
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1. Introduction

A wide variety of problems found in computer science deals with combinatorial objects.
Combinatorics is the branch of mathematics that deals with finite countable objects called
combinatorial structures. These structures find many applications in different areas such as
hardware and software testing, cryptography, pattern recognition, computer vision, among
others.

Of particular interest in this chapter are the combinatorial objects called Orthogonal Arrays
(OAs). These objects have been studied given of their wide range of applications in the
industry, Gopalakrishnan & Stinson (2008) present their applications in computer science;
among them are in the generation of error correcting codes presented by (Hedayat et al., 1999;
Stinson, 2004), or in the design of experiments for software testing as shown by Taguchi (1994).

To motivate the study of the OAs, it is pointed out their importance in the development
of algorithms for the cryptography area. There, OAs have been used for the generation
of authentication codes, error correcting codes, and in the construction of universal hash
functions (Gopalakrishnan & Stinson, 2008).

This chapter proposes an efficient implementation for the Bush’s construction (Bush, 1952)
of OAs of index unity, based on the use of logarithm tables for Galois Fields. This is an
application of the algorithm of Torres-Jimenez et al. (2011). The motivation of this research
work born from the applications of OAs in cryptography as shown by Hedayat et al. (1999).
Also, it is discussed an alternative use of the logarithm table algorithm for the construction of
cyclotomic matrices to construct CAs (Colbourn, 2010).

The remaining of the chapter is organized as follows. Section 2 presents a formal definition
of OAs and the basic notation to be used through this chapter. Section 3 shows the relevance
of OAs for cryptography by showing three of their applications, one in the authentication
without secrecy, other in the generation of universal hash functions, and a last one in the
construction of difference schemes. Section 4 shows the construction methods, reported in

Construction of Orthogonal Arrays of Index
Unity Using Logarithm Tables for Galois Fields

Jose Torres-Jimenez1, Himer Avila-George2,
Nelson Rangel-Valdez3 and Loreto Gonzalez-Hernandez1

1CINVESTAV-Tamaulipas, Information Technology Laboratory
2Instituto de Instrumentación para Imagen Molecular (I3M). Centro mixto CSIC -

Universitat Politécnica de Valéncia - CIEMAT, Valencia
3Universidad Politécnica de Victoria

1,3México
2Spain

4

www.intechopen.com

2 Will-be-set-by-IN-TECH

the literature, for the construction of OAs. Section 5 presents the algorithm described in
Torres-Jimenez et al. (2011) for the construction of the logarithm table of a Galois Field,
this algorithm served as basis for a more efficient construction of OAs using the Bush’s
construction. Section 6 contains the efficient implementation, proposed in this chapter, for
the Bush’s construction of OAs, based on discrete logarithms. Section 7 presents an extension
of the use of the algorithm presented by Torres-Jimenez et al. (2011), in the construction
of cyclotomic matrices for CAs. Section 8 shows as results from the proposed approach, a
set of bounds obtained for CAs using the constructions of cyclotomic matrices aided by the
algorithm described in this chapter. Finally, Section 9 presents the main conclusions derived
from the research proposed in this chapter.

2. Orthogonal arrays

The Orthogonal Arrays (OAs) were introduced by Rao (1946; 1947) under the name of
hypercubes and for use in factorial designs. Figure 1 shows an example of an Orthogonal
Array OA3(12; 2, 11, 2). The definition of an OA involves that any pair of columns of this

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1
1 0 1 0 0 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 1 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 1. Example of an OA3(12; 2, 11, 2). The interaction, or strength, is 2; also, it has 11
parameters and 12 runs (or test cases) and the combinations {(0, 0), (0, 1), (1, 0), (1, 1)} in
each pair of columns extracted from it.

matrix should contain the symbol combinations shown in Figure 2.
⎛

⎜

⎜

⎝

0 0
0 1
1 0
1 1

⎞

⎟

⎟

⎠

Fig. 2. Symbol combinations expected in any pair of columns in an OA of strength 2 and
alphabet 2.

Formally, an orthogonal array (OA), denoted by OAλ(N; t, k, v), can be defined as follows:

Definition 1. An OA, denoted by OA(N; t, k, v), is an N × k array on v symbols such that every
N × t sub-array contains all the ordered subsets of size t from v symbols exactly λ times. Orthogonal
arrays have the property that λ = N

vt . When λ = 1 it can be omitted from the notation and the OA is
optimal.

72 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 3

Figure 3 shows another example of an OA(9; 2, 4, 3); note that this time the alphabet is v =
3 and the combination of symbols {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
appears only once in each pair of columns of the OA.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0
1 1 1 0
2 2 2 0
0 1 2 1
1 2 0 1
2 0 1 1
0 2 1 2
1 0 2 2
2 1 0 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 3. Example of an OA(9; 2, 4, 3).

The OAs have some interesting properties, among them are the following ones:

1. The parameters of the OA satisfy λ = N/vt;

2. An OA of strength t is also an OA of strength t′, where 1 ≤ t′ ≤ t. The index λ′ of an OA

of strength t′ is λ′ = λ · vt−t′ ;

3. Let Ai = {0, 1, ..., r} be a set of OA(Ni; ti, k, v), the juxtaposed array A =

⎡

⎣

A0

...
Ar

⎤

⎦ is an

OA(N; t, k, v) where N = N1 + N2 + ... + Nr and t ≥ min{t0, t1, ..., tr};

4. Any permutation of rows or columns in an OA, results in another OA with the same
parameters;

5. Any subarray of size N × k′ of an OA(N; t, k, v), is an OA(N; t′, k′, v) of strength t′ =
min{k′, t};

6. Select the rows of an OA(N; t, k, v) that starts with the symbol 0, and eliminate the first
column; the resulting matrix is an OA(N/v; t − 1, k − 1, v).

The following section presents some applications of OAs in the area of cryptography. These
applications are related with the construction of difference schemes, universal hash functions,
and in the authentication without secrecy.

3. Relevance of orthogonal arrays in cryptography

The purpose of this section is to present three applications that motivate the study of OAs
in the area of cryptography. These applications have been described in (Gopalakrishnan &
Stinson, 2008; Stinson, 1992a).

3.1 Authentication without secrecy

The use of authentication codes dates back to 1974, the time when they were invented
by Gilbert et al. (1974). Most of the time, the transmission of information between two parts
that are interested on keeping the integration of their information, is done through the use of
secrecy, i.e. the practice of hiding information from certain group of individuals. However,
sometimes it is important to transmit the information in areas that are insecure and where it is

73Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

4 Will-be-set-by-IN-TECH

not necessary the secrecy. This part corresponds to the area of Authentication Without Secrecy
(or AWS). An authentication code without secrecy is a code where an observed message can
correspond to a unique source state.

Jones & Seberry (1986) described a situation in which two countries want to set transmission
devices to monitor the activities of the other, such that possible compliance can be avoided.

The general model to define the use of the AWS can be described with three participants:
a transmitter, a receiver, and an opponent. Let’s call these participants Alice, Bob and
Gabriel, respectively. Suppose that Alice wants to transmit a message to Bob in a public
communication channel; however, they expect that the message must be transmitted
integrally, i.e. without any changes in its composition. To do so, Alice encrypted the message
and sent it through the channel. An encoding rule (based on a key scheme) ciphers the
message; each encoding rule will be a one-to-one function from the source space to the
message space. The key used to cipher the message has been sent to Bob (the receiver) through
a secure channel, before the message has been encoded. Now, the third party member, Gabriel,
has malicious intention of deforming the message. What is the chance of Gabriel to access the
message of Alice and Bob and modify it conveniently to affect the final result?

Let’s consider the following protocol of communication between Alice and Bob: a) Firstly,
Alice and Bob choose the encoding code previously; b) Alice encode the message with a
previously chosen key K; c) the message m = (s, a) is sent over the communication channel;
d) when Bob receives the message he verifies that a = eK(s) so that he ensures that it comes
from Alice.

Let S be a set of k source states; let M be a set of v messages; and let E be a set of b encoding
rules. Since each encoding rule is a one-to-one function from S to M, the code can be
represented by a b × k matrix, where the rows are indexed by encoding rules, the columns
are indexed by source states, and the entry in row e and column s is e(s). This matrix is called
the encoding matrix. For any encoding rule e ∈ E , define M(e) = {e(s) : s ∈ S}, i.e. the set
of valid messages under encoding rule e. For an encoding rule e, and a message m ∈ M(e),
define e−1(m) = s if e(s) = m.

The types of damage that Gabriel can do to the message of Alice and Bob are impersonation,
i.e. sending a message to one of them without the message even existed; and substitution, i.e.
changing a message sent.

The application of OAs in authentication without secrecy is described by the following theorem:

Theorem 1. Suppose that there is an authentication code without secrecy for k source states and
having l authenticators, in which Pd0

= Pd1
= 1/l. Then

1. |E | ≥ l2, and equality occurs if and only if the authentication matrix is an OA(2, k, l) (with λ = 1)
and the authentication rules are used with equal probability;

2. |E | ≥ k(l − 1) + 1, and equality occurs if and only if the authentication matrix is an OAλ(2, k, l)
where

λ =
k(l − 1) + 1

l2
, (1)

and the authentication rules are used with equal probability.

This theorem has been proven by Stinson (1992a). It also show that this is the minimum
probability expected for this case.

74 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 5

3.2 Universal hash function

Assume it is wanted to map keys from some universe U into m bins (labeled). The algorithm
will have to handle some data set of |S| = n keys, which is not known in advance. Usually, the
goal of hashing is to obtain a low number of collisions (keys from S that land in the same bin).
A deterministic hash function cannot offer any guarantee in an adversarial setting if the size
of U is greater than m2, since the adversary may choose S to be precisely the preimage of a
bin. This means that all data keys land in the same bin, making hashing useless. Furthermore,
a deterministic hash function does not allow for rehashing: sometimes the input data turns
out to be bad for the hash function (e.g. there are too many collisions), so one would like to
change the hash function.

The solution to these problems is to pick a function randomly from a family of hash functions.
A universal hash function is a family of functions indexed by a parameter called the key with
the following property: for all distinct inputs, the probability over all keys that they collide is
small.

A family of functions H = {h : U → [m]} is called a universal family if Equation 2 holds.

∀x, y ∈ U, x �= y : Pr[h(x) = h(y)] ≤
1

m
(2)

Any two keys of the universe collide with probability at most 1
m when the hash function h

is drawn randomly from H. This is exactly the probability of collision we would expect if
the hash function assigned truly random hash codes to every key. Sometimes, the definition
is relaxed to allow collision probability O(1/m). This concept was introduced by (Carter &
Wegman, 1979; Wegman & Carter, 1981), and has found numerous applications in computer
science.

A finite set H of hash functions is strongly − universal2 (or SU2) if Equation 3 holds.

{h ∈ H : h(x1) = y1, h(x2) = y2}| = |H|/|B|2, ∀x1, x2 ∈ A(x1 �= x2), y1, y2 ∈ B (3)

For practical applications, it is also important that |H| is small. This is because log2|H| bits
are needed to specify a hash function from the family. It is fairly straightforward to show that
strongly universal hash functions are equivalent to orthogonal arrays. The following theorem
can be found in (Stinson, 1994).

Theorem 2. If there exists an OAλ(2, k, n), then there exists an SU2 class H of hash functions from
A to B, where |A| = k, |B| = n and |H| = λn2 . Conversely, if there exists an SU2 class H of
hash functions from A to B, where a = |A| and b = |B|, then there exists an OAλ(2, k, n), where
n = b,k = a and λ = |H|/n2.

This theorem helps in establishing lower bounds on the number of hash functions and in
constructing classes of hash functions which meet these bounds. It is straightforward to
extend the definition and the theorem to SUt class of universal hash functions.

3.3 Thresholds schemes

In a bank, there is a vault which must be opened every day. The bank employs three senior
tellers; but it is not desirable to entrust the combination to any one person. Hence, we want

75Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

6 Will-be-set-by-IN-TECH

to design a system whereby any two of the three senior tellers can gain access to the vault but
no individual can do so. This problem can be solved by means of a threshold scheme.

Threshold schemes are actually a special case of secret sharing schemes. Stinson (1992b)
presents a survey in this topic. Informally a (t, w)-threshold scheme is a method of sharing a
secret key K among a finite set P of w participants, in such a way that any t participants can
compute the value of K, but no group of t − 1 (or fewer) participants can do so. The value
of K is chosen by a special participant called the dealer. The dealer is denoted by D and we
assume D /∈ P . When D wants to share the key K among the participants in P , he gives each
participant some partial information called a share. The shares should be distributed secretly,
so no participant knows the share given to another participant.

At a later time, a subset of participants B ⊆ P will pool their shares in an attempt to compute
the secret key K. If |B| ≥ t, then they should be able to compute the value of K as a function
of the shares they collectively hold; if |B| < t, then they should not be able to compute K. In
the example described above, we desire a (2, 3)-threshold scheme.

Often, we desire not only that an unauthorized subset of participants should be unable to
compute the value of K by pooling their shares, but also they should be unable to determine
anything about the value of K. Such a threshold scheme is called a perfect threshold scheme.
Here, we will be concerned only about perfect threshold schemes.

We will use the following notation. Let P = {Pi : 1 ≤ i ≤ w} be the set of participants. K is
the key set (i.e., the set of all possible keys); and S is the share threshold schemes.

Orthogonal arrays come into picture once again by means of the following theorem due
to Dawson & Mahmoodian (1993).

Theorem 3. An ideal (t, w) threshold scheme with |K| = v exists if and only if an OA(t, w + 1, v)
exists.

The construction of the threshold scheme starting from the orthogonal array proceeds as
follows. The first column of the OA corresponds to the dealer and the remaining w columns
correspond to the w participants. To distribute a specific key K, the dealer selects a random
row of the OA such that K appears in the first column and gives out the remaining w elements
of the row as the shares. When t participants later pool their shares, the collective information
will determine a unique row of the OA (as λ = 1) and hence they can compute K as the value
of the first element in the row.

Can a group of t − 1 participants compute K? Any possible value of the secret along with the
actual shares of these t − 1 participants determine a unique row of the OA. Hence, no value
of the secret can be ruled out. Moreover, it is clear that the t − 1 participants can obtain no
information about the secret.

4. Algorithms to construct OAs

This section presents some of the state-of-art algorithms for the construction of OAs. Special
reference is done to the Bush’s construction, which is benefited from the approach presented
in this chapter because the efficient way of constructing the OAs using logarithm tables.

76 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 7

4.1 Rao-Hamming construction

The Rao-Hamming construction derived from the geniality of two scientists who
independently elaborate procedures for the construction of OAs Hedayat et al. (1999). The
following theorem describes the purpose of this construction.

Theorem 4. If there is a prime power then an OA(sn, (sn − 1)/(s − 1), 2) exists whenever n ≥ 2.

A simple way to obtain an orthogonal array with these parameters is the following. This
construction always produces linear arrays. Form an sn × n array whose rows are all possible
n-tuples from GF(s). Let C1, ..., Cn denote the columns of this array. The columns of the full
orthogonal array then consist of all columns of the form shown in Equation 4.

z1C1 + ... + znCn = [C1, ..., Cn]z (4)

where z = (z1, ..., zn)T is an n-tuple from GF(s), not all the zi are zero, and the first nonzero zi

is 1. There are (sn − 1)/(s − 1) such columns, as required.

An alternative way to construct an OA using the Rao-Hamming Construction is by forming
an n× (sn − 1)/(s− 1) matrix whose columns are all nonzero n-tuples (z1, ..., zn)T from GF(s)
in which the first nonzero zi is 1. The OA is then formed by taking all the linear combinations
of the rows of this generator matrix.

An example of the construction of an OA, taken from Hedayat et al. (1999), is shown in
Figure 4.

(a)
⎛

⎝

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞

⎠

(b)
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 1 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 4. Example of the construction of an OA(8; 2, 7, 2) using the Rao-Hamming construction.
Figure 4(a) contains the generator matrix. Figure 4(b) shows the OA constructed from it.

4.2 Difference scheme algorithm

Difference schemes (DS), denoted by D(r, c, s) are tables of r rows and c columns with
s symbols such that the difference between each pair of columns yields all the symbols
{0, 1, 2, ..., s − 1}.

If you have a difference scheme, you easily generate an orthogonal array by simply replicating
the difference scheme s times and adding to each replication all symbols in turn modulo (s):
if the sum exceeds s, you divide by s and keep the remainder.

So the problem becomes finding difference schemes. For instance, the multiplicative group of
a Galois field is a difference scheme.

77Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

8 Will-be-set-by-IN-TECH

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 5. Example of a difference scheme D(6, 6, 3).

An example is shown in Figure 5, as the multiplication table of GF(22).

Given that the DS D(r, c, s) is an array of size r × c based on the s elements of a group G so that
for any two columns the element-wise differences contain every element of G equally often;
clearly r = λs for some λ called the index.

If D = D(r, c, s), then

⎡

⎢

⎢

⎣

D + 0
D + 1

...
D + (s − 1)

⎤

⎥

⎥

⎦

is an OA(rs; 2, c, s). Figure 6 shows the construction of

the OA(16; 2, 4, 4) from a D(4, 4, 4).

(a)
⎛

⎜

⎜

⎝

0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

⎞

⎟

⎟

⎠

(b)
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2
1 1 1 1
1 2 3 0
1 3 0 2
1 0 2 3
2 2 2 2
2 3 0 1
2 0 1 3
2 1 3 0
3 3 3 3
3 0 1 2
3 1 2 0
3 2 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 6. Generated orthogonal array OA(16; 2, 4, 4) using the D(4, 4, 4). Figure 6(a) presents
the different scheme D = (4, 4, 4). Figure 6(b) the OA constructed.

4.3 Hadamard matrix algorithms

Hadamard matrix is a DS with only two symbols: {−1,+1}. The interest in Hadamard
matrices lies in the Hadamard conjecture which states that all multiples of 4 have a
corresponding Hadamard matrix. Hadamard matrices are square matrices with a fixed
column of just 1’s. The smallest one is shown in Figure 7(a).

78 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 9

(a)

H2 =

⎛

⎝

1 1

1 −1

⎞

⎠

(b)

H4 =

⎛

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟

⎟

⎠

Fig. 7. Example of two Hadamard matrices H2, H4 of orders 2 and 4, respectively.

The Hadamard matrix H4, that is shown in Figure 7(b), does not differ from the Rao-Hamming
OA(4; 2, 3, 2) .

Figure 8 shows another example of a Hadamard matrix. This time it is shown its
corresponding OA resulting after the removal of the first column and a symbol recoding.

(a)
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(b)
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 8. Figure 8(a) shows a Hadamard matrix of order 8; Figure 8(b) presents its equivalent
OA2(2, 7, 2).

Not all Hadamard matrices can be generated by the Rao Hamming algorithm just by the
addition of a column of 1’s. Rao Hamming works if the number of levels is a power of a prime
number. And this happens in a Hadamard matrix, where the number of levels is 2 (prime
number). But not all Rao Hamming arrays are square after the addition of a single column of
1’s. Moreover, the number of rows in a Rao Hamming OA is a power of the number of levels.

Remember the general form OA(sn; 2, (sn− 1)/(s− 1), s), Hadamard matrices are square and
the number of rows in the array need only to be a multiple of 4. For instance, 12 is a multiple
of 4, it is not a prime power being the product 3. No Rao Hamming construction would yield
a H12 matrix.

4.4 The Bush’s construction

The Bush’s construction is used to construct OA(vt; t, v+ 1, v), where v = pn is a prime power.
This construction considers all the elements of the Galois Field GF(v), and all the polynomials
yj(x) = at−1xt−1 + at−2xt−2 + . . . + a1x + a0, where ai ∈ GF(v). The number of polynomials

yj(x) are vt, due to the fact that there are v different coefficients per each of the t terms.

Let’s denote each element of GF(v) as ei, for 0 ≤ i ≤ v − 1. The construction of an OA
following the Bush’s construction is done as follow:

1. Generate a matrix M formed by vt rows and v + 1 columns;

2. Label the first v columns of M with an element ei ∈ GF(v);

79Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

10 Will-be-set-by-IN-TECH

3. Label each row of M with a polynomial yj(x);

4. For each cell mj,i ∈ M, 0 ≤ j ≤ vt − 1, 0 ≤ i ≤ v − 1, assign the value u whenever
yj(ei) = eu (i.e. evaluates the polynomial yj(x) with x = ei and determines the result in
the domain of GF(v)); and

5. Assign value u in cell mj,i, for 0 ≤ j ≤ vt − 1, i = v, if eu is the leading coefficient of yj(x),

i.e. eu = at−1 in the term at−1xt−1 of the polynomial yj(x).

The constructed matrix M following the previous steps is an OA. We point out in this moment
that the construction requires the evaluation of the polynomials yj(x) to construct the OA. The
following subsection describes the general idea of the algorithm that does this construction
with an efficient evaluation of these polynomials.

This section presented a survey of some construction reported in the scientific literature that
are used to generate OAs. The following section will present an algorithm for the generation
of logarithm tables of finite fields.

5. Algorithm for the construction of logarithm tables of Galois fields

In Barker (1986) a more efficient method to multiply two polynomials in GF(pn) is presented.
The method is based on the definition of logarithms and antilogarithms in GF(pn). According
with Niederreiter (1990), given a primitive element ρ of a finite field GF(pn), the discrete
logarithm of a nonzero element u ∈ GF(pn) is that integer k, 1 ≤ k ≤ pn − 1, for which
u = ρk. The antilogarithm for an integer k given a primitive element ρ in GF(pn) is the element
u ∈ GF(pn) such that u = ρk. Table 1 shows the table of logarithms and antilogarithms for the
elements u ∈ GF(32) using the primitive element x2 = 2x + 1; column 1 shows the elements
in GF(32) (the antilogarithm) and column 2 the logarithm.

Using the definition of logarithms and antilogarithms in GF(pn), the multiplication between
two polynomials P1(x)P2(x) ∈ GF(pn) can be done using their logarithms l1 =
log(P1(x)), l2 = log(P2(x)). First, the addition of logarithms l1 + l2 is done and then the
antilogarithm of the result is computed.

Element u ∈ GF(pn) log2x+1(u)

1 0
x 1

2x + 1 2
2x + 2 3

2 4
2x 5

x + 2 6
x + 1 7

Table 1. Logarithm table of GF(32) using the primitive element 2x + 1.

Torres-Jimenez et al. (2011) proposed an algorithm for the construction of logarithm tables
for Galois Fields GF(pn). The pseudocode is shown in Algorithm 5.1. The algorithm
simultaneously finds a primitive element and constructs the logarithm table for a given
GF(pn).

80 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 11

Algorithm 5.1: BUILDLOGARITHMTABLE(p, n)

for each ρ ∈ GF(pn)− 0

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L ← ∅

P(x) ← 1
k ← 0
while (P(x), k) �∈ L and k < pn − 1

do

⎧

⎨

⎩

L ← L
⋃

(P(x), k)
k ← k + 1
P(x) ← p ∗ P(x)

if k = pn − 1
then

{

return (ρ)
return (L)

Now, it follows the presentation of the core of this chapter, the efficient implementation of the
Bush construction for OAs, based on a modification of the algorithm presented in this section.

6. Efficient construction of OAs

The idea that leads to an efficient construction of OAs through the Bush’s construction relies
on the algorithm proposed in (Torres-Jimenez et al., 2011). This algorithm computes the
logarithm tables and the primitive element of a given Galois Field GF(v). In this chapter,
it is proposed an extension of this algorithm such that it can be used in combination with the
Bush’s construction to efficiently construct OAs of index unity. The result is an algorithm that
uses only additions and modulus operations to evaluate the polynomials yj(x).

Let’s show an example of this contribution. Suppose that it is wanted to construct the
OA(43; 3, 5, 4). This array has an alphabet v = pn = 22 = 4 and size 64 × 5. To construct
it, it is required the polynomial x + 1 as the primitive element of GF(22), and the logarithm
table shown in Table 2(a) (both computed using the algorithm in (Torres-Jimenez et al.,
2011)). Table 2(b) is a modified version of the logarithm table that contains all the elements
ei ∈ GF(22) (this includes e0, the only one which can not be generated by powers of the
primitive element).

(a)

Power Polynomial in GF(22)

0 1
1 x
2 x + 1

(b)

Element ei ∈ GF(22) Polynomial in GF(22)

e0 0
e1 1
e2 x
e3 x + 1

Table 2. Logarithm table for GF(22), with primitive element x + 1.

The following step in the construction of the OA is the construction of the matrix M. For this
purpose, firstly it is labeled its first v columns with the elements ei ∈ GF(22); after that, the
rows are labeled with all the polynomials of maximum degree 2 and coefficients ej ∈ GF(22).

Next, it is defined the integer value u for each cell mj,i ∈ M, where 0 ≤ j ≤ vt − 1 and

81Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

12 Will-be-set-by-IN-TECH

0 ≤ i ≤ v − 1, as the one satisfying yj(ei) = eu. Finally, it is generated the values of cell mj,i,
where the column i = v, using the value of the leading coefficient of the polynomial yj(x), for

each 0 ≤ j ≤ vt − 1. Table 3 shows part of the construction of the OA(43; 3, 5, 4) through this
method.

M Elements of GF(22)

e0 e1 e2 e3

yj(x) Polynomial 0 1 x x + 1

0 e0 {u|y0(e0) = eu} {u|y0(e1) = eu} {u|y0(e2) = eu} {u|y0(e3) = eu} e0

1 e1 {u|y1(e0) = eu} {u|y1(e1) = eu} {u|y1(e2) = eu} {u|y1(e3) = eu} e0

2 e2 {u|y2(e0) = eu} {u|y2(e1) = eu} {u|y2(e2) = eu} {u|y2(e3) = eu} e0

3 e3 {u|y3(e0) = eu} {u|y3(e1) = eu} {u|y3(e2) = eu} {u|y3(e3) = eu} e0

4 e1x {u|y4(e0) = eu} {u|y4(e1) = eu} {u|y4(e2) = eu} {u|y4(e3) = eu} e0

5 e1x + e1 {u|y5(e0) = eu} {u|y5(e1) = eu} {u|y5(e2) = eu} {u|y5(e3) = eu} e0

6 e1x + e2 {u|y6(e0) = eu} {u|y6(e1) = eu} {u|y6(e2) = eu} {u|y6(e3) = eu} e0

7 e1x + e3 {u|y7(e0) = eu} {u|y7(e1) = eu} {u|y7(e2) = eu} {u|y7(e3) = eu} e0

8 e2x {u|y8(e0) = eu} {u|y8(e1) = eu} {u|y8(e2) = eu} {u|y8(e3) = eu} e0

9 e2x + e1 {u|y9(e0) = eu} {u|y9(e1) = eu} {u|y9(e2) = eu} {u|y9(e3) = eu} e0

10 e2x + e2 {u|y10(e0) = eu} {u|y10(e1) = eu} {u|y10(e2) = eu} {u|y10(e3) = eu} e0

11 e2x + e3 {u|y11(e0) = eu} {u|y11(e1) = eu} {u|y11(e2) = eu} {u|y11(e3) = eu} e0

12 e3x {u|y12(e0) = eu} {u|y12(e1) = eu} {u|y12(e2) = eu} {u|y12(e3) = eu} e0

13 e3x + e1 {u|y13(e0) = eu} {u|y13(e1) = eu} {u|y13(e2) = eu} {u|y13(e3) = eu} e0

14 e3x + e2 {u|y14(e0) = eu} {u|y14(e1) = eu} {u|y14(e2) = eu} {u|y14(e3) = eu} e0

15 e3x + e3 {u|y15(e0) = eu} {u|y15(e1) = eu} {u|y15(e2) = eu} {u|y15(e3) = eu} e0

16 e1x2 {u|y16(e0) = eu} {u|y16(e1) = eu} {u|y16(e2) = eu} {u|y16(e3) = eu} e1

17 e1x2 + e1 {u|y17(e0) = eu} {u|y17(e1) = eu} {u|y17(e2) = eu} {u|y17(e3) = eu} e1

18 e1x2 + e2 {u|y18(e0) = eu} {u|y18(e1) = eu} {u|y18(e2) = eu} {u|y18(e3) = eu} e1

19 e1x2 + e3 {u|y19(e0) = eu} {u|y19(e1) = eu} {u|y19(e2) = eu} {u|y19(e3) = eu} e1

20 e1x2 + e1x {u|y20(e0) = eu} {u|y20(e1) = eu} {u|y20(e2) = eu} {u|y20(e3) = eu} e1

21 e1x2 + e1x + e1 {u|y21(e0) = eu} {u|y21(e1) = eu} {u|y21(e2) = eu} {u|y21(e3) = eu} e1

22 e1x2 + e1x + e2 {u|y22(e0) = eu} {u|y22(e1) = eu} {u|y22(e2) = eu} {u|y22(e3) = eu} e1

23 e1x2 + e1x + e3 {u|y23(e0) = eu} {u|y23(e1) = eu} {u|y23(e2) = eu} {u|y23(e3) = eu} e1

24 e1x2 + e2x {u|y24(e0) = eu} {u|y24(e1) = eu} {u|y24(e2) = eu} {u|y24(e3) = eu} e1

25 e1x2 + e2x + e1 {u|y25(e0) = eu} {u|y25(e1) = eu} {u|y25(e2) = eu} {u|y25(e3) = eu} e1

26 e1x2 + e2x + e2 {u|y26(e0) = eu} {u|y26(e1) = eu} {u|y26(e2) = eu} {u|y26(e3) = eu} e1

27 e1x2 + e2x + e3 {u|y27(e0) = eu} {u|y27(e1) = eu} {u|y27(e2) = eu} {u|y27(e3) = eu} e1

28 e1x2 + e3x {u|y28(e0) = eu} {u|y28(e1) = eu} {u|y28(e2) = eu} {u|y28(e3) = eu} e1

29 e1x2 + e3x + e1 {u|y29(e0) = eu} {u|y29(e1) = eu} {u|y29(e2) = eu} {u|y29(e3) = eu} e1

30 e1x2 + e3x + e2 {u|y30(e0) = eu} {u|y30(e1) = eu} {u|y30(e2) = eu} {u|y30(e3) = eu} e1

31 e1x2 + e3x + e3 {u|y31(e0) = eu} {u|y31(e1) = eu} {u|y31(e2) = eu} {u|y31(e3) = eu} e1

...
...

...
...

...

Table 3. Example of a partial construction of the OA(43; 3, 4, 5), using the Bush’s construction.

82 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 13

During the definition of values eu, the polynomials yj(ei) must be evaluated. For example,
the evaluation of the polynomial y14 = e3x + e1 at value x = e2 yields y14(e2) = e3x + e1 =
e3 · e2 + e1 = e0. To obtain the result e0 it is necessary to multiply the polynomials e3 and e2,
and to add the result to e1. Here is where lies the main contribution shown in this chapter, it is
proposed to use the primitive element and the logarithm table constructed by the algorithm
in (Torres-Jimenez et al., 2011) to do the multiplication through additions. To do that they
are used equivalent powers of the primitive element of the elements ei ∈ GF(22) involved in
the operation, e.g. instead of multiplying (x + 1) · (x) we multiply x2 · x1. Then, the sum of
indices does the multiplication, and the antilogarithm obtains the correct result in GF(22). For
the case of x2 · x1 the result is x3 = x0 = e1. Finally, we add this result to e1 to complete the
operation (this yield the expected value e0). Note that whenever and operation yields a result
outside of the field, a modulus operations is required.

The pseudocode for the construction of OAs using the Bush’s construction and the logarithm
tables is shown in Algorithm 6.1. The logarithm and antilogarithm table Li,j is obtained
through the algorithm reported by Torres-Jimenez et al. (2011). After that, each element ei

and each polynomial yj(x) in GF(pn) are considered as the columns and rows of M, the
OA that is being constructed. Given that the value of each cell mi,j ∈ M is the index u of
the element eu ∈ GF(pn) such that yj(ei) = eu, the following step in the pseudocode is the
evaluation of the polynomial yj(x). This evaluation is done by determining the coefficient
of each term ak ∈ yj(x) and its index, i.e. the value of the element el ∈ GF(pn) that is the
coefficient of ak, and then adding it to i · d (the index of ei raised to the degree of the term ak).
A modulus operation is applied to the result to obtained v, and then the antilogarithm is used
over v such that the index it is able to get the value u of the element eu. Remember that the
algorithm BuildLogarithmTable simultaneously find the primitive element and computes
the logarithm and antilogarithm tables.

Algorithm 6.1: BUILDORTHOGONALARRAY(p, n)

L ← BuildLogarithmTable(p, n)
M ← ∅

for each element ei ∈ GF(pn)

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

c ← i
for each polynomial yj(x) ∈ GF(pn)

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r ← j
for each term ak ∈ yj(x)

do

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d ← GetDegree(ak)
l ← GetIndexCoefficient(ak)
v ← (i · d + l)mod(pn − 1)
s ← Lv,1

mr,c ← s
return (M)

Note that in the pseudocode the more complex operation is the module between integers,
which can be reduced to shifts when GF(pn) involves powers of two. This fact makes the
algorithm easy and efficient for the construction of OAs, requiring only additions to operate,
and modulus operations when the field is over powers of primes different of two. After the

83Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

14 Will-be-set-by-IN-TECH

construction of the OA, the number of operations required by the algorithm are bounded by
O(N · t2), due to it requires t operations for the construction of an OA matrix of size N × (t +
1).

7. Efficient constructions of CAs

This section analyzes the case when Covering Arrays can be constructed from cyclotomy
by rotating a vector created from an OA(Colbourn, 2010). It is another process that can be
benefited from the previously constructed logarithm tables. The cyclotomy process requires
the test of different cyclotomic vectors for the construction of CAs. This vectors can be
constructed using the logarithm table. The rest of the section details a bit more about CAs
and this process of construction.

Definition 2 (Covering Array). Let N, t, k, v be positive integers with t ≤ N. A covering array
CA(N; t, k, v), with strength t and alphabet size v is an N × k array with entries from {0, 1, ..., k − 1}
and the property that any N × t sub-array has all vt possible t-tuples occurring at least once.

Figure 9 shows the corresponding CA(9; 2, 4, 3). The strength of this CA is t = 2 and the
alphabet is v = 3, hence the combinations {0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}, {2, 0},
{2, 1}, {2, 2} appear at least once in each subset of size N × 2 of the CA. The CAs are
commonly used instead of full experimental designs (FED) when constructing test sets, it is
so because the relaxation produced by the use of a small interaction in a CA t = 2 (pair-wise)
significantly reduce the number of test cases in a test set, implying in some cases savings of
more than 90 percent in costs (time or other resources); the confidence level of the testing
using combinatorial objects as CA increases with the interaction level involved (Kuhn et al.,
2008).

When a CA contains the minimum possible number of rows, it is optimal and its size is called
the Covering Array Number (CAN). The CAN is defined according to Equation 5.

CAN(t, k, v) = min
N∈N

{N : ∃ CA(N; t, k, v)}. (5)

The trivial mathematical lower bound for a covering array is vt ≤ CAN(t, k, v), however, this
number is rarely achieved. Therefore determining achievable lower bounds is one of the main
research lines for CAs; this problem has been overcome with the reduction of the known upper
bounds. The construction of cyclotomic matrices can help to accomplish this purpose.

According to Colbourn (2010), a cyclotomic matrix (CM) is an array O of size k × k that is
formed by k rotations of a vector of size k (called starter vector). Table 4 gives an example of a
CM.

0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1

Table 4. CM of size 7 × 7 formed from the starter vector {0, 0, 0, 1, 0, 1, 1}. This matrix is a
CA(7; 2, 7, 2).

84 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 15

The strategy to construct a cyclotomic matrix involves the identification of a good vector
starter. This task can be facilitated using the logarithm table derived from a Galois field.
The construction is simple. The first step is the generation of the logarithm table for a certain
GF(pn). After that, the table is transposed in order to transform it into a vector starter v.
Then, by using all the possible rotations of it, the cyclotomic matrix is constructed. Finally, the
validation of the matrix is done such that a CA can be identified.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 9. Covering array where N = 9, t = 2, k = 4 and v = 3.

Figure 10 shows an example of a cyclotomic matrix.

(a) Vector Starter

0 0 1 1 0 0 0 0 0 0 1 1 0

(b) Cyclotomic matrix
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 1 0 0 0 0 0 0 1 1 0

0 1 1 0 0 0 0 0 0 1 1 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 1 1 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 1 1 0 0 0 0

0 1 1 0 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 10. Example of a cyclotomic vector V, or a vector starter, and the cyclotomic matrix
formed with it. The matrix constitutes a CA(13; 2, 13, 2).

85Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

16 Will-be-set-by-IN-TECH

The pseudocode to generate the cyclotomic vector and construct the CA is presented in
Algorithm 7.1. There, the algorithm BuildLogarithmTable(p,n) is used to construct the
table of logarithm and antilogarithms L, where the ith row indicate the element ei ∈ GF(pn),
and the column 0 its logarithm, and the column 1 its antilogarithm. The first step is the
construction of the vector starter V , which is done by transposing the logarithm table L∗,0,
i.e. the first column of L. After that, the cyclotomic matrix M is constructed by rotating the
vector starter pn times, each time the vector rotated will constituted a row of M. Finally, the
cyclotomic matrix M must be validated as a CA to finally return it; one strategy to do so is
the parallel algorithm reported by Avila-George et al. (2010).

Algorithm 7.1: BUILDCOVERINGARRAY(p, n)

L ← BuildLogarithmTable(p, n)
for each ei ∈ GF(pn)

do
{

Vi ← Li,0

for each ei ∈ GF(pn)

do

⎧

⎨

⎩

for each ej ∈ GF(pn)

do

{

k ← (i + j)mod(pn)
mi,j ← Vk

if IsACoveringArray(M)
then

{

returnM

else
{

return∅

The following section presents some results derived from the research presented so far in this
chapter.

8. Results

An example of one of the best known upper bounds for CAs constructed through the use of
cyclotomic matrices is shown in Figure 11; the construction of such table was done with aid
of the implementation proposed in this chapter.

The results from the experiment are found in the repository of CAs of Torres-Jimenez 1. Some
of the CAs matrices presented there are derived from the use of cyclotomic vectors constructed
through the process described in the previous section, benefiting from the construction of the
logarithm tables. Table 5 shows new upper bounds derived from this process.

1 http://www.tamps.cinvestav.mx/~jtj/CA.php

86 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 17

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1
0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0
1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0
1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1
1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0
0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1
1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0
1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1
0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1
0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0
1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1
0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0
0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0
0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0
1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0
0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0
0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0
1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0
1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1
1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0
1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1
1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1
0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1
1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0
0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1
0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0
0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0
1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0
0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1
0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0
1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0
1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1
1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1
1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1
1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1
1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1
0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0
0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1
1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0
1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1
1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1
1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1
0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1
0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0
0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0
1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0
1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1
0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1
0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0
1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1
1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0
0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1
0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0
1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 11. CA(67; 4, 67, 2) generated through a cyclotomic matrix. This CA is the best known
upper bound so far.

87Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

18 Will-be-set-by-IN-TECH

k N Algorithm

1231 1231 Cyclotomy
1283 1283 Cyclotomy
1319 1319 Cyclotomy
1361 1361 Cyclotomy
1367 1367 Cyclotomy
1373 1373 Cyclotomy
1381 1381 Cyclotomy
1423 1423 Cyclotomy
1427 1427 Cyclotomy
1429 1429 Cyclotomy
1439 1439 Cyclotomy
1447 1447 Cyclotomy
1459 1459 Cyclotomy
1483 1483 Cyclotomy
1487 1487 Cyclotomy
1493 1493 Cyclotomy
1499 1499 Cyclotomy
1511 1511 Cyclotomy
1523 1523 Cyclotomy
1549 1549 Cyclotomy
1559 1559 Cyclotomy
1567 1567 Cyclotomy
1571 1571 Cyclotomy
1579 1579 Cyclotomy
1583 1583 Cyclotomy
1597 1597 Cyclotomy
1601 1601 Cyclotomy
1607 1607 Cyclotomy
1609 1609 Cyclotomy
1613 1613 Cyclotomy
1619 1619 Cyclotomy
1621 1621 Cyclotomy
1627 1627 Cyclotomy
1997 1997 Cyclotomy
1999 1999 Cyclotomy
2003 2003 Cyclotomy
2503 2503 Cyclotomy

Table 5. New upper bounds for CAs obtained through cyclotomic matrices.

9. Conclusions

The main objective of this chapter was the presentation of a efficient implementation of the
Bush’s construction for Orthogonal Arrays (OAs). Also, it was presented a brief summary of
the applications of OAs in cryptography, which could be benefited from the implementation.
In addition, the algorithm was also applied for the construction of cyclotomy matrices that
yielded new upper bounds of CAs.

Hence, the main contribution of this chapter consisted precisely in an algorithm that requires
only additions and modulus operations over finite fields for the construction of OAs. To do so,
it relies on a logarithm table constructed through a simple method reported in the literature. It
is also presented the details for this construction through the code required to be implemented.

Additionally, the algorithm to construct logarithm table was also slightly modified to
construct cyclotomy matrices for the construction of CAs. Here, it is presented the matrix
of the CA(67; 4, 67, 2) constructed from a cyclotomic matrix; it represents the best upper
bound known so far for these parameters of the CA. Also, it is reported a set of 37 upper
bounds of CAs obtained by the construction of the cyclotomy matrices constructed with

88 Cryptography and Security in Computing

www.intechopen.com

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 19

support of the algorithm reported here. These matrices are available on request in http:

//www.tamps.cinvestav.mx/~jtj/CA.php.

In addition to the efficient implementation of the Bush’s construction through logarithm tables
of finite fields, this chapter also presents a brief summary of the combinatorial structures
called Orthogonal Arrays. The summary included formal definition, and basic notation
used in the scientific literature. Additionally, several applications of OAs in cryptography
were presented; and also, different methodologies to construct the combinatorial objects were
described; among them was the Bush’s construction.

10. Acknowledgments

The authors thankfully acknowledge the computer resources and assistance provided by
Spanish Supercomputing Network (TIRANT-UV). This research work was partially funded
by the following projects: CONACyT 58554, Calculo de Covering Arrays; 51623 Fondo Mixto
CONACyT y Gobierno del Estado de Tamaulipas.

11. References

Avila-George, H., Torres-Jimenez, J., Hernández, V. & Rangel-Valdez, N. (2010). Verification
of general and cyclic covering arrays using grid computing, Data Management in Grid
and Peer-to-Peer Systmes, Third International Conference, Globe 2010, Bilbao, Spain, Vol.
6265 of Lecture Notes in Computer Science, Springer, pp. 112–123.

Barker, H. A. (1986). Sum and product tables for galois fields, International Journal of
Mathematical Education in Science and Technology 17: 473 – 485. http://dx.doi.

org/10.1080/0020739860170409.
Bush, K. (1952). Orthogonal arrays of index unity, Annals of Mathematical Statistics

23(3): 426–434.
URL: http://www.jstor.org/pss/2236685

Carter, J. & Wegman, M. (1979). Universal classes of hash functions, Journal of Computer and
System Sciences 18: 143–154. http://dx.doi.org/10.1016/0022-0000(79)

90044-8.
Colbourn, C. J. (2010). Covering arrays from cyclotomy, Designs, Codes and Cryptography

55: 201–219. http://dx.doi.org/10.1007/s10623-009-9333-8.
Dawson, E. & Mahmoodian, E. (1993). Orthogonal arrays and ordered threshold schemes,

Australasian Journal of Combinatorics 8: 27–44.
URL: http://ajc.maths.uq.edu.au/pdf/8/ocr-ajc-v8-p27.pdf

Gilbert, E., MacWilliams, F. & Sloane, N. (1974). Codes which detect deception, The Bell System
Technical Journal 53: 405–424.
URL: http://www2.research.att.com/ njas/doc/detection.pdf

Gopalakrishnan, K. & Stinson, D. R. (2008). Applications of orthogonal arrays to computer
science, Ramanujan Mathematical Society, Lecture Notes Series in Mathematics 7: 149–164.

Hedayat, A., Sloane, N. & Stufken, J. (1999). Orthogonal Arrays: Theory and Applications,
Springer-Verlag, New York.

Jones, T. & Seberry, J. (1986). Authentication without secrecy, ARS Combinatoria 21-A: 115–121.
Kuhn, R., Lei, Y. & Kacker, R. (2008). Practical Combinatorial Testing: Beyond Pairwise, IT

Professional 10(3): 19–23. http://doi.ieeecomputersociety.org/10.1109/

MITP.2008.54.

89Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields

www.intechopen.com

20 Will-be-set-by-IN-TECH

Niederreiter, H. (1990). A short proof for explicit formulas for discrete logarithms in finite
fields, Applicable Algebra in Engineering, Communication and Computing 1(1): 55–57.
http://dx.doi.org/10.1007/BF01810847.

Rao, C. (1946). Hypercube of strength ’d’ leading to confounded designs in factorial
experiments, Bulletin of the Calcutta Mathematical Society 38: 67–78.

Rao, C. (1947). Factorial experiments derivable from combinatorial arrangements of arrays,
Journal of the Royal Statistical Society 9: 128–139.
URL: http://www.jstor.org/pss/2983576

Stinson, D. (1992a). Combinatorial characterizations of authentication codes, Designs, Codes
and Cryptography 2: 175–187. http://dx.doi.org/10.1007/BF00124896.

Stinson, D. (1992b). An explication of secret sharing schemes, Designs, Codes and Cryptography
2: 357–390. http://dx.doi.org/10.1007/BF00125203.

Stinson, D. (1994). Combinatorial techniques for universal hashing, Journal of Computer and
System Sciences 48: 337–346. http://dx.doi.org/10.1016/S0022-0000(05)

80007-8.
Stinson, D. R. (2004). Orthogonal arrays and codes, Combinatorial Designs, Springer-Verlag,

New York, chapter 10, pp. 225–255.
Taguchi, G. (1994). Taguchi Methods: Design of Experiments, American Supplier Institute.
Torres-Jimenez, J., Rangel-Valdez, N., Gonzalez-Hernandez, A. & Avila-George, H. (2011).

Construction of logarithm tables for galois fields, International Journal of Mathematical
Education in Science and Technology 42(1): 91–102. http://dx.doi.org/10.1080/
0020739X.2010.510215.

Wegman, M. & Carter, J. (1981). New hash functions and their use in authentication and set
equality, Journal of Computer and System Sciences 22: 265–279. http://dx.doi.org/
10.1016/0022-0000(81)90033-7.

90 Cryptography and Security in Computing

www.intechopen.com

Cryptography and Security in Computing

Edited by Dr. Jaydip Sen

ISBN 978-953-51-0179-6

Hard cover, 242 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this book is to present some of the critical security challenges in today's computing world and

to discuss mechanisms for defending against those attacks by using classical and modern approaches of

cryptography and other defence mechanisms. It contains eleven chapters which are divided into two parts.

The chapters in Part 1 of the book mostly deal with theoretical and fundamental aspects of cryptography. The

chapters in Part 2, on the other hand, discuss various applications of cryptographic protocols and techniques

in designing computing and network security solutions. The book will be useful for researchers, engineers,

graduate and doctoral students working in cryptography and security related areas. It will also be useful for

faculty members of graduate schools and universities.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jose Torres-Jimenez, Himer Avila-George, Nelson Rangel-Valdez and Loreto Gonzalez-Hernandez (2012).

Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields, Cryptography and

Security in Computing, Dr. Jaydip Sen (Ed.), ISBN: 978-953-51-0179-6, InTech, Available from:

http://www.intechopen.com/books/cryptography-and-security-in-computing/construction-of-orthogonal-arrays-

of-index-unity-using-logarithm-tables-for-galois-fields

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

