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Provably Secure Cryptographic Constructions

Sergey 1. Nikolenko
Steklov Mathematical Institute, St. Petersburg
Russia

1. Introduction

1.1 Cryptography: treading uncertain paths

Modern cryptography has virtually no provably secure constructions. Starting from the first
Diffie-Hellman key agreement protocol (Diffie & Hellman, 1976) and the first public key
cryptosystem RSA (Rivest et al., 1978), not a single public key cryptographic protocol has been
proven secure. Note, however, that there exist secure secret key protocols, e.g., the one-time
pad scheme (Shannon, 1949; Vernam, 1926); they can even achieve information—theoretic
security, but only if the secret key carries at least as much information as the message.

An unconditional proof of security for a public key protocol would be indeed hard to find,
since it would necessarily imply that P # NP. Consider, for instance, a one-way function,
i.e.,, a function such that it is easy to compute but hard to invert. One-way functions are
basic cryptographic primitives; if there are no one-way functions, there is no public key
cryptography. The usual cryptographic definition requires that a one-way function can be
computed in polynomial time. Therefore, if we are given a preimage y € f~!(x), we can, by
definition, verify in polynomial time that f(y) = x, so the inversion problem is actually in NP.
This means that in order to prove that a function is one-way, we have to prove that P#NP,
a rather daring feat to accomplish. A similar argument can be made for cryptosystems and
other cryptographic primitives; for example, the definition of a trapdoor function (Goldreich,
2001) explicitly requires an inversion witness to exist.

But the situation is worse: there are also no conditional proofs that might establish a connection
between natural structural assumptions (like P#NP or BPP#NP) and cryptographic
security. Recent developments in lattice-based cryptosystems relate cryptographic security
to worst-case complexity, but they deal with problems unlikely to be NP-complete (Ajtai &
Dwork, 1997; Dwork, 1997; Regev, 2005; 2006).

An excellent summary of the state of our knowledge regarding these matters was given by
Impagliazzo (1995); although this paper is now more than 15 years old, we have not advanced
much in these basic questions. Impagliazzo describes five possible worlds — we live in exactly
one of them but do not know which one. He shows, in particular, that it may happen that
NP problems are hard even on average, but cryptography does not exist (Pessiland) or that
one-way functions exist but not public key cryptosystems (Minicrypt). !

! To learn the current state of affairs, we recommend to watch Impagliazzo’s lecture at the 2009 workshop
“Complexity and Cryptography: Status of Impagliazzo’s Worlds”; video is available on the web.
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4 Cryptography and Security in Computing

Another angle that might yield an approach to cryptography relates to complete cryptographic
primitives. In regular complexity theory, much can be learned about complexity classes by
studying their complete representatives; for instance, one can study any of the numerous
well-defined combinatorial NP-complete problems, and any insight such as a fast algorithm
for solving any of them is likely to be easily transferrable to all other problems from the
class NP. In cryptography, however, the situation is worse. There exist known complete
cryptographic constructions, both one-way functions (Kojevnikov & Nikolenko, 2008; 2009;
Levin, 1986) and public key cryptosystems (Grigoriev et al., 2009; Harnik et al., 2005).
However, they are still mostly useless in that they are not really combinatorial (their hardness
relies on enumerating Turing machines) and they do not let us relate cryptographic security to
key assumptions of classical complexity theory. In short, it seems that modern cryptography
still has a very long way to go to provably secure constructions.

1.2 Asymptotics and hard bounds

Moreover, the asymptotic nature of cryptographic definitions (and definitions of complexity
theory in general) does not let us say anything about how hard it is to break a given
cryptographic protocol for keys of a certain fixed length. And this is exactly what
cryptography means in practice. For real life, it makes little sense to say that something is
asymptotically hard. Such a result may (and does) provide some intuition towards the fact
that an adversary will not be able to solve the problem, but no real guarantees are made:
why is RSA secure for 2048-bit numbers? Why cannot someone come up with a device that
breaks into all credit cards that use the same protocol with keys of the same length? There are
no theoretical obstacles here. In essence, asymptotic complexity is not something one really
wants to get out of cryptographic constructions. Ultimately, I do not care whether my credit
card’s protocol can or cannot be broken in the limit; I would be very happy if breaking my
specific issue of credit cards required constant time, but this constant was larger than the size
of the known Universe.

The proper computational model to prove this kind of properties is general circuit complexity
(see Section 2). This is the only computational model that can deal with specific bounds for
specific key lengths; for instance, different implementations of Turing machines may differ by
as much as a quadratic factor. Basic results in classical circuit complexity came in the 1980s
and earlier, many of them provided by Soviet mathematicians (Blum, 1984; Khrapchenko,
1971; Lupanov, 1965; Markov, 1964; Nechiporuk, 1966; Paul, 1977; Razborov, 1985; 1990;
Sholomov, 1969; Stockmeyer, 1977; 1987; Subbotovskaya, 1961; 1963; Yablonskii, 1957). Over
the last two decades, efforts in circuit complexity have been relocated mostly towards results
related to circuits with bounded depth and/or restricted set of functions computed in a node
(Ajtai, 1983; Cai, 1989; Furst et al., 1984; Hastad, 1987; Immerman, 1987; Razborov, 1987; 1995;
Smolensky, 1987; Yao, 1985; 1990). However, we need classical results for cryptographic
purposes because the bounds we want to prove in cryptography should hold in the most
general B; 1 basis. It would be a very bold move to advertise a credit card as “secure against
adversaries who cannot use circuits of depth more than 3”.

1.3 Feebly secure cryptographic primitives

We cannot, at present, hope to prove security either in the “hard” sense of circuit complexity
or in the sense of classical cryptographic definitions (Goldreich, 2001; 2004; Goldwasser &
Bellare, 2001). However, if we are unable to prove a superpolynomial gap between the
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Provably Secure Cryptographic Constructions 5

complexities of honest parties and adversaries, maybe we can prove at least some gap? Alain
Hiltgen (1992) managed to present a function that is twice (2 — 0(1) times) harder to invert than
to compute. His example is a linear function over GF(2) with a matrix that has few non-zero
entries while the inverse matrix has many non-zero entries; the complexity gap follows
by a simple argument of Lamagna and Savage (Lamagna & Savage, 1973; Savage, 1976):
every bit of the output depends non-idly on many variables and all these bits correspond
to different functions, hence a lower bound on the complexity of computing them all together
(see Section 3.2). The model of computation here is the most general one: the number of gates
in a Boolean circuit that uses arbitrary binary Boolean gates. We have already noted that little
more could be expected for this model at present. For example, the best known lower bound
for general circuit complexity of a specific Boolean function is 3n — o(n) (Blum, 1984) even
though a simple counting argument proves that there exist plenty of Boolean functions with
circuit complexity > %2“ (Wegener, 1987).

In this chapter, we briefly recount feebly one-way functions but primarily deal with another
feebly secure cryptographic primitive: namely, we present constructions of feebly trapdoor
functions. Of course, in order to obtain the result, we have to prove a lower bound on the circuit
complexity of a certain function. To do so, we use the gate elimination technique which dates
back to the 1970s and which has been used in proving virtually every single known bound in
general circuit complexity (Blum, 1984; Paul, 1977; Stockmeyer, 1977). New methods would
be of great interest; alas, there has been little progress in general circuit complexity since
Blum'’s result of 3n — o(n). A much simpler proof has been recently presented by Demenkov
& Kulikov (2011), but no improvement has been found yet.

We begin with linear constructions; in the linear case, we can actually nail gate elimination
down to several well-defined techniques that we present in Section 3.3. These techniques let
us present linear feebly trapdoor functions; the linear part of this chapter is based mostly on
(Davydow & Nikolenko, 2011; Hirsch & Nikolenko, 2008; 2009). For the nonlinear case, we
make use of a specific nonlinear feebly one-way function presented in (Hirsch et al., 2011;
Melanich, 2009).

2. Basic definitions

2.1 Boolean circuits

Boolean circuits (see, e.g., (Wegener, 1987)) represent one of the few computational models
that allow for proving specific rather than asymptotic lower bounds on the complexity. In
this model, a function’s complexity is defined as the minimal size of a circuit computing this
function. Circuits consist of gates, and gates can implement various Boolean functions.

We denote by By, the set of all 2m2" functions f:B" — B", where B = {0,1} is the field
with two elements.

Definition 1. Let Q) be a set of Boolean functions f : B" — B (m may differ for different f). Then
an Q-circuit is a directed acyclic labeled graph with vertices of two kinds:

* vertices of indegree O (vertices that no edges enter) labeled by one of the variables x1,. .., Xy,

* and vertices labeled by a function f € Q) with indegree equal to the arity of f.

Vertices of the first kind are called inputs or input variables; vertices of the second kind, gates. The
size of a circuit is the number of gates in it.
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Fig. 1. Simple circuits: (a) y = x1 @ x2; (b) y = x1 @ x2 ® x3; (c) a suboptimal circuit for
y = x A (x1 V x3); (d) an optimal one.

We usually speak of outputs of a circuit and draw them on pictures, but in theory, every gate
of an ()-circuit computes some Boolean function and can be considered as an output of the
circuit. The circuit complexity of a function f : B" — B™ in the basis () is denoted by Cq(f)
and is defined as the minimal size of an Q)-circuit that computes f (that has m gates which
compute the result of applying function f to input bits).

In order to get rid of unary gates, we will assume that a gate computes both its corresponding
function and its negation (the same applies to the inputs, too). Our model of computation
is given by Boolean circuits with arbitrary binary gates (this is known as general circuit
complexity); in other words, each gate of a circuit is labeled by one of 16 Boolean functions
from B, ;. Several simple examples of such circuits are shown on Fig. 1.

In what follows, we denote by C(f) the circuit complexity of f in the B, ; basis that consists of
all binary Boolean functions. We assume that each gate in this circuit depends of both inputs,
i.e., there are no gates marked by constants and unary functions Id and —. This can be done
without loss of generality because such gates are easy to exclude from a nontrivial circuit
without any increase in its size.

2.2 Feebly secure one-way functions

We want the size of circuits breaking our family of trapdoor functions to be larger than the
size of circuits that perform encoding. Following Hiltgen (1992; 1994; 1998), for every injective
function of n variables f,, € By, we can define its measure of one-wayness as

C(f,h)
C(fn)

The problem now becomes to find sequences of functions f = {f,}7’_; with a large asymptotic
constant lim infy, .o Mp(fy), which Hiltgen calls f’s order of one-wayness.

MF(fﬂ) B 1)

Hiltgen (1992; 1994; 1998) presented several constructions of feebly secure one-way functions.
To give a flavour of his results, we recall a sample one-way function. Consider a function
f : B" — B" given by the following matrix:

110000 x
011000 x

flxy,cxn) =00 o o C 2)
100011/ \ x
100101 Xo
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Fig. 2. Hiltgen’s feebly one-way function of order 3: a circuit for f.

that is (we assume for simplicity that n is even),

X:Pxiiq, i=1,...,n—1,
filxr o) = 4T ©
xl@x%@xn, ] =n
Straighforward computations show that f is invertible, and its inverse is given by
Y1
00..011..11 2
10..011..11 Y3
11..011..11
1 I B C "
yeesYn) = [ 11..011..11 21, 4
f e yn) 1111111 Y @
11..101..11 Vi
11..100..01 :
Yn
that is,
§ — n
4 yl@...@yj_1>@(ya+1@...@yn>, j=1...,5,
fi ) = : (5)

yl@...@yg)@(y]-_l@...@yn), j=%+1,...,n.

It remains to invoke Proposition 6 (see below) to show that f~! requires at least L%”J -1
gates to compute, while f can be obviously computed in n + 1 gates. Fig. 2 shows a circuit
that computes f in n + 1 gates; Fig. 3, one of the optimal circuits for f~!. Therefore, f is
a feebly one-way function with order of security % For this particular function, inversion
becomes strictly harder than evaluation at n = 7 (eight gates to compute, nine to invert).

2.3 Feebly trapdoor candidates

In the context of feebly secure primitives, we have to give a more detailed definition of a
trapdoor function than the regular cryptographic definition (Goldreich, 2001): since we are
interested in constants here, we must pay attention to all the details. The following definition
does not say anything about the complexity and hardness of inversion, but merely sets up the
dimensions.

Definition 2. For given functions pi, ti,m,c : N — IN, a feebly trapdoor candidate is a sequence
of triples of circuits
C = {(Seedy, Evaly,, Inv,)},_; , where: (6)
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v v v

X2 X3 X4

Fig. 3. Hiltgen’s feebly one-way function of order 3: a circuit for f 1.

o {Seed,}%_, is a family of sampling circuits Seed,, : B" — BPI(") x BH("),
e {Eval,}*_, is a family of evaluation circuits Eval, : BPI(") x B™(") — B¢("), and
o {Inv,}*_, is a family of inversion circuits Inv, : BE(") x B — B (1)
such that for every security parameter n, every seed s € B", and every input m € B™("),
Inv, (Seed, »(s), Eval, (Seed,, 1(s), m)) = m, (7)

where Seed,, 1(s) and Seed,, (s) are the first pi(n) bits (“public information”) and the last ti(n) bits
(“trapdoor information”) of Seedy (s), respectively.

Informally speaking, n is the security parameter (the length of the random seed), m(n) is
the length of the input to the function, ¢(n) is the length of the function’s output, and pi(n)
and ti(n) are lengths of the public and trapdoor information, respectively. We call these
functions “candidates” because Definition 2 does not imply any security, it merely sets up
the dimensions and provides correct inversion. In our constructions, m(n) = c(n) and

pi(n) = ti(n).

To find how secure a function is, one needs to know the size of the minimal circuit that could
invert the function without knowing the trapdoor information. In addition to the worst-case
complexity C(f), we introduce a stronger notion that we will use in this case.

Definition 3. We denote by Cy(f) the minimal size of a circuit that correctly computes a function
f € Byu,m on more than « fraction of its inputs (of length n). Obviously, Co(f) < C(f) for all f and
0<a<l.

Definition 4. A circuit N breaks a feebly trapdoor candidate C = {Seed,, Eval,, Inv,} on seed
length n with probability « if, for uniformly chosen seeds s € B" and inputs m € B™"),

Pr [N(Seednll(s),Evaln (Seed, 1(s),m)) = m} > . (8)
(s,m)eld

www.intechopen.com



Provably Secure Cryptographic Constructions 9

A size s circuit that breaks a feebly trapdoor candidate C = {Seed;, Eval,, Inv,} on seed
length 7 in the sense of Definition 4 provides a counterexample for the statement Cy (Inv,) >
S.

In fact, in what follows we prove a stronger result: we prove that no circuit (of a certain size)
can break our candidate for any random seed s, that is, for every seed s, every adversary fails.
For a trapdoor function to be secure, circuits that break the function should be larger than the
circuits computing it. In fact, in our results we can require that every such adversary fails with
probability at least %;

Definition 5. We say that a feebly trapdoor candidate C = {(Seed,, Evaly,, Inv,)} >, has order of
security k with probability « if

Cafpitn)+cn) Calfpi(n)+c(n) Calfpitn)+e(n))
C(Seed,) ~ C(Eval,) ~ C(Invy,)

>k, ©)

n—o0

lim inf min{

where the function fo; ()1 ¢(n) € Bpi(n)+e(n),m(n) Maps
(Seed,, 1 (s), Eval, (Seed,, 1(s), m)) + m. (10)

We say that a feebly trapdoor candidate has order of security k if it has order of security k with

probability o = %

Let us first give a few simple examples. If there is no secret key at all, that is, pi(n) = 0, then
each feebly trapdoor candidate {(Seed,, Eval,,Inv, )}’ ; has order of security 1, since the
sequence of circuits {Inv,, }%° ; successfully inverts it. If {(Seed,;, Eval,, Inv,,) };_; implement
a trapdoor function in the usual cryptographic sense then k = oo. Moreover, k = o
even if the bounds on the size of adversary are merely superlinear, e.g., if every adversary
requires Q)(nlogn) gates. Our definitions are not designed to distinguish between these
(very different) cases, because, unfortunately, any nonlinear lower bound on general circuit
complexity of a specific function appears very far away from the current state of knowledge.

One could also consider key generation as a separate process and omit its complexity from
the definition of the order of security. However, we prove our results for the definition stated
above as it makes them stronger.

In closing, let us note explicitly that we are talking about one-time security. An adversary
can amortize his circuit complexity on inverting a feebly trapdoor candidate for the second
time for the same seed, for example, by computing the trapdoor information and successfully
reusing it. Thus, in our setting one has to pick a new seed for every input.

3. Gate elimination techniques
3.1 Classical gate elimination

In this section, we first briefly cover classical gate elimination and then introduce a few new
ideas related to gate elimination that have recently been presented by Davydow & Nikolenko
(2011). Gate elimination is the primary (and, to be honest, virtually the only) technique we
have to prove lower bounds in general circuit complexity; so far, it has been used for every
single lower bound (Blum, 1984; Paul, 1977; Stockmeyer, 1977; Wegener, 1987). The basic idea
of this method lies in the following inductive argument. Consider a function f and a circuit
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10 Cryptography and Security in Computing

of minimal size C that computes it. Now substitute some value ¢ for some variable x thus
obtaining a circuit for the function f |y—.. The original circuit C can now be simplified, because
the gates that had this variable as inputs become either unary (recall that negation can be
embedded into subsequent gates) or constant (in this case we can even proceed to eliminating
subsequent gates). After figuring out how many gates one can eliminate on every step, one
proceeds by induction as long as it is possible to find a suitable variable that eliminates enough
gates. Evidently, the number of eliminated gates is a lower bound on the complexity of f.

Usually, the important case here is when a gate is nonlinear, such as an AND or an OR gate.
In that case, it is always possible to choose a value for an input of such a gate so that this
gate becomes a constant and, therefore, its immediate descendants can also be eliminated.
However, for linear functions this kind of reasoning also works, and in Section 3.3 we distill it
to two relatively simple ideas.

To give the reader a flavour of classical gate elimination, we briefly recall the proof of the

2n — 3 lower bound for the functions of the form fénc) : B" — B defined by

féz)(xllmrxn):((x1+--.—|—xn—|—c) mod 3) mod 2). (11)

This proof can be found in many sources, including (Wegener, 1987). Note that every function

féré) has the following property: for every pair of variables x; and xy, f?E'Z) has at least three
different restrictions out of four possible assignments of values to x; and x;; this is easy to
see since different assignments of x; and x; give three different values of x; + x;, resulting

in functions with three different constants: fé%_z) , féq_z), and fég_z). Now consider the

topmost gate in some topological order on the optimal circuit computing fé? Since it is
topmost, there are two variables, say x; and x;, that come to this gate as inputs. At least one

of these variables enters at least one other gate because otherwise, fé’z) would depend only on
X; @ xx and not on x; and x; separately, giving rise to only two possible subfunctions among
four restrictions. Therefore, there exists a variable that enters at least two gates; therefore, by
setting this variable to a constant we eliminate at least two gates from the circuit. It remains

to note that setting a variable to a constant transforms féz) into féiil), and we can invoke the
induction hypothesis.

3.2 Gate elimination for feebly secure one-way functions

The following very simple argument is due to Lamagna and Savage; this argument actually
suffices for all Hiltgen’s linear examples.

Proposition 6 ((Lamagna & Savage, 1973; Savage, 1976); (Hiltgen, 1992, Theorems 3 and 4)).

1. Suppose that f : B" — B depends non-idly on each of its n variables, that is, for every i there exist
values ay,...,a;_1,4i11,...,an € B such that

flay,...,a;-1,0,a;01,...,an) # f(ay,...,a;_1,1,8;41,...,an). (12)
Then C(f) > n —1.

2. Let f = (fO, ..., fim)y . B" — B™, where f*) is the k™ component of f. If the m component
functions f (@) are pairwise different and each of them satisfies C(f ) > ¢ > 1 then C(f) >
c+m—1.
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Proof. 1. Consider the minimal circuit of size s computing f. Since f depends (here and in
what follows we say “depends” meaning “depends nontrivially”) on all n of its variables,
each input gate must have at least one outgoing edge. Since the circuit is minimal, each
of the other gates, except possibly the output, also must have at least one outgoing edge.
Therefore, the circuit has at least s + n — 1 edges. On the other hand, a circuit with s binary
gates cannot have more than 2s edges. Therefore, 2s > s +n — 1.

2. Consider a circuit computing f. Note that it has at least c — 1 gates that do not compute any
function of circuit complexity ¢ or more (they are the first c — 1 gates in some topological
order). However, to compute any component function f(!) we have to add at least one
more gate, and we have to add at least one gate for each component, since every new gate
adds only one new function. Thus, we get the necessary bound of c + m — 1 gates.

O

Hiltgen counted the minimal complexity of computing one bit of the input (e.g., since each
row of A~! has at least 7 nonzero entries, the minimal complexity of each component of
A~1jis 4) and thus produced lower bounds on the complexity of inverting the function (e.g.
the complexity of computing A~ 1jis § +n—2 = 37” —2).

Besides, in cryptography it is generally desirable to prove not only worst-case bounds, but
also that an adversary is unable to invert the function on a substantial fraction of inputs.
In Hiltgen’s works, this fact followed from a very simple observation (which was not even
explicitly stated).

Lemma 7. Consider a function f = @, x;. For any ¢ that depends on only m < n of these variables,
i=1"1 y8 P Y

1

Pryy, e f(x1, -0 xn) = g(xiy, 0, xi,)] = 5 (13)

Proof. Since m < n, there exists an index j € 1..n such that ¢ does not depend on x;. This
means that for every set of values of the other variables, whatever the value of g is, for one of
the values of x; f coincides with g, and on the other value f differs from g. This means that f

differs from g on precisely % of the inputs. O

This argument suffices for Hiltgen’s feebly one-wayness result for the square matrix A~ !: first
we apply the first part of Proposition 6 and see that every output has complexity at least 7 — 1,
and then the second part of Proposition 6 yields the necessary bound of 37” — 1. Moreover, if
a circuit has less than the necessary number of gates, one of its outputs inevitably depends on
less than the necessary number of input variables, which, by Lemma 7, gives the necessary %
error rate.

3.3 Gate elimination for linear functions

In this section, we deal with gate elimination for linear functions. We do not know how to
prove that one cannot, in general, produce a smaller circuit for a linear function with nonlinear
gates, but it is evident that we cannot assume any gates to be nonlinear in this setting. Thus,
gate elimination distills to two very simple ideas. Idea 1 is trivial and has been noted many
times before, while Idea 2 will allow us to devise feebly secure constructions in Section 4.
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12 Cryptography and Security in Computing

Since we are dealing with linear functions, we will, for convenience, state our results in terms
of matrices over [Fy; the circuit complexity of a matrix Cy(A) is the circuit complexity of the
corresponding linear function. By A_; we denote the matrix A without its i column; note
that if A corresponds to f then A_; corresponds to f |,.—o. If a matrix A has a zero column 4;,
it means that the corresponding function does not depend on the input x;; in what follows, we
will always assume that functions depend nontrivially on all their inputs and thus the matrices
do not have zero columns; we call such matrices nontrivial. Note that if A is a submatrix of B
then Cy(A) < Cy(B) forall w € [0, 1].

Idea 1. Suppose that for n steps, there is at least one gate to eliminate. Then C(f) > n.

Theorem 8. Fix a real number « € [0,1]. Suppose that P = {P,};°_, is a series of predicates defined
on matrices over Fp with the following properties:

e if Pi(A) holds then Cy(A) > 1;
* if P,(A) holds then Py, (A) holds for every 1 < m < n;
* if P,(A) holds then, for every index i, P,,_1(A_;) holds.

Then, for every matrix A with > n + 1 columns, if P,(A) holds then C(A) > n.

Proof. The proof goes by straightforward induction on the index of P;; the first property of
P provides the base, and other properties takes care of the induction step. For the induction
step, consider the first gate of an optimal circuit C implementing A. By the monotonicity
property of P and the induction base, the circuit is nontrivial, so there is a first gate. Consider
a variable x; entering that gate. Note that if C computes f on fraction « of its inputs then for
some ¢, C |x,—c computes f |y,—c on fraction « of its inputs. If we substitute this value into this
variable, we get a circuit C |y,—. that has at most (size(C) — 1) gates and implements A_; on
at least « fraction of inputs. O

Note that the first statement of Proposition 6 is a special case of Theorem 8 for P,(A) =
“A has a row with n 41 ones”. We also derive another corollary.

Corollary 9. If A is a matrix of rank n, and each column of A has at least two ones, then C(A) >
n—2.

Proof. Take P,(A) ="rank(A) > n + 2 and each column of A has at least 2 ones”. O

Idea 2. Suppose that for n steps, there exists an input in the circuit with two outgoing edges, and,
moreover, in m of these cases both of these edges go to a gate (rather than a gate and an output). Then
C(f) > n—+m.

Theorem 10. We call a nonzero entry unique if it is the only nonzero entry in its row. Fix a real
number o € [0,1]. Suppose that P = {P,}>> ; is a series of predicates defined on matrices over IF,
with the following properties:

e if P1(A) holds then C(A) > 1;
* if P,(A) holds then Py, (A) holds for every 1 < m < n;

e if Py(A) holds then, for every index i, if the i column has no unique entries then P,_o(A_;)
holds, otherwise P,,_1(A_;) holds.
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Then, for every matrix A with > n + 1 different columns, if P, (A) holds for some n then C(A) > n
and, moreover, C 3 (A) > n.

Proof. We argue by induction on n; for n = 1 the statement is obvious.

Consider the first gate ¢ in the optimal circuit implementing A. Since g is first, its incoming
edges come from the inputs of the circuit; we denote them by x; and x;. There are three
possible cases.

1. One of the input variables of g, say x;, goes directly to an output y;. Then by setting x; to
a constant we can eliminate one gate. however, in this case y; corresponds to a row with only
one nonzero element, so ith colum has a unique element, so P,,_1(A_;) hold. Therefore, we
invoke the induction hypothesis as C(A_;) > n — 1 and get the necessary bound.

2. One of the input variables of g, say x;, goes to another gate. Then by setting x; to a
constant we can eliminate two gates, and by properties of P, P,_»(A_;) holds, so we invoke
the induction hypothesis as C(A_;) > n — 2.

3. Neither x; nor x; enters any other gate or output. In this case, A is a function of neither

x; nor x; but only g(x;,x;); we show that this cannot be the case for a function computing

A on more than % of the inputs. A itself depends on x; and x; separately because all of its

columns are different; in particular, for one of these variables, say x;, there exists an output y;
that depends only on x;: yx = x; ® @yex x, where x; ¢ X. On the other hand, since every
gate in an optimal circuit nontrivially depends on both inputs, there exist values 2 and b such
that ¢(0,a) = g(1,b). Thus, for every assignment of the remaining variables, either on input
strings with (x; = 0,x; = a) or on input strings with (x; = 1,x; = b) the circuit makes a
mistake, which makes it wrong on at least 411 of all inputs. O

Note that Theorem 10 directly generalizes and strengthens Theorem 8.

Corollary 11. Fix a real number « € [0,1]. Suppose that R = {Ry}> 1 and Q = {Qu}5_ are

n=1
two series of predicates defined on matrices over IFp with the following properties:

* ifR1(A) holds then C(A) > 1;

* if Ry (A) holds then Ry (A) holds for every 1 < k < n;
* if Ry(A) holds then, for every i, R, _1(A_;) holds;

* ifQq1(A) holds then C(A) > 1;

* if Qm(A) holds then Qi (A) holds for every 1 < k < n;
* if Qm(A) holds then, for every i, Q,,_1(A_;) holds;

e if Qu(A) holds and A_; has more zero rows than A (i.e., removing the it™ column has removed the
last nonzero element from at least one row) then Qu, (A_;) holds.

Then, for every matrix A with > n + 1 columns all of which are different, if R, (A) and Qum(A) hold
for some n > m then C(A) > n + m and, moreover, C3 (A) > n + m.
4

Proof. Immediately follows from Theorem 10 for P,,(A) = FkR(A) A Q,_x(A). O
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Theorem 10 and Corollary 11 generalize several results that have been proven independently.
For example, here is the “master lemma” of the original paper on feebly trapdoor functions.

Corollary 12 ( (Hirsch & Nikolenko, 2009, Lemma 5) ). Let t,u > 1. Assume that x is a linear
function with matrix A over Fy. Assume also that all columns of A are different, every row of A has
at least u nonzero entries, and after removing any t columns of A, the matrix still has at least one row
containing at least two nonzero entries. Then C(x) > u + t and, moreover, C3,4(x) > u + t.

Proof. Take P,(A) ="After removing any n columns of A, it still has at least one nonzero
row”, Qo(A) ="true”, and Q,,(A) ="Every row of A has atleast m + 1 ones” for m > 0. Then
Pii1(A) and Q,_1(A) hold, and P and Q satisfy the conditions of Corollary 11, which gives
the desired bound. Note that in this case, Q,; for m > 0 cannot hold for a matrix where a row
has only a single one, so in the gate elimination proof, for the first u — 1 steps two gates will
be eliminated, and then for t — u + 2 steps, one gate will be eliminated. O

We also derive another, even stronger corollary that will be important for new feebly secure
constructions.

Corollary 13. Let t > u > 2. Assume that A is a u X t matrix with different columns, and each
column of A has at least two nonzero elements (ones). Then C(A) > 2t — u and, moreover, C 3 (A) >

2t — u.

Proof. Take P,(A) ="twice the number of nonzero columns in A less the number of nonzero
rowsin Aisatleastn”. Then Py;_,(A) holds, and P, satisfy the conditions of Theorem 10. O

Naturally, we could prove Corollaries 9 and 13 directly. We have chosen the path of
generalization for two reasons: one, to make Theorem 14 more precise and more general,
and two, to show the limits of gate elimination for linear functions. As we have already
mentioned, for linear functions we cannot count on nonlinear gates that could eliminate their
descendants. In Theorems 8 and 10, we have considered two basic cases: when there is only
one edge outgoing from a variable and when there are two edges (going either to two gates
or to a gate and an output). It appears that we can hardly expect anything more from classical
gate elimination in the linear case.

3.4 Extension to block diagonal matrices

We finish this section with an extension of these results to block diagonal matrices. In general,
we cannot prove that the direct sum of several functions has circuit complexity equal to the
sum of the circuit complexities of these functions; counterexamples are known as “mass
production” (Wegener, 1987). However, for linear functions and gate elimination in the
flavours of Theorems 8 and 10, we can. The following theorem generalizes Lemma 6 of (Hirsch
& Nikolenko, 2009).

Theorem 14. Suppose that a linear function x is given by a block diagonal matrix

A; 0 - 0
0 Ay -+ 0

, (14)
0 0 - A
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every Aj satisfies the conditions of Theorem 10 with predicates Pl = {P,]1 > 1, and P,];/, (A;) hold for

n=1’

k
every j. Then C(x) > ¥ nj.
j=1

Proof. We invoke Theorem 10 with the predicate composed of original predicates:

Po= \/ PLAPEA...APL (15)
i1+...+ik:11

It is now straightforward to check that P = {P,}®’ ; satisfies the conditions of Theorem 10
(since every deleted column affects only one block), and the block diagonal matrix satisfies

Pi’l1+...+l/lk' O

4. Feebly secure trapdoor functions
4.1 Idea of the construction

Over this section, we will present two constructions of feebly secure trapdoor functions, a
linear construction and a nonlinear one. Both of them have the same rather peculiar structure.
It turns out that when we directly construct a feebly secure candidate trapdoor function such
that an adversary has to spend more time inverting it than honest participants, we will not be
able to make encoding (i.e., function evaluation) faster than inversion. In fact, evaluation will
take more time than even an adversary requires to invert our candidates.

To achieve a feebly secure trapdoor function, we will add another block as a direct sum to that
candidate. This block will represent a feebly secure one-way function, one of the constructions
presented by Hiltgen (1992; 1994; 1998). In this construction, honest inversion and break are
exactly the same since there is no secret key at all; nevertheless, both of them are harder than
evaluating the function. Thus, in the resulting block diagonal construction break remains
harder than honest inversion but they both gain in complexity over function evaluation. This
idea was first presented by Hirsch & Nikolenko (2009) and has been used since in every feebly
secure trapdoor function.

4.2 Linear feebly secure trapdoor functions

This section is based on (Davydow & Nikolenko, 2011). Let us first introduce some notation.
By U, we denote an upper triangular matrix of size n x n which is inverse to a bidiagonal
matrix:

111 110---0

011 . 0110
Un: . . 7 ui’l - s . ;

00--1 0001

note that U2 is an upper triangular matrix with zeros and ones chequered above the main
diagonal. We will often use matrices composed of smaller matrices as blocks; for instance,
(U, U, ) is a matrix of size n x 2n composed of two upper triangular blocks.

Lemma15. 1. C3(U,) =n—1.
4

2. C%(U,%) =n-2.

3. C%(un—l) =n—1
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4 Cy((uuy))=2n-1
5. 3n—6§C%((uﬁun))gC((uﬁun))§3n—3.
6. 3n—4§C§((un u')) < C((u, u;')) <3n—2.

Proof. Lower bounds in items 1-3 are obvious: the matrices have no identical rows, and
not a single input except one (two for item 2) is linked directly to an output. The lower
bound in item 4 follows by simple counting: the first row of the matrix contains 2n nonzero
elements, so at least 2n — 1 gates are needed to compute it. The lower bound from item 5
(respectively, 6) follows from Corollary 13: the matrix ( U2 U, ) (respectively, (U, U, )) satisfies
the assumptions of Corollary 13 for all except three (respectively, two) columns, and we can
use Corollary 13 for t = 2n — 3 (respectively, t = 2n — 2) and u = n.

To prove upper bounds, we give direct constructions. To compute the matrix from item 1,
note that each row differs from the previous one in only one position, so we can compute
the outputs as out; = out;, 1 @ in;. Moreover, out, = in,, so we do not need more gates to
compute it. The same idea works for item 2, but in this case, out, and out,_; are computed
immediately, and out; = out;_; @ in;. To compute the matrix from item 3, we compute each
row directly. To compute item 4, we note that (U, U,) - (§) = Uy -a® U, -b = U, - (a D D).
Thus, we can use n gates to compute 2 © b and then get the result with n — 1 more gates. To
compute 5 and 6 note that (AB)- () = A-a® B -b. Thus, we have divided the computation
in two parts that can be done independently with previously shown circuits, and then we can
use 7 gates to XOR the results of these subcircuits. O

We use the general idea outlined in Section 4.1. In the first construction, we assume that the
lengths of the public key pi, secret key ti, message m, and ciphertext c are the same and equal
n. Letti = Uy - pi, c = (U,' Uy) - (Z’,) In this case, an adversary will have to compute the
matrix (U, U,) - () = (U, U2) - (;l) Thus, breaking this trapdoor function is harder than
honest inversion, but the evaluation complexity is approximately equal to the complexity of
the break, so we cannot yet call this function a feebly secure trapdoor function.

To augment this construction, consider a weakly one-way linear function A and use it in the
following protocol (by I, we denote the unit matrix of size n):

seedy = (1) ()= (3)
peal, = (4% 0) - (1) = (@),
Inv, = (Lé” Lé" A()*l) : (2) = (m)-

An adversary is now supposed to compute
_(u,u? o SN om
Adv, = ( R A,l) : (le) = (my)-

As a feebly one-way function A we take one of Hiltgen’s functions with order of security 2 — e

that have been constructed for every € > 0 Hiltgen (1992); we take the matrix of this function

to have order An, where A will be chosen below. For such a matrix, C3 (A) = An +o(n), and
4
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C 3 (A~1) = (2—€)An+o(n). Now Lemma 15 and Theorem 14 yield the following complexity
bounds:

C% (Seed;,) = n—

C%(Evaln):3 +An—|—o( ) =B+ A)n+o(n),
C%(Invn) 2n+ (2—€e)An+o(n) = 2+ (2—€)A)n+o(n),
C% (Advy,) =3n+(2—e€)An+o(n) = B3+ (2—€)A)n+o(n).

The order of security for this protocol is

lim
n—oo

(min<c3/4(AdV”) Cs/4(Advy) C3/4(Aan))) _

C(Eval,) = C(Invy,) ~ C(Seedy)
. (34 (2—€)A 3+(2—¢€)A
_mm( 347 ’2+(2—e)A>'

1
€’

to 4 as € — 0. Thus, we have proven the following theorem.

ThlS expression reaches maximum for A = 1

Theorem 16. For every € > 0, there exists a linear feebly secure trapdoor function with seed length
pi(n) = ti(n) = n, input and output length c(n) = m(n) = 2n, and order of security 3 — €.

4.3 Nonlinear feebly secure trapdoor functions

Over the previous two sections, we have discussed linear feebly secure one-way functions.
However, a nonlinear approach can yield better constants. This section is based on (Hirsch
et al., 2011; Melanich, 2009).

Our nonlinear feebly trapdoor constructions are based on a feebly one-way function
resulting from uniting Hiltgen’s linear feebly one-way function with the first computationally
asymmetric function of four variables (Massey, 1996). Consider a sequence of functions
{fu}y—1 given by the following relations (we denote y; = f;(x1,...,xn)):

y1 = (X1 ® x2)xn © X1,

Y2 = (x1 © x2)xn @ x2,

Y3 = x1 D X3,

Y4 = X3 D Xy, (16)

Yn-1=Xn2DxXy_1,
yn = Xp.

In order to get f, !, we sum up all rows except the last one:

V1D...0Y,—1 = x1 D xp. (17)
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Further, substituting v, instead of x,,, we find x; and x,,_1. The other x; can be expressed via
X,—1 in turn, so the inverse function is given by

Xn = Yn,

=10 OYn-1)yn DYy2,
X1 =1 D ... OYn_1)Yn D Y1,
Y2 = (1D OYn1)Yn ©Y1 S Yn-1, (18)
Xn3=1D ... PYn_1)Yn PY1 D Yn_1 D Yn—2,

X3=W1D..OYp-1)YnPY1DYy_1D...BYs,
1= ®.. QY1) @Y1 PYn—1D...DYs.
Lemma 17. The family of functions { fu },._; is feebly one-way of order 2.

Proof. Ttis easy to see that f,, can be computed in 1 + 1 gates. Each component function of f,; !,
except for the last one, depends non-trivially of all n variables, and all component functions
are different. Therefore, to compute f,; ! we need at least (n — 1) + (n — 2) = 2n — 3 gates
(since f, is invertible, Proposition 6 is applicable to f, and f,; !). Therefore,

2n—3
n+1"

ME(fn) = (19)

On the other hand, f;; cannot be computed faster than in n — 1 gates because all component
functions f; are different, and only one of them is trivial (depends on only one variable). At
the same time, f,, ! can be computed in 2n — 2 gates: one computes (y; @ ... ® Y,_1)Yn in
n — 1 gates and spends one gate to compute each component function except the last one. We
get
2n —3 2n —2

n+1 SMF(fn) < n_1"
which is exactly what we need. O

(20)

For the proof of the following theorem, we refer to (Hirsch et al., 2011; Melanich, 2009).
Theorem 18. Cs/4(f;!) >2n —4.

We can now apply the same direct sum idea to this nonlinear feebly one-way function. The
direct sum consists of two blocks. First, for f as above, we have:

Key, (s) = (fu(s),s),
Evaly(pi,m) = f; ' (pi) & m,
Inv,(ti,c) = f; ' (pi) ©c=tidc,
Advy, (pi,c) = £, 1(pi) @c.

In this construction, evaluation is no easier than inversion without trapdoor.

(21)

For the second block we have

Eval,(m) = f(m),
Inv,(c) = f_l(c), (22)
Adva(c) = f1(c)
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Again, as above, it is not a trapdoor function at all because inversion is implemented with no
regard for the trapdoor. For a message m of length |m| = n the evaluation circuit has n + 1
gates, while inversion, by Theorem 18, can be performed only by circuits with at least 2n — 4
gates. Thus, in this construction evaluation is easy and inversion is hard, both for an honest
participant of the protocol and for an adversary.

We can now unite these two trapdoor candidates and get the following construction:

Key, (s) = (fu(s),s),
Bval(pi, n 12) = (i (1) & m, fo (1)), .
InVn(tl €1, ¢ 2) < (fn 1<P1) GBClrftxn (CZ)) > (tl 6aclrfom (CZ))
Advy(pi,c1,c2) = (fi ' (pi) @1, fan (c2)),

The proofs of lower bounds on these constructions are rather involved; we refer to (Hirsch
et al., 2011; Melanich, 2009) for detailed proofs and simply give the results here.

Lemma 19. The following upper and lower bounds hold for the components of our nonlinear trapdoor
construction:

C(Key,) <n+
(Evaln)§2n—2—|—n+txn+1—3n+zxn—1 (24)
C(Inv,) <n+2an-—2,
C3/4(Advy) > 3n + 2an — 8.

To maximize the order of security of this trapdoor function (Definition 5), we have to find «
that maximizes

lim inf min
1— 00

Cs/a(Advn) Cs/a(Advn) Caya(Adog))
C(Keyy) ' C(Eval,) * C(Invy)

. [34+20 3422 3+ 2« . [34 20 342«
= min = min (25)

1 "34a’14+2u 34a’1+4+2a

It is easy to see that this expression is maximized for « = 2, and the optimal value of the order
of security is % We summarize this in the following theorem.

Theorem 20. There exists a nonlinear feebly trapdoor function with seed length pi(n) = ti(n) = n,
input and output length c(n) = m(n) = 3n, and order of security Z.

5. Conclusion

In this chapter, we have discussed recent developments in the field of feebly secure
cryptographic primitives. While these primitives can hardly be put to any practical use at
present, they are still important from the theoretical point of view. As sad as it sounds, this is
actually the frontier of provable, mathematically sound results on security; we do not know
how to prove anything stronger.

Further work in this direction is twofold. One can further develop the notions of feebly
secure primitives. Constants in the orders of security can probably be improved; perhaps,
other primitives (key agreement protocols, zero knowledge proofs etc.) can find their feebly
secure counterparts. This work can widen the scope of feebly secure methods, but the real
breakthrough can only come from one place.
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It becomes clear that cryptographic needs call for further advances in general circuit
complexity. General circuit complexity has not had a breakthrough since the 1980s;
nonconstructive lower bounds are easy to prove by counting, but constructive lower bounds
remain elusive. The best bound we know is Blum’s lower bound of 3n — o(n) proven in 1984.
At present, we do not know how to rise to this challenge; none of the known methods seem to
work, so a general breakthrough is required for nonlinear lower bounds on circuit complexity.
The importance of such a breakthrough can hardly be overstated; in this chapter, we have seen
only one possible use of circuit lower bounds.
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