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Point Counting Algorithms 

Hailiza Kamarulhaili and Liew Khang Jie 
School of Mathematical Sciences, Universiti Sains Malaysia, Minden, Penang 

Malaysia 

1. Introduction 

Elliptic curves cryptography was introduced independently by Victor Miller (Miller, 1986) 
and Neal Koblitz (Koblitz, 1987) in 1985. At that time elliptic curve cryptography was not 
actually seen as a promising cryptographic technique. As time progress and further research 
and intensive development done especially on the implementation side, elliptic curve 
cryptography is now being implemented widely. Elliptic curves cryptography offers smaller 
key size, bandwidth savings and faster in implementations when compared to the RSA 
(Rivest-Shamir-Adleman) cryptography which based its security on the integer factorization 
problem. The most interesting feature of the elliptic curves is the group structure of the 
points generated by the curves, where points on the elliptic curves form a group. The 
security of elliptic curves cryptography relies on the elliptic curves discrete logarithm 
problem. The elliptic curve discrete logarithm problem is analogous to the ordinary 
algebraic discrete logarithm problem, l = gx, where given the l and g, it is infeasible to 
compute the x.  Elliptic curve discrete logarithm problem deals with solving for n the 
relation P = nG. Given the point P and the point G, then it is very hard to find the integer n. 
To implement the discrete logarithm problem in elliptic curve cryptography, the main task 
is to compute the order of group of the curves or in other words the number of points on the 
curve. Computation to find the number of points on a curve, has given rise to several point 
counting algorithms. The Schoof and the SEA (Schoof-Elkies-Atkin) point counting 
algorithms will be part of the discussion in this chapter. This chapter is organized as follows: 
Section 2, gives some preliminaries on elliptic curves, and in section 3, elliptic curve discrete 
logarithm problem is discussed. Some relevant issues on elliptic curve cryptography is 
discussed in section 4, in which the Diffie-Hellman key exchange scheme, ElGamal elliptic 
curve cryptosystem and elliptic curve digital signature scheme are discussed here 
accompanied with some examples. Section 5 discussed the two point counting algorithms, 
Schoof algorithm and the SEA (Schoof-Elkies-Atkin) algorithm. Following the discussion in 
section 5, section 6 summaries some similarities and the differences between these two 
algorithms. Section 7 gives some brief literature on these two point counting algorithms.  
Finally, section 8 is the concluding remarks for this chapter. 

2. Elliptic curves 

Elliptic curves obtained their name from their relation to elliptic integrals that arise from the 
computation of the arc length of ellipses (Lawrence & Wade, 2006). Elliptic curves are 
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different from ellipses and have much more interesting properties when compared to 
ellipses. An elliptic curve is simply the collection of points in x-y plane that satisfy an 

equation 2 3 2
1 3 2 4 6y a xy a y x a x a x a      , and this equation could either be defined on 

real, rational, complex or finite field. This equation is called the Weierstrass equation.  

Definition 2.1: An elliptic curve E, defined over a field K is given by the Weierstrass equation:  

 2 3 2
1 3 2 4 6:E y a xy a y x a x a x a      ,  where  

1 2 3 4 6, , , ,a a a a a K   (1) 

In other words, let K be any field, then we assume 1 2 3 4 6, , , ,a a a a a K  and the set of K-

rational points: 

2 3 2
1 3 2 4 6( ) {( , )| , , }.E K x y x y K y a xy a y x a x a x a         

If one is working with characteristic, char (K) 2,3 , then admissible changes of variables 

will transform the above equation (1) into the following form: 

 2 3y x ax b    where ,a b K   (2) 

But when one works with ( ) 2 or 3char K  , then the general form of equation is given by (3) 

and (4) respectively.  

 2 3 2
2 6y xy x a x a      (3) 

 2 3 2
2 6y x a x a     (4) 

2.1 Case for real numbers 

This case allows us to work with graphs of E.  The graph of E has two possible forms, whether 
the cubic polynomial has only one real root or three real roots. Now, we consider the following 

examples. Take the equations 2 ( 1)( 1)y x x x    and 2 3 73y x  . The graphs are as follows: 

� 1 1 2 3

� 4

� 2

2

4

 

Fig. 1.1. 2 ( 1)( 1)y x x x    
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Fig. 1.2. 2 3 73y x  . 

Looking at the curves, how do you create an algebraic structure from something like this. 

Basically, one needs to figure out how to find a way to define addition of two points that lie 

on the curve such that the sum is another point which is also on the curve. If this could be 

done, together with an identity element, O , group structure can be constructed from points 

on the curves. The following are some formulas for points operations on the curves which is 

defined by the equation (2). 

1. P + O  = P, for all points P. 

2. 
( )P O P  

 
3. The opposite point, ( , )P x y    

4. 1 1 2 2( , ) & ( , )P x y Q x y   , then 3 3( , )P Q R x y   , with 

 

2
3 1 2

3 1 3 1

2 1

2 1

2
1

1

,

( ) ,

if

or

3
if .

2

x m x x

y m x x y

y y
m Q P

x x

x a
m P Q

y

  
  


  




 

 

It can be shown that the addition law is associative, that is  

( ) ( )P Q R P Q R    
. 

It is also commutative, 

P Q Q P   . 
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When several points are added, it does not matter in what order the points are added or 

how they are grouped together. Technically speaking, the points on the curve, E form an 

abelian group. The point O  is the identity element of this group. 

 

Fig. 1.3. Addition of elliptic curve points over a real number curve 

 

Fig. 1.4. Arbitrary points P and –P 

 

Fig. 1.5. Addition of a point to itself (point doubling) 
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2.2 Case for integer mod p (prime field) 

The operations of points on elliptic curves indicated in the previous section are fascinating 
and it is applicable to the area of cryptography. It so happen that similar formulas work if 
real numbers are replaced with finite field. An elliptic curve defined over prime field is 
cryptographically good if the curve is non-singular. This happens when the discriminant, 

3 216(4 27 ) 0a b   . That means, the polynomial 3x ax b   has no multiple roots. 

Now define an elliptic curve mod p, where p is a prime. For the rest of this section several 
examples are shown to exhibit its cryptographic use. 

Example 2.1: Let E be given by 2 3 2 1 (mod5)y x x   . First of all, compute and list all the 

points on the curve by letting x run through the values 0, 1, 2, 3, 4 and solve for y. Substitute 
each of these into the equation and find the values of y that solve the equation. 

2

2

2

2

2

0 1 4      2,3 (mod5)

1 2               no solution

2 11 1 16 1,4 (mod5)

3 32 2       no solution

4 71 1 16 1,4 (mod5)

x y y

x y

x y y

x y

x y y

      

   

      

    

      

 

Therefore, yield the following points along with point at infinity, the identity element: 

(0,2), (0,3), (2,1), (2,4), (4,1), (4,4), ( , ) 
 

Elliptic curves mod p generates finite sets of points and it is these elliptic curves that are useful 

in cryptography. For cryptographic purposes, the polynomial 3x ax b   is assumed not to 

have multiple roots, as it will lead to weak curves and vulnerable to attack. Computation of 
points on elliptic curve can also be obtained by using the Mathematica software. Now we 
demonstrate how it can be done. First we need to choose the base point G, and the coefficient a. 

Then choose the coefficient b, so that G lies on the curve 2 3 (mod5)y x ax b   . Now say the 

point G = (1, 3 ) and choose  a = 2. Then substitute this into the equation, give the value of b = 1. 

Thus we have 2 3 2 1 (mod5)y x x   . The following points are generated using the 

Mathematica programming software. The command multsell is used to generate points from 
the curve and was fully written by Lawrence Washington (Lawrence & Wade, 2006). The 
following are the points generated using the multsell command. Thus the following points are 
generated.  

 (1,3),(3,2),(0,4),(0,1),(3,3),(1,2),( , ) 

2.2.1 Points addition and doubling on elliptic curves 

As it was shown earlier in the formulations of points on an elliptic curve, adding points on 
elliptic curve is not the same as adding points in the plane. Scalar multiplication of a point 
on the curve for which we have say, mP with m = 2185, will be evaluated as 
2(2(2(2(2(2(2(2(2(2(2(2(2P))) + P))))+ P ))) + P. This is called doubling operation. The 
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following examples show us how addition and doubling operation exactly works using the 
formulation in section 2.1. 

Example 2.2 (point addition) : Suppose E is defined by 2 3 2 1 (mod5)y x x   . Now add 

the point (1, 2) and the point (3, 2). The slope m 
2 2

0(mod5)
3 2


 


. Then, we have the 

following formulas to obtain the third point on the curve. 

3

3

1 3 4 1(mod5)

2 3(mod5)

x

y

     
  

 

This means that (1, 2) + (3, 2) = (1, 3), which is also on the curve. This can be verified using 
the Mathematica function, addell which was also developed by Lawrence C. Washington 
(Lawrence & Wade, 2006).  

Example 2.3 (point doubling):   Using the same E as in example 1.2, compute 2P P P  , 
where  P= ( 1, 3).  This operation is called doubling. 

 

3(1) 2 5
5 6 0(mod5)

2(3) 6

0 mod5)

m

m


    

 
 

3

3

1 1 2 3(mod5)

3 2(mod5)

x

y

     
  

 

Thus we have 3 33, 2x y  . Hence (1,3) (1,3) (3,2)  . This also can be verified using the 

Mathematica command, addell. For the ordinary scalar multiplication, say, 3P, is evaluated 
as 2P + P. 

3. Elliptic curve discrete logarithm problem 

The term, elliptic curve discrete logarithm problem (ECDLP) comes from the classical 

discrete logarithm problem, kx g (mod p), where we want to find k. In the context of elliptic 

curve, suppose that the points ,P Q  on an elliptic curve are made known and Q kP  for 

some k, then find the k. The difficulty of finding the k is what makes the elliptic curves an 

area which is cryptographically worth exploring for. In other words, elliptic curves 

cryptosystem rely its security on the difficulty of the discrete logarithm problem and the 

available efficient algorithms that can solve the discrete logarithm problem.  

Solving the elliptic curve discrete logarithm problem is very hard and until now there is no 

good and efficient algorithm available to solve the problem. Nevertheless there are a few 

algorithms being widely discussed, which is popular amongst the cryptanalysts. They are 

analog of Pohlig-Hellman attack, index calculus attack and baby step-giant step attack. The 

baby-step giant-step attack on discrete logarithm problem works for elliptic curves although 

it requires too much memory to be practical. Generally speaking, there is no algorithm 

available to solve the discrete logarithm problem in sub-exponential time.   
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4. Elliptic curve cryptography 

More than twenty years ago, when elliptic curve cryptography was first introduced 
independently by  

Neal Koblitz and Victor Miller, researchers never thought that elliptic curve cryptography 
could be implemented efficiently and securely. During those times the arithmetic operations 
on elliptic curves were difficult to perform. The arithmetic on the elliptic curves was not 
very efficient and it was only meant for academic interest. Since then, a great deal of effort 
has been put on the study of elliptic curve and its implementation in cryptography. By the 
late 1990s the implementations were ten times more efficient and this has made the elliptic 
curves cryptography as a challenge to the RSA (Rivest- Shamir-Adleman) cryptography.  

In recent years, the bit length for secure RSA use has increased and this has increased the 

processing load on applications using RSA. This is due to the development of the integer 

factorization algorithms which runs in sub-exponential time and as a result, RSA had to 

choose a very large key for it to sustain the intractability of the system, where as the elliptic 

curves cryptosystem require fewer bits or shorter key lengths for the same security level, 

since the security of the elliptic curve cryptography relies on the discrete logarithm problem 

and the best known algorithm to solve those problems is fully exponential time. Thus 

reduction in the time, cost as well as the size or bandwidth and memory requirements, 

which is crucial factor in some applications such as designs of smart cards, where both 

memory and processing power are limited but requiring high security. For an example, 160 

bits in elliptic curve cryptosystem is around 1024 bits in RSA cryptosystem. Nowadays, 

elliptic curve cryptosystem is one of the important components in Microsoft Windows, 

email applications, bank cards and in mobile phones.  

As it was mentioned earlier that elliptic curves cryptosystem based its security on the hardness 

of the discrete logarithm problem. One of the most important aspects in elliptic curve 

cryptosystem is choosing the right curve that preserved the hardness of discrete logarithm 

problem. One way to ensure this is to avoid singular curves as the discrete logarithm problem 

for these types of curves can reduce the hardness of the discrete logarithm problem.  The 

arithmetic on these curves can be much faster over these curves and this is due to the fact that 

several terms vanished and these types of curves are considered weak and the system will no 

longer be intractable. Therefore, as mentioned earlier in the previous section, elliptic curves 

suitable for cryptographic use are of type non-singular curves. 

4.1 Embedding plaintext on an elliptic curve 

Before messages can be encrypted, those messages need to be embedded on the points of the 
elliptic curve (Lawrence & Wade, 2006). The embedding process encoded the message m, 
which is already in a number form, as a point on the curve. Let K be a large positive integer 

so that a failure rate of 1 2 K is acceptable in the decoding process, where K Z . Assume 

now that m satisfies ( 1) .m K p   The message m is presented by a number ,x mK j   

where K is an integer and 0 j K  . For 0,1,2,...., 1j K  , compute 3x ax b  (mod p) and 

calculate the square root of it. If there is a square root y, then embedded point, ( , )mP x y . 

Otherwise, increase the j by one and again compute the new x.  
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Repeat this step until either the square root is found or j K . For the case where j equals K, 

the mapping of the message to a point failed.  In order to recover the message from the 

embedded point, ( , )mP x y . m can be recovered by computing /x K   . Once the messages 

have been encoded as points on an elliptic curve, then those points can be manipulated 

arithmetically to hide away those messages. This process is called encryption process. The 

reverse of the encryption process is called decryption process. There are three versions of 

classical algorithms, where arithmetic of elliptic curves is being adopted. They are the 

elliptic curve Diffie-Hellman key exchange, ElGamal elliptic curve cryptosystem and 

ElGamal elliptic curve digital signature algorithm. 

4.2 Elliptic curve diffie-hellman key exchange 

Elliptic curve Diffie-Hellman key exchange was first introduced by Diffie and Hellman 

in the year 1976 (Hellman, 1976). Now we exhibit the implementation of elliptic curve 

Diffie-Hellman key exchange. Alice and Bob want to exchange a key. Thus, they agreed 

on a public point generator or the base point G on an elliptic curve 
2 3 (mod ).y x ax b p    Now choose p = 7211 and a = 1 and the point G = (3, 5). This gives 

b = 7206. Alice chooses a random integer Ak = 12 and Bob chooses random integer Bk = 

23. Alice and Bob keep these private to themselves but publish the Ak G  and Bk G . In this 

case we have  

(1794,6375)Ak G   and  
Bk G  = (3861,1242) . 

Alice now takes Bk G  and multiples by Ak  to get the: 

( ) 12(3861,1242) (1472,2098).A Bk k G    

Similarly, Bob takes Ak G  and multiples by Bk  to get the key: 

( ) 23(1794,6375) (1472,2098).B Ak k G  
 

Notice that Alice and Bob have the same key. 

4.3 Elliptic curve Elgamal cryptosystem 

Assuming we have a situation where there are two parties communicating through an 

insecure channel. The communication is between Alice and Bob. The following example 

exhibits the use of elliptic curves to encrypt and decrypt messages. 

Example 4.1: Firstly, we must generate a curve. Choose the prime p = 8831, the point  

G = ( , )x y  = (3,7)  and a = 1. To make G lie on the curve 2 3 (mod ),y x ax b p    we then 

obtain b = 19. Alice has a message, represented as a point (5,1743)mP   and she wants to send 

it to Bob.  Bob has chosen a random number 5ba   and published the point ba G  (7335,7164) . 

Alice then chooses a random number k = 4. She sends Bob (254,2386)kG   

and ( ) (269,1803)m bP k a G  . Bob then first calculate 5(254,2386) (4217,7788)ba kG   . Bob 

then subtract this from (269,1803) : 
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(269,1803) (4217,7788) (269,1803) (4217, 7788) (5,1743)    
 

Now Bob recovered the message (5,1743)mP   that Alice sent. 

4.4 ElGamal elliptic curve digital signature algorithm 

A digital signature is an electronic analogue of a hand written signature that allows a 

receiver to convince a third party that the message is in fact originated from the sender. 

ElGamal elliptic curve digital signature algorithm is an analogue to the digital signature 

algorithm proposed earlier by ElGamal in 1985 where some modifications were done to deal 

with points on an elliptic curve. 

Now suppose that Alice wants to sign a message m. assuming that m is an integer, Alice 

fixes an elliptic curve (mod )E p , where p is a large prime and a point A on E. We assume that 

the number of points n on E has been calculated and 0 m n  . Alice also has to choose a 

private integer a and compute B = aA. The prime p, the curve E, the integer n, and the points 

A and B are made public. To sign the message m, Alice does the following procedure: 

1. Alice chooses a random integer k with 1 k n   and gcd ( k, n) = 1, and computes R = 

kA = ( x, y ), 

2. Now, Alice computes 1( )(mod )s k m ax n   and 

3. Sends the signed message (m, R, s) to Bob. 

Note that R is a point on E, and m and s are integers. Next, Bob verifies the signature as 
follows: 

1. Bob now downloads Alice’s public information p, E, n, A, B, and 

2. Computes 1V xB sR   and 2V mA . 

3. Declares the signature valid if 1 2V V . 

We can verify that the verification procedure works because we have the following: 

1
1 2( )( ) ( )V xB sR xaA k m ax kA xaA m ax A mA V         

 

5. Point counting for E (mod p) 

Let 2 3: (mod )E y x bx c p    be an elliptic curve. Then the number of points on E denoted 

as #E(Fp), satisfies Hasse’s theorem (Jacobson & Hammer, 2009),(Lawrence & Wade,2006).  
According to Hasse’s theorem, the number of points on E, #E(Fp) , satisfy the following 
inequality. 

 1 2 # 1 2pp p E F p p       

Number of points on the curve E is called the order of the curve. The order of a point is 
defined by the number of times the point added to itself until the infinity is obtained. 
The order of any point on the curve E, will divide the order of the curve E. If the order of 
the curve has many factors or smooth, then this curve is not cryptographically good. For 
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cryptography, it is best if the order of the curve is a large prime number. Generally 

finding order of a curve is not trivial. In a situation where 5p   is a prime, for small p, 

points can be listed by letting 0,1,2,..., 1x p   and seeing when 3x ax b  is a square 

mod p. When p is large, it is infeasible to count the points on the curve by listing them. 
There are several algorithms that can deal with this problem, They are Schoof’s 
algorithm and Schoof-Elkies-Atkin (SEA) algorithm (Lawrence &Wade, 2006). In 
principal, there are approximately p points on the curve E and inclusive of the point at 
infinity, a total of p + 1 points is expected to be on the curve. The order of a curve is 
called ‘smooth’ if the order of the curve is divisible by many small factors, where this can 
brings point multiplications to identity (point at infinity). The type of curve which is 
desirable is of type ‘non-smooth’ order, where the order of the curve is divisible by a 
large prime number. The Schoof-Elkies-Atkin point counting method has become 

sufficiently efficient to find cryptographic curves of prime order over pF  with heuristic 

time 6(log )O p . In the next section, we will discuss the two counting point algorithms, 

the Schoof counting point algorithm and the Schoof-Elkies-Atkins counting point 
algorithm.  

5.1 Schoof and Schoof-Elkies-Atkin (SEA) point counting algorithms  

To determine the #E(Fp), one needs to compute 2 3z y x ax b     for each x in Fp and 

then test if z has a square root in Fp. If there exists y   Fp such that y2 = z, then we have 

2p + (a point of infinity) that is 2p + 1 elements in the group because each x value will 

produce two values of y. However, according to the theorem of finite fields, there is 

around ½ of the non-zero elements of Fp are quadratic residues. So, there is 

approximately p + 1 number of points. There are a few point counting algorithms and in 

this section, we focus only on two point counting methods. They are Schoof and Schoof-

Elkies-Atkin (SEA) point counting algorithms. In this chapter, we will describe the two 

algorithms in a brief manner. Readers are required to have some backgrounds in number 

theory and algebraic geometry. For more details on arithmetic of elliptic curves, one 

needs to refer to (Silverman, 1986) and for the introduction on Schoof algorithm, refer to 

(Schoof, 1985). 

5.1.1 Schoof’s algorithm 

René Schoof (Schoof, 1985) had introduced a deterministic polynomial time algorithm to 

compute the number of Fp-points of elliptic curve defined over a finite field Fp which was 

given by Weierstrass form in (2). Schoof algorithm has managed to compute the group order 

of over 200 digits. In the Schoof algorithm, the characteristic polynomial of Frobenius 

endomorphism is critical to the development of Schoof’s algorithm. Another crucial part in 

this algorithm is to compute the division polynomials in order to carry out the computation 

of the order of the group of elliptic curve. If the division polynomials have low degree, then 

the division polynomials is said to be efficiently computable.  

Let E be an elliptic curve defined over pF  denoted as / pE F , where pF is a prime field of 

characteristic p > 3. Define the Frobenius endomorphism p  as the following: 
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: ( ) ( )

( , ) ( , )

p p p

p p

E F E F

x y x y

 


 

The Frobenius map or endomorphism p satisfies the characteristic equation (5) 

 2 0, ( )p p pt p P F       (5) 

where pF  is the algebraic closure of the prime field pF . Let t is the trace of Frobenius 

endomorphism, then  the number of points,  # pE F is given in (6) as follows: 

  # 1 – , 2pE F p t t p    (6) 

Obviously from equation (5), we have for all points, ( , ) ( )pP x y E F   satisfying the 

following equation (7): 

  
2 2

( , ) ( , ) ( , )p p p px y p x y t x y    (7) 

where scalar multiplication by p or t signifies adding a point to itself p or t times 

respectively. For ( , ) [ ]x y E l , where [ ] { ( , ) ( )|[ ] }pE l P x y E F l P O    , here each P [ ]E l is 

called l–torsion point. If ( , ) ( , )p p p pt x y t x y where t  is t mod l and  p  known as p mod l 

where l is a prime. Now, the equation of (7) is reduced as following: 

2 2

( , ) ( , ) ( , )p p p px y p x y t x y 
 

To determine t (mod l) for primes l > 2, we need to compute the division polynomials. 

Definition 5.1.1 (Division Polynomial )  

Division polynomial (McGee, 2006) is a sequence of polynomials in [ , , , ]m x y a b   and 

goes to zero on points of particular order. Let E be the elliptic curve given by (2). The 

division polynomials m (x, y) = 0 if and only if (x, y) ∈ E[n]. These polynomials are defined 

recursively as follows (Schoof, 1985): 

Ψ-1 = -1 

Ψ0 = 0 

Ψ1 = 1 

Ψ2 = 2y 

Ψ3 = 3x4 + 6ax2 + 12bx- a2 

Ψ4 = 4y (x6 + 5xa4 + -20bx3-5a2x2 - 4abx -8b2 – a3) 

Ψ2m = Ψm (Ψm+2 Ψ 2m-1 – Ψm-2 Ψ 2m+1) / 2y         m  , m ≥ 3 

Ψ 2m + 1 = Ψm+2 Ψ 3m – Ψ 3m+1 Ψm-1                         m   , m ≥ 2 
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For simplicity, the polynomials are suppressed to Ψn. which is called the nth division 

polynomial. 

Let us derive the Ψ3 = 3x4 + 6ax2 + 12bx- a2. In division polynomial Ψ3, we must have a 

point ( , ) [3]P x y E   which is a point with order 3 such that [3]P   . Therefore, we have 

2P = -P and we know the x- coordinate for point 2P and P is the same. The formula for the x-

coordinate in 2P is given in the earlier section. 

2

2
2

4 2 2

2

2

3
2

2

9 6
2

4

x x

x a
x

y

x ax a
x

y

 

 
   
 
  

   
 

 

2 4 2 2

2 4 2 2

3 4 2 2

4 2 4 2 2
3

4 2 2
3

3 (4 ) 9 6

12 9 6

12 ( ) 9 6

12 12 12 9 6 0

3 6 12

x y x ax a

xy x ax a

x x ax b x ax a

x ax bx x ax a

x ax bx a





  

  

    

      

    

 

We can replace 2y  by 3( )x ax b  to eliminate the y term. The polynomial ( ) [ ]n pf x F x is 

defined as follows: 

( ) ( , )n nf x x y  if n is odd     

 
( , )

( ) n
n

x y
f x

y


   if n is even 

If n is odd, then the degree of ( )nf x  is
2 1

2

n 
whereas if n is even, then the degree of ( )nf x  is 

2 4

2

n 
. 

The following proposition shows point additions relates to the division polynomials. 

Proposition 5.1.1   

Let (x, y) ∈ E ( pF ), with pF  , the algebraic closure of pF . Let n ∈ ℤ, then for [n]P = P + P + P 

+…+ P is given by 

2 2
1 1 2 1 2 1

2 3
[ ] ( , )

4
n n n n n n

n n

n P x
y

     
 
     

   
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5.1.1.1 Computation of number of points, #E(Fp) using Schoof’s algorithm 

Here, we present briefly the Schoof’s algorithm. For E as defined in (2) over Fp and the 
Hasse’s theorem,  

#E (Fp) = p + 1 – t where | t | ≤ 2 p . 

Input   : Elliptic curve 2 3y x ax b    over prime field PF . 

Output: Number of points,  # ( ).pE F  

1. Create a set of small primes not equal to the char (Fp) = p,   

S = {l1, l2,..., lL}, = {2, 3, 5, 7, 11,… lL } such that 
1

4
L

ii
l p


    .  

a. For case when the prime l = 2:  
2. gcd (x3 + ax + b, xp – x) ≠ 1, then t ≡ 0 (mod 2), else t ≡ 1 (mod 2). 

This is to test whether E has point of order 2, (x, 0) ∈ E[2] or precisely roots of E.  

If gcd (x3 + ax + b, xp – x) = gcd(x3 + ax + b, xp – x) = 1, then x3 + ax + b has no root in Fp, else it 

has at least one such root.  

3. To test whether which case is to be used, we have to compute the following relation: 

 2 2
1 1gcd ( ) (mod , ),

l l l

p
p p p l lx x p      

 

If the gcd 1 , proceed to (B), else proceed to (C) . 

b. For the case when 
2 2

( , ) ( , )p p
lx y p x y   

4. For each l ∈ S, compute pl≡ p (mod l) 

5. For case 

2 2

( , ) ( , )p p
lx y p x y 

 

6. Compute 
2 2

( ', ') ( , ) ( , )p p
lx y x y p x y     

7. For each 1≤ τ ≤ 
1

2

l 
, compute the x-coordinate, x  of ( , ) ( , )x y x y    

8.  If ' 0(mod )lx x   then try next τ, else compute 'y and y .  

9. If 
'

0(mod )l

y y

y
 


 , then (mod )t l , else (mod )t l   

10. If all values 1≤ τ ≤ 
1

2

l 
  fail, then proceed to case (C).     

c. For the case  when 
2 2

( , ) ( , )p p
lx y p x y   

11. Compute w such that w2 ≡ p (mod l)  

12. If w2  does not exist, then t ≡ 0 (mod l), else 

13. Compute ( , ) ( , ) ( , ) ( , )p p
w w w wx y w x y x y x y       
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14. If gcd(numerator( ( )p
wx x , l ) = 1, then 0(mod )t l  

15. Else compute gcd(numerator( ( )p
wy y / y), l )  

16. If gcd(numerator( ( )p
wy y / y), l ) = 1, then 2 (mod )t w l  , else 2 (mod )t w l  

Recover t via Chinese Remainder Theorem (CRT) 

17. At this point we have computed t (mod l) for any l ∈ S. 

18.  T ≡ t (mod N) where N =
1

L
ii

l
 . 

19. If T is in Hasse’s bounds, then t = T, else t ≡ - T (mod N) 
20. #E (Fp) = p + 1 – t. 

5.1.2 Schoof-Elkies-Atkin (SEA) algorithm 

Schoof’s algorithm is not practical because of the exponential growth in the degree of the 

division polynomial and hence it is not suitable for cryptographic purposes. Atkin and 

Elkies has improved the Schoof’s algorithm by analyzing the method to restrict the 

characteristic polynomial of elliptic curve such that 

 2( )  p p pt p       (8) 

where the Frobenius splits over Fl. The discussion will follow the literature found in (Cohen 

et al., 2006). In 1988, Atkin devised an algorithm to the order of p  in projective general 

linear group dimension 2 of Fl, whereas Elkies in 1991 introduced a mean to replace the 

division polynomial which has degree 2( 1) / 2l   by a kernel polynomial with degree 

( 1) / 2l  in Elkies prime procedures. To differentiate between the Elkies prime and Atkin 

prime, one can calculate the discriminant from (8), so we get 2 4t p   . If   is a square 

then the prime l is Elkies prime, else it is Atkin prime. However, we need to classify the 

primes at the beginning stage and there is no information of t. Therefore this method is not 

suitable. However, Atkin proved that l-modular polynomial, ( , ) [ , ]l x y x y   can be used 

to differentiate the prime at the early stage of SEA algorithm. SEA algorithm is one of the 

fastest algorithms for counting the number of points on E over a large prime field. The 

following part of this section follows the text from (Chen, 2008), (Cohen et al., 2006), and 

(Galin, 2007). 

5.1.2.1 Modular polynomial 

Modular polynomial comes from the theory of modular form and the interpretation of 

elliptic curves over the complex field as lattices. A moderately comprehensive development 

of the theory can be found in (Silverman, 1986). Before we proceed with the SEA algorithm, 

we know the modular polynomial. The detail proof of this theorem can be obtained in (Cox, 

1989). These polynomials will be used in Elkies and Atkin procedures. 

Theorem 5.1.2.1 (modular polynomial) 

Let m be a positive integer. 
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i. ( , ) [ , ]m x y x y   

ii. ( , )m x y  is irreducible when regarded as polynomial in x. 

iii. ( , ) ( , )m mx y y x    if m > 1.  

iv. If m is a prime, l then,   ( , ) ( )( )mod [ , ]l l
l x y x y x y l x y      

Let l be the prime different from characteristic p, then the classical modular polynomial has 
2( 3 4) / 2l l   coefficients. Here are examples of the classical modular polynomials taken 

from (Galin, 2007). 

For l = 3, we have the modular polynomial as follows: 

4 3 3 4 3 2 2 3 3 3 3 3
3

2 2 2 2 2 2

( , ) 2232( ) 1069956( ) 36864000( )

2587918086 8900222976000( ) 452984832000000( )

770845966336000000 1855425871872000000000( )

x y x x y y x y x y x y xy x y

x y x y xy x y

xy x y

         

    
  

 

For l = 5, we have the following modular polynomial: 

6 5 5 6 5 4 4 5 5 3 3 5 5 2 2 5
5

5 5 5 5 4 4

4 3 3 4 4 2 2 4

( , ) 3720( ) 4550940( ) 2028551200( )

246683410950( ) 1963211489280( ) 1665999364600

107878928185336800( ) 383083609779811215375( )

x y x x y y x y x y x y x y x y x y

x y xy x y x y

x y x y x y x y

         

    

   

 4 4 4 4

3 3 3 2 2 3

3 3

128541798906828816384000( ) 1284733132841424456253440( )

441206965512914835246100 26898488858380731577417728000( )

19245793461892828299655108231168000( )

280244777828439527

x y xy x y

x y x y x y

x y xy

  

  

 

 3 3

2 2

2 2

2 2

804321565297868800( )

5110941777552418083110765199360000

36554736583949629295706472332656640000( )

6692500042627997708487149415015068467200( )

264073457076620596259715790247978782949

x y

x y

x y xy

x y





 

 
 376

53274330803424425450420160273356509151232000( )

141359947154721358697753474691071362751004672000.

xy

x y 


 

We now give some backgrounds needed for SEA algorithm. These information might have 
some gaps and readers are suggested to refer to (Silverman, 1986) and (Cox, 1989) for 
further details. 

5.1.2.2 Elliptic curve over complex field 

The theory of elliptic curves over complex field is corresponding to the lattice and thus 

equivalently to the torus that is the mapping of ( ) /E     and / ( )E  . Lattice, 

1 2w w     where 1 2,w w  are ℝ-linearly independent, then an elliptic function f (z) 

defined on  except for isolated singularities, satisfies two conditions: f (z) is meromorphic 

on   and 1 2( ) ( ) ( )f z w f z w f z    . This indicates a doubly periodic meromorphic 
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function  (Cox, 1989). An example of elliptic function is the Weierstrass  function defined 

in the following theorem. Proofs for all the theorems, lemma and propositions are omitted. 

Theorem 5.1.2.2 

Let     be a lattice. The Weierstrass  function relative to  is given by 

2 2 2
\{0}

1 1 1
( ) ( , )

( ) ( )w

z z
z z w w

 
        

  

Then, 

i. The sum defining ( )z  converges absolutely and uniformly on compact set not 

containing elements of  . 

ii. ( )z  is meromorphic in  and has a double pole at each w . 

iii. ( ) ( )z z   , z   which is an even function. 

iv. ( ) ( ),z w z w      

Therefore, the Weierstrass  function relative to  is a doubly periodic function with 

periods w1 and w2 which is known as the basis of  . 

Theorem 5.1.2.3. 

The relation between Weierstrass  function and its first derivative is given 

by 2 3
2 3'( ) 4 ( ) ( )z z g z g      . Then there is lattice,   such that 2 4( ) 60g G   

and 3 6( ) 140g G  where 4 4
\{0}

1

w

G
w

   and 6 6
\{0}

1

w

G
w

   . Hence, there is an 

isomorphism between points on elliptic curve over the complex field and points on the 

complex modulo a suitable lattice   that is ( ) /E     

5.1.2.3  j-invariant, ( )j    

Elliptic function depends on the lattice being used. Let 1 2w w     and 1

2

w

w
  . Since 

1 2,w w  are  

 -linearly independent, therefore the   is not in  . Now,   belongs to Poincaré upper 

half plane,  ℋ = { x iy  | y > 0}.  

By restricting to  , we have 2 2( ) ( )g g    , 3 3( ) ( )g g     and  3 2
2 327D g g   which is 

closely related to the discriminant of the polynomial 3
2 34x g x g  . Then,  

3
2

3 2
2 3

( )
( ) 1728

( ) 27 ( )

g
j

g g




 



. 
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If lattice  , there exists a nonzero λ      such that      for some    F where F  is 

the standard fundamental region.  

Two lattices,  and '   is homothetic, then there exist nonzero λ ∈   such that '    . 

Theorem 5.1.2.4. 

If   and '  are lattices in  , then ( ) ( ')j j   if and only if  and '  are homothetic. 

( )j   is a holomorphic function on the Poincaré upper half plane,   = { x iy  | y > 0}. 

The properties of ( )j   are related to the action on the special linear group, SL (2,  ) with 

determinant one on   . This is defined as such that z  ℋ and (2, )
a b

SL
c d


 

  
 

  then 

a b

c d








, .  If  and '  in  , then ( ) ( ')j j   if and only if '   for some 

(2, )SL    

For classical modular polynomial and any n > 0. 

* { | , , ,0 , ,gcd( , , ) 1}
0n

a b
S a b d b d ad n a b d

d

 
      

 
  

For  *

0 n

a b
S

d


 
  
 

, define the map 

( ) ( )
a b

j j
d

  
  

Hence, the n-th modular polynomial can also defined as  

*
( , ) ( ( )).

n

n
S

x j x j


 


      

5.1.2.4 Computation of modular polynomial 

Let l be a prime, we now discuss the method to compute modular polynomial, ( , )l x y . 

According to previous theorem, we have ( , ) ( , )l lx y y x    and 

( , ) ( )( )mod [ , ]l l
l x y x y x y l x y     . Besides,  ( , )l x y  is a monic polynomial with degree l 

+1 as polynomial in x and therefore we can write  

0 0

( , ) ( )( ) ( )j jl l i i i i
l ii ij

i l i j l

x y x y x y l c x y l c x y x y
    

         

where the coefficient ijc  which can found by q-expansion of   j –function. We also have 

the identity  

( ( ), ( )) 0p j l j   . 
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 Substituting the q-expansion for ( )j  and ( )j l  into ( , )l x y , we have the following:  

 
0 0

(( ( ) ( ))( ( ) ( ) ) ( ) ( ) ( ( ) ( ) ( ) ( ) ) 0.j jl l i i i i
ii ij

i l i j l

j l j j l j l c j l j l c j l j j l j         
    

        

This is obtained by equating the coefficients of the different powers of infinite number of 
linear equations in the variable cij. However, the finite number of linear equations can be 
obtained by equating the coefficients of negative powers of q which is a unique solution. It is 
suffices to calculate those coefficients of the q-expansions which contribute to negative 

powers of  ( )j   and only need the first l2 + l coefficients of the q-expansion of the j-function. 

Computing on modular polynomial becomes tedious as when prime l getting bigger, the 
number of digit for the coefficient do increase rapidly. Previously, we have listed the two 

modular polynomial 3( , )x y and 5( , )x y . For 11( , )x y , its coefficients are more than 120 

digits and is not shown here.  

Lemma 5.1.2.1 

Let E1/ℂ and E2/ ℂ be two elliptic curves with j-invariants 
1Ej  and 

2Ej respectively, then 

1 2
( , ) 0n E Ej j   if and only if there is an isogeny from E1 to E2 whose kernel is cyclic of degree n. 

Theorem 5.1.2.5 

Let E an elliptic curve defined over Fp with p ≠ l, then the l + 1 zeroes pj F of the 

polynomial ( , ( )) 0l x j E   are the j-invariants of the isogenous curves /E E C  with C one 

of the l + 1 cyclic subgroups of E[l]. 

Theorem 5.1.2.6 (Atkin classification). 

Let E be an ordinary elliptic curve defined over Fp with j-invariant j ≠ 0, 1728. Let 

1 2( , ) ...l sx j h h h  be the factorization of ( , ) [ ]l px j F x  as a product of irreducible 

polynomials. Then there are the following possibilities for the degrees of 1 ,..., sh h : 

i. (1, l) or (1, 1, …, 1). In either case we have 2 4 0(mod )t p l    . In the former case we 

set r = l and the later case r = 1. 

ii. (1, 1, r, r, ..., r). In this case 2 4t p   is square modulo l, r divides l – 1 and p acts on 

E[l] as a diagonal matrix 
0

0




 
 
 

 with ǌ, Ǎ ∈ *
lF . 

iii. (r, r, …, r) for some r > 1. In this case 2 4t p    is a nonsquare modulo l, r divides l + 1 

and the restriction of p  to E[l] has an irreducible characteristic polynomial over lF  

In all these 3 cases, r is the order of p  in PGL2(Fp) and the trace t satisfies 

2 1 2( ) (mod )t p l     for some r-th root of unity lF  . The number of irreducible factors s 

satisfies ( 1) ( )s p

l
  . 
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Proof:  Refer to (Galin, 2007). 

To determine the type of prime, it suffices to compute ( ) gcd( ( , ), )p
lg x x j x x   . If g(x) ≠ 1, l 

is an Elkies prime else it is an Atkin prime. 

Example 5.1.2.1 

Let an elliptic curve, E defined over 113F with the equation given by y2 = x3 - 15x +13 

S = {2, 3, 5, 7} such that 
4

1
210 4 43ii

l p


     . Let us check l = 3 and 5. 

For l = 3. check whether it is an Elkies or Atkin prime. The j- invariant, Ej  = 28. 

4 3 3 4 3 2 2 3 3 3
3

3 3 2 2 2 2

2 2

( ,28) (28) (28) 2232( (28) (28) ) 1069956( (28) (28) )

36864000( (28) ) 2587918086 (28) 8900222976000( (28) (28) )

452984832000000( (28) ) 770845966336000000 (28)

1855425871872

x x x x x x x

x x x x

x x

       

    

  
 000000000( 28).x 

 

4
3

3 281 11( ,28) (mod1131 65 52 )x x x xx       

113
3gcd( ( ,28), ) 1x x x    

Hence 3 is an Atkin prime. 

For l = 5. Check whether it is an Elkies or Atkin prime. The j- invariant, Ej  = 28. 

6 5
5

4 3 290( 81 6,28 49) 5x xx x x x      (mod 113) 

113
5

2gcd( ( 94 63,28), ) 1x x x x x     

Hence 5 is an Elkies prime. 

Definition 5.1.2.1 

Let the discriminant of the characteristic equation, 2 4t p   . If   is a square in lF  then 

the prime l is an Elkies prime else l is an Atkin prime. 

5.1.2.5 Atkin primes procedures 

Since 2 1 2( )t p     over Fl, each pair 1( , )   determines one value of t2 or at most two 

values of t. 

The number of the possible values of lt  is Euler totient function, ( )r  and 1r l  .  

Let recall the reduced characteristic polynomial 2( ) ( )( )l l lT T t T p T T         

2( )( ) ( ) ( )T T T T         
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Therefore (mod )t l    and (mod )p l   

Then 



is an element of order exactly r in 2l
F  Find r such that which gcd( ( ), ) 1

rp
l x x x   . 




  where 2l
F  is a primitive r-th root of unity. Now let g be a generator of 2

*
l

F  and 

2( 1)i l

r
i g

 
  
   for gcd( , ) 1i r   and satisfying 1 i r  . 

Next, for nonsquare ld F , we have 1 2x x d    and 1 2x x d    for some i lx F . 

Similarly we have 
1 2

2 2 2
1 2 1 22

( )i i i

x x d x x d
g g d

p

 
 

 
      where 

1 2
,i i lg g F  

Compare both sides, 

1 1

2
2 21 2 2
1 2(mod )       (mod )i i

x x x d
g l pg x x d l

p


     

2 2

1 2
1 2

2
(mod )  2 (mod )i i

x x d
g d l pg x x l

p
     

Also, 2 2
1 2 (mod )p x dx l   , so it follows that 12

1

( 1)

2

ip g
x


  . If 2

1x is not a square in 

lF , i  is discarded and move to the next one. Else, we have the following. 

12 (mod )t x l      

5.1.2.6 Elkies primes procedures 

Determine for the isogenous elliptic curve. Then recall the reduced characteristic polynomial 
2( ) ( )( )l l lT T t T p T T         

2( )( ) ( ) ( ).T T T T         

Therefore, (mod )t l    and (mod ).p l   

Notice that (mod )l
p

t l       , so once we get the value of ǌ then we can find .lt  

If   , then 2 2 (mod ).lt p l   

If    , E[l]  has two subgroups C1, C2 that are stable under p , we need to replace the 

division polynomial with degree 2( 1) 2l   by finding a  kernel polynomial with degree 

( 1) 2l  whose roots are the x-coordinate of the subgroup C1 or C2. The kernel polynomial is 

defined by  
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\{0}

( ) ( ( ))
L

l
P C

F x x x P
 

 
 

One can obtain the value of  λ by using the relation ( , ) ( , )p px y x y . 

We find λ such that 2
1 1gcd( ( ) , ( )) 1p

lx x F x        . It suffices to check the value 

1 ( 1) 2l   .  Then compute (mod ).l
p

t l        

To combine Elkies and Atkin prime, we apply the concept of Chinese Remainder Theorem, 

and then we obtain the t in the final step by using the elementary method (baby-steps giant-

steps which is not covered in this chapter, and one should refer to (Galin, 2007) for further 

details). Next, we summarize these two algorithms into making some comparison between 

them.   

6. Compare and contrast between Schoof’s algorithm and Schoof-Elkies-
Atkin (SEA) algorithm 

i. Similarities between Schoof’s algorithm and SEA algorithm 

 Polynomial time and deterministic point counting algorithms for elliptic curve with 

characteristic K ≠ 2, 3 

 Using Hasse’s theorem or specifically Hasse’s interval as a boundary to determine 

#E(Fp). 

 Using a specific type of polynomial which is essential for the computation steps. 

 Classified as l-adic point counting algorithms. 

 Begin by letting S = {2, 3, 5,…, L} be a set of primes not including char (Fp) such that 

4
l S

l p

  . 

 Both algorithms is to find the trace of the Frobenius endomorphism, t. 

 Making use of the Frobenius endomorphism, p and the characteristic equation is such 

that: 

2( )l l lT T t T p     = ( )( )T T   , so (mod )t l    and (mod )p l . 

ii. Differences between Schoof’s algorithm and SEA algorithm 

  Practicality  

i. Schoof’s algorithm: Most successful general point counting algorithm but not practical 

because the degree of division polynomial will grow exponentially when l becomes 

larger.  

ii. SEA algorithm: Most practical version of point counting algorithm. However the use of 

classical modular polynomial will lead to the increasing of number of coefficients when 

l becomes larger. This problem is overcome by using canonical modular polynomial, 

Müller modular polynomial and Atkin modular polynomial which have similar 

construction like classical modular polynomial.  

 Complexity 

i. Schoof’s algorithm: O (log 8 p) bit operations. 

www.intechopen.com



 
Cryptography and Security in Computing 

 

112 

ii. SEA algorithm: O (log 6 p) bit operations due to the replacement of division polynomial 
2( 1) / 2l   by its factor that is kernel polynomial with degree ( 1) / 2l  .  

 Classification of prime, p 
i. Schoof’s algorithm: No classification of prime. However,  two  cases are considered 

such that : 

2 2

( , ) ( , )p p
lx y p x y   or 

2 2

( , ) ( , )p p
lx y p x y    

ii. SEA algorithm: for p > 2, p is classified as Elkies primes or Atkin primes by using 

modular polynomial such that gcd( ( , ( )), ) 1p
l x j E x x   , then l is an Atkin prime, else l 

is an Elkies prime. 

 Polynomial involved 

i. Schoof’s algorithm: division polynomial, l  with degree 2( 1) / 2l  . To construct 

division polynomial, concept of torsion point is applicable. 
ii. SEA algorithm: modular polynomial with degree l +1 is used to differentiate Atkin and 

Elkies prime. The construction of modular polynomial works in complex field and also 
need to deal with j-function and q-expansion (Cox, 1989) but the result can be applied in 
finite field, Fp. 

 Method to combine the tl (mod l) 
i. Schoof’s algorithm: Recover the t from tl (mod l) from Chinese Remainder Theorem. 
ii. SEA algorithm:  

For Elkies primes: Recover the Et  from tl (mod l) from Chinese Remainder Theorem. For 

Atkin primes: Divide the primes into two  sets that each in equal numbers  by using Chinese 
Remainder Theorem. Finally this theorem is used again and then the exact t is found by 
using baby-steps giant steps. 

7. Some literature on Schoof and Schoof-Elkies-Atkin (SEA) point counting 
algorithms 

In this section, we will give some brief literature of these two algorithms. As we have 
mentioned earlier, René Schoof (Schoof, 1985) had proposed the Schoof’s algorithm in 1985. 
In (Cohen et al, 2006), Atkin and Elkies had further improved the Schoof’s algorithm in 1991. 

In Elkies procedure, Elkies had replaced the division polynomial with degree 2( 1) / 2l    by 

a kernel polynomial with degree ( 1) / 2l   whereas Atkin developed an algorithm to 

evaluate the order of p  in PGL2(Fl) and hence shown that the number of point can be 

counted on  ( )pE F  and this thus lead to the Schoof-Elkies-Atkin (SEA) algorithm which was 

practical.  

In (Menezes et al., 1993), elliptic curves which defined over field of characteristic 2 are 
attractive because the arithmetic easier for implementation. They have employed some 

heuristic to improve the running time and able to compute #E(
2mF ) for 155m  . For the 

Schoof’s part, they were able to compute t modulo l for l = 3, 5, 7, 11, 13, 17, 19, 23, 31, 64, 

128, 256, 512 and 1024. The computation on #E( 1552
F ) takes roughly 61 hours on a SUN-2 
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SPARC station. Then, it was also mentioned that the information obtained from Schoof’s 
algorithm and the heuristics can be combined with the information from Atkin’s method to 

compute #E(
2mF ) for large values of m. 

In (Couveignes & Morain, 1994), they had shown how to use the powers of good prime in 
an efficient way by computing the isogenies between curves over the ground field. They had 
investigated the properties of new structure which is known as isogeny cycle. 

In (Lercier & Morain, 1995), they mentioned that when l was an Elkies prime, the cost of 

computation turn out to be greater than that computation of Atkin prime and hence 

suggested that it is better to treat an Elkies prime as an Atkin prime and hence motivate 

their dynamic strategy. The implementation result shown that Schoof’s algorithm in 

characteristic 2 was faster than in large characteristic at least for small fields. The large 

prime case was faster due to the polynomial arithmetic was faster for 
2nF  since squaring 

was an easy operation in characteristic 2.  However, when n increased, the computing cost 

of the isogeny took much time than in large prime case.  

In (Lercier, 1997), mentioned the improvement made by Elkies and Atkin and worked in 

any finite field. The computation of isogeny is only worked in finite fields of large 

characteristic. However this problem was solved by Couveignes, by taking in the formal 

group and had implemented it. The computation of isogenies then turned out to be the 

major cost while counting the point. Lercier had proposed better algorithm for characteristic 

2 case which based on algebraic properties. The slight change in Schoof’s algorithm sped up 

the randomly search of elliptic curves with order nearly prime instead of specific curves 

such as supersingular curves or curves obtained from complex multiplication. 

In (Izu et al., 1998), they wanted to find elliptic curve which had prime order and believed that 

curve with this order was secure for cryptographic application. In calculating the order, they 

combined efficiently the Atkin and Elkies method, the isogeny cycles method and trial search 

by match-and-sort techniques and implemented them for elliptic curve over prime field, Fp in a 

reasonable time where p is a prime number whose size around 240-bits. As a result, it had 

increased the speed of the process almost 20%. They managed to find elliptic curves with 

prime order in a reasonable time for characteristic p of base field is around 240- bits. 

In SEA algorithm, the classical modular polynomials with degree l +1 will increase the size of 

coefficient as l increases, as well as their degree in y also is very high. Therefore canonical 

modular polynomials achieve small coefficient and lower degree in y. Details can be obtained 

in (Cohen et al., 2006). Besides, according to the work from (Blake et al., n.d.), their approach 

shown that classical modular polynomial can be replaced by Müller modular polynomial or 

Atkin modular polynomial. This experiment had been done for l =197. The result shows that 

Müller modular polynomial has less number of coefficients compared to the classical one. 

However the Atkin modular polynomial has the least number of coefficients compared with 

the classical modular polynomial and Müller modular polynomial. 

8. Conclusion 

This chapter gives some backgrounds on elliptic curve cryptography. The mathematical 
preliminaries on elliptic curve, basic definitions, group operations on an elliptic curve, the 
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addition law as well as the doubling operations are part of the discussion topics in this 
chapter. This chapter also includes the arithmetic of elliptic curves defined over the real 
numbers as well as on a finite field and some examples are shown to enhance 
understanding. Several schemes such as elliptic curve Diffie-Hellman key exchange 
scheme, elliptic curve ElGamal cryptosystem and elliptic curve digital signature scheme 
are discussed along with some examples. Concept of point counting algorithms is also 
treated quite rigorously in terms of the mathematical aspects, and the discussion is 
restricted to two types of algorithms, the Schoof and the Schoof-Elkies-Atkin (SEA) point 
counting algorithms. Building on the discussion of the point counting algorithms, several 
comparisons are derived along with some literatures on the development of these two 
point counting algorithms especially on the Schoof-Elkies-Atkin (SEA) algorithm. This 
chapter has shown the procedures in the Schoof and the Schoof-Elkies-Atkin (SEA) 
algorithms. Extensive mathematical concepts explaining these two algorithms are 
displayed in this chapter. The Schoof point counting algorithm is regarded as an initiative 
effort towards producing efficient point counting algorithm, where several modification 
has emerges from the idea of this algorithm, and the immediate improvement were 
produced by Elkies and Atkin. The most recent known modification build on Schoof 
algorithm is the one from Pierrick Gaudry, David Kohel, Benjamin Smith (Schoof-Pila 
algorithm), presented in the Elliptic Curve Cryptography workshop, held in Nancy, 
France, in September 2011.   

 The arithmetic on elliptic curve plays a very important role in cryptography and this 
chapter has highlighted some mathematical aspects needed in the development of elliptic 
curve cryptography. Many studies have been devoted to finding fast algorithms on 
performing group operations on elliptic curves as well as algorithms to compute number of 
points on elliptic curves. So far elliptic curve cryptography seems to out perform other 
cryptographic schemes. Interest groups working on elliptic curve cryptography are seen to 
have more ideas to explore as most directions are on the higher genus curves or 
hyperelliptic curves instead of the ordinary curves that are being treated in this chapter. 
Genus 2 curve for instance, is a hyperelliptic curve, which possesses different properties 
from the ordinary elliptic curve. Points on hyperelliptic curves do not forms a group, 
instead the corresponding jacobian takes the role. Some properties in the ordinary curves 
could be extended to those higher genus curves. In the future, we might probably have a 
situation where hyperelliptic curve cryptography comes into play.  
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