPS and System Design 

ensuring the testability of a component [1]-[2]. Design for Testability is a major trend in the 

world of Aerospace and Defence. This paper presents approaches for an one-board fault 

detection system and TPS fault detection system for EMA by means of Fuzzy Inference Tool. 

Presented application 

The solution to monitor the condition of electric motor ball bearings with distributed fault 

proposed in this work is based in problem analysis from a multivariable point of view, what 

is to say the obtaining of a fault level result from the combined analysis of different signals 

with the use of fuzzy logic inference techniques. This is proposed to achieve a reinforced 

diagnose that will be more effective when it comes to detect bearing failure than using just a 

single signal, especially when it comes to damage severity evaluation. 
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2. Basic theory 

A. Vibration analysis 

Vibration analysis is one of the most extended condition monitoring techniques [4]. Despite 
being a reliable, well studied robust technique, one of its drawbacks is that it requires that 
the motor under test has a vibration transducer installed, condition that makes its online 
application expensive. In this work its study is set out as a reference for the other techniques 
without this kind of restriction. 

Vibration frequency components related to specific faults - inner (firf), outer (forf) and ball 
(fbsf) faults - can be calculated using the following expressions [2][4]: 

݂ݎ݂݅  = ݊ʹ · ݎ݂ · ቂͳ + ݀݌ܾ݀ · cos  ቃ    (1)ߚ

݂ݎ݋݂  = ݊ʹ · ݎ݂ · ቂͳ − ݀݌ܾ݀ · cos  ቃ    (2)ߚ

݂ݏܾ݂  = ݎʹ݂ · ܾ݀݀݌ ቂͳ − ቀܾ݀݀݌ · cos  ቁʹቃ    (3)ߚ

With: 
 n:  number of balls 
 fr:   rotor speed 
 bd: ball diameter 
 pd: bearing pitch diameter 
 contact angle of the ball on the race  :ߚ 

B. As some works and standards [5] [6] [7] set out, a RMS vibration value evaluation of the motor 
also provides a good indicator for motor health, allowing machine overall fault diagnosis - Stator 
currents 

Stator currents analysis (MCSA) represents an interesting alternative method with its own 
particularities and benefits; the most interesting of them is sparing the access inside the 
motor making it easy to perform its online fault analysis. 

Previous works have shown the existing correlation between vibration and currents RMS 
values [5]. Although it is a complex function that relates both magnitudes, this work tries to 
check the RMS currents reliability in order to perform the motor status diagnose. 

With this knowledge, it is possible to execute an RMS calculation over the acquired current 
signals with the aim of performing a more precise and straightforward operation. 

C. High frequency common-mode pulses 

One of the biggest culprits for bearings failure are common-mode circulating currents, 
which are generated by switching inverters and expose the motor terminals to high dv/dt. 
This phenomenon has been widely exposed in [6] and [7]. 

In this experiment, to limit the acquired signal to only pulses flowing through bearings (the 

responsible of balls degradation), a motor modification was introduced. All the ball bearing 

under test were aisled from the motor stator frame but in a point connected to ground 
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through a cable where the pulses were measured. Bearings insulation was achieved by 

surrounding the piece with a PTFE flat ring with a hole mechanized in it to let the cable pass 

through. 

These currents typically show a frequency range of about 5 MHz with a typical period of 20 

μs between bursts. 

D. Acoustic emissions 

The Acoustic Emission Technique (AET) is a very promising tool that has practical 

application in several fields and specifically recent important relevance in condition 

monitoring of machines. [8] [9] [10] 

Acoustic emissions (AE) are high frequency elastic waves in the ultrasound range that 

appear when a material suffers localised plastic deformation. The analysis of this stress 

waves shows the nature of the original producing source and, therefore, enables the 

diagnose conducting to the actual element fault type and severity. In the bearings field, AE 

is a good tool to detect impulsive faults like wear, ball impacts and lubrication problems 

(like contaminants or degradation). 

Acoustic Emission is therefore defined as a radiation of mechanical elastic waves produced 

by the dynamic local rearrangement of the material internal structure. This phenomenon is 

associated with cracking, leaking and other physical processes and was described for the 

first time by Josef Kaiser in 1950. He described the fact that no relevant acoustic emission 

was detected until the pressure applied over the material under test surpassed the 

previously highest level applied. 

Acoustic Emissions Technique is classified as a passive technique because the object under 

test generates the sound and the Acoustic Emission sensor captures it. By contrast, Active 

methods rely on signal injection into the system and analysis of variations of the injected 

signal due to system interaction. 

Then an acoustic emission sensor captures the transient elastic waves produced by cracking 

or interaction between two surfaces in relative motion and converts their mechanical 

displacement into an electrical signal. This waves travel through the material in 

longitudinal, transverse (shear) or surface (Rayleigh) waves, but the majority of sensors are 

calibrated to receive longitudinal waves. 

Wherever the crack is placed, the signal generated travels from the point of fracture to the 

surface of the material. The transmission pattern will be affected by the type of material 

crossed and then isotropic material will lead to spherical wave front types of propagation 

only affected by material surfaces or changes, where the Snell law rules their reflection and 

reflexion. On Figures 1 and 2 is shown the evolution of acoustic waves inside a Material. On 

Figure 2 it is shown how appear reflections on waves due to the defect. 

The biggest advantage of this method is probably that it is capable of detecting the earliest 

cracks of the system and their posterior growth, making possible fault detection before any 

other current method. The main drawback is that it requires additional transducers and a 

well controlled environment. 
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Fig. 1. Acoustic Emission Wave Propagation 

 

Fig. 2. Acoustic Emission Wave Propagation in fractured Material 

Bearing measurements and analysis 

The hertzian contact stresses between the rolling elements and the races are one of the basic 
mechanisms that initiate a localized defect. Faults in bearings mainly appear in races and 
balls. Damages in the bearing races are due to metal fatigue and consequent plastic limit 
variation. Singular ball defects include cracks, pits, and spalls on the rolling surfaces, at it is 
shown on Figure 3.  

 

Fig. 3. Bearing Damage Evolution 
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Bearing race damage is characterized firstly by changes of metal characteristics like elastic 

limit and later by the appearance of pits and transverse flutes burnt into the bearing race. 

Bearing race defects lead to changes in high frequency resonance of the metal. Singular 

defects in rolling element give rise to isolated impacts as the defective surface hits another 

surface and produces a single detectable AE pulse. Frequency and periodicity of the pulses 

are related to material characteristics and rotating speed, and are also depending on the type 

of bearing.  

A number of signal processing methods have been used on the time domain to diagnose 

failures by AE measurements in machinery [13]-[14]. Although these methods are quite 

simple to apply, it is apparent that they involve a significant expertise in the interpretation 

of the output [15]. As a conclusion, and despite lubrication and some bearing faults are 

detectable in the time domain analysis, to benefit most from the high sensitivity of AE to 

defects filtering and reconstruction from time - frequency transforms are proposed in this 

project, as a way to diagnose the bursts and apply time – frequency analysis to perform the 

feature extraction and characterise the faults. If mean or overall AE parameters obtained 

from characterisation are considered as fault detection parameters, they can be most suited 

as a trending parameter where its current value is to be compared to previous ones under 

similar operational conditions; however more detailed investigations are still required for 

applying AE for prognosis. 

 

Fig. 4. Main defects on Gears 

Gear boxes measurements and analysis 

Whilst vibration analysis on gear fault diagnosis is well established, gearboxes are inevitably 
more complex to monitor using vibration analysis as they contain various shaft support 
bearings rotating at different speeds and a number of gear teeth interactions which again are 
operating at different speeds. 

Fatigue tests were carried out and they showed that AE detected the first sign of failure 
when the gear reached 90% of its final life. As the crack progressed, AE amplitude 
increased. During the final stage of gear tooth fracture, a significantly high amplitude AE 
burst was detected. On the other hand, the vibration level did not change significantly in the 
initial stage of crack initiation and propagation until the final stage of failure [16].  
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As alternative to these vibration monitoring techniques, AE measurements can be made and 
then do further analyses by using different signal processing techniques, such as cumulative 
energy count [17], monitoring of rms, standard deviation and duration of AE [18], and 
kurtosis analysis [19]. 

Wavelet transforms have been also used for fault diagnosis of gears [20]. By this technique, 
the time domain AE signals of a rotating machine with normal and defective gears can be 
processed through wavelet transform to decompose in terms of low-frequency and high-
frequency components. The extracted features from the wavelet transform were used as 
inputs to an artificial – intelligence based diagnostic approach. From these experiments, it is 
concluded that AE method offered an advantage over vibration monitoring techniques, 
especially for rubbing faults at a low speed.  However, difficulty in understanding AE 
signals, complexity in related signal processing and a lack of industrial development have 
hampered the manufacture and large scale use of these kind of sensors. 

3. Experimental results 

3.1 Experimental setup 

In order to assess the effectiveness of the methodology proposed in this work, it has been 
checked by means of experimental data obtained from a motor bench. 

The experimental motor bench is based on two identical featured face to face motors, the 
motor under test and the motor that acts as a load. Between the motors it has been added an 
screw and a mobile part which is displaced over it. The screw as well as the mobile part has 
been provided by SKF. The motors are two SPMSMs with 3 pairs of poles, rated torque of 
2.3 Nm, 230 Vac, and rated speed of 6000 rpm provided by ABB Group. The motor under 
test was driven also by an ABB power converter model ACSM1. The drive control for the 
motor was a vector control, with speed control loop.  

The measurement equipment is focused on the acquisition of a stator current, stator 
common mode currents, vibration and acoustic emissions. The stator currents have been 
measured by means of a Tektronix current probe model A622. It provides 10–100 mV/A 
output and can measure ac/dc currents from 50 mA to 100 A-peak over a frequency range 
from dc to 100 kHz. The stator currents have been acquired by means a PXIe 1062 system 
from National Instruments sampling at 50 kHz, 100 ms for each measurement. 

The vibration measurement has been performed by an ENDEVCO Isotron KS943B.100 
triaxial accelerometer with IEPE (Integrated Electronics Piezo Electric) standard output and 
linear frequency response from 0.5 Hz to 22 kHz with a maximum of 60g. The acceleration 
data was collected using a specific acquitsition card connected to the PXIe 1062 system from 
National Instruments sampling at 20kS/s, 10 seconds for each measurement. 

3.2 Experimental results 

A. Vibrations 

With regard to the bearings units under test, there was a healthy one (with very similar 
vibration levels to other new units tested in previous works) and the other two tested units 
had different levels of damage due their operation hours, qualitatively evaluated with a 
shock pulse tester from SPM Instruments. 
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Fig. 5. RMS Vibration for healthy unit, all speeds in rpm and loads. 

 

Fig. 6. RMS Vibration for lightly damaged unit, all speeds in rpm and loads. 

Fig. 5, 6 and 7 show the evolution of the RMS value of each motor vibration for all speeds 
and load values tested. The healthy unit shows lower values especially detectable under 
nominal conditions.  

 

Fig. 7. RMS Vibration for heavily damaged unit, all speeds in rpm and loads. 
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Clearly, the healthy motor in Fig. 5 shows lower RMS values of vibration in comparison to 
the other two units. Fig. 7 unit data, which was in the worst operational condition according 
to the SPM measurements performed, gave also the highest levels of RMS vibration values. 

B. Stator currents 

To avoid the influence of the main harmonic power value in the RMS measurement, signals 
have been previously filtered using a band-rejection 5th order Butterworth filter centred in 
the power supply main harmonic with a bandwidth of 20 Hz between higher and lower cut-
off frequencies. Tables 1 and 2 compare the RMS filtered values of the heavily and lightly 
damaged units with the healthy one.  

 

Heavily Damaged-Healthy (A RMS) 

Load % \ speed 300 750 1050 1500

0 0,004 -0,006 -0,008 -0,007

50 0,036 0,03 0,073 0,044

100 0,018 0,026 0,024 0,024

Table 1. Difference in RMS filtered current value between heavily damaged unit and healthy 
one used as reference. 

Lightly Damaged-Healthy (A RMS) 

Load % \ speed 300 750 1050 1500

0 0,008 0,002 -0,003 -0,003

50 0,002 -0,011 -0,002 -0,005

100 0,02 0,012 0,003 0,014

Table 2. Difference in RMS filtered current value between lightly damaged unit and healthy 
one used as reference. 

A significant difference can be clearly appreciated when the motor is heavily damaged 

under load condition. Light damage is noticeable under nominal load conditions but its 

detection does not seem to be easily reliable. 

B. High Frequency bearings pulses 

Bearings pulses threshold analysis has been executed to validate theories of correlation 

between bearings state (wear, lubrication, distributed defects, etc.) and pulses discharge 

over a threshold value. 

The results summarized in Figure 8 show that over a defined threshold level healthy 

bearings undergo a bigger number in comparison to the damaged units. It is noticeable also 

that this method is able to detect failure at its initial stage if the threshold is correctly placed. 

C. Acoustic emission testing 

Acoustic Emission acquired data has been statistically classified by means of value binning 

tools and histogram presentation. 

Fifteen sets of data were acquired for each motor and averaged. Fig. 5 shows the results 

comparing the RMS voltage values acquired for the different units under test. 
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Fig. 8. Number of bearing pulses over threshold value of 3.5 A for all motors under test. 
Healthy, lightly damaged and heavily damaged. 

 

Fig. 9. Acoustic Emission voltage values classification 

It is advisable that pulses over 8 V only appeared during the damaged motor testing while 
under 7 V that unit does not show more activity than the healthy and lightly damaged units. 

Then, the fuzzy inference system designed uses as reference the number of pulses that 
surpass the 7 V value, which is the zone where the distinction of the fault severity of the unit 
seemed to be more noticeable. 

3.3 Fuzzy inference tool 

The analysis of the actual bearing status was performed using a fuzzy logic inference 

implementation [11] [12] which maps given inputs to a single output, the different signals 

acquired are linked to a damage value scaled from 1 to 3. 

The membership functions, like Fig. 10, have been obtained through training and validation 
process, for each signal under analysis using real motor data. MATLAB “Adaptive neuro-fuzzy 
inference system” tool has been used for this purpose. Fig. 11 shows the obtained relationship 

between Vibration and Stator Current RMS values against the Failure Level output for a motor 
speed of 1500 rpm and a load of 0%. 
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Fig. 10. Membership function plot for Current RMS. (motor speed: 1500 rpm, motor load: 0%) 

 

Fig. 11. Plotted surface showing the relationship between the system inputs Vibrations RMS 
value (g) and Stator Currents RMS value (A) versus the Failure Level output. (Motor speed: 
1500 rpm, motor load: 0%) 

This process explanation will be properly expanded on the final version of this paper.  

To perform the evaluation of the monitoring system designed, fifteen sets of data were 

collected from the same units and processed. Table 3 summarizes the obtained results. 

 

Unit Matches Success % 

Healthy 15 100 % 

Lightly Damaged 14  93,33% 

Heavy Damage 13 86,66% 

Table 3. System testing results 

All healthy data sets were correctly identified, whilst one of the lightly damaged was 

recognised as a heavily damaged set and two of the heavily damaged sets were identified as 

lightly damaged ones. The percentage of success was reasonably high and its improvement 

is still possible if more data sets are used during the system training stage. 
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4. Conclusions 

This chapter gives an overview of a condition monitoring system that uses a multisensory 
fuzzy inference approach used to detect faults in EMA Systems. The results show that a 
multivariable design contributes positively to damage monitoring of EMA, being a more 
solid solution than just using any of the single signals involved..  

The results show that a multivariable design contributes positively to damage monitoring of 
bearings, being a more solid solution than just using any of the single signals involved.. 
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