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1. Introduction

1.1 Aim of the chapter

Predictive Control optimization problems may be rendered infeasible in the presence of
constraints due to model-plant mismatches, external perturbations, noise or faults. This may
cause the optimizer to issue a control sequence which is impossible to implement, leading
to prediction errors, as well as loss of stability of the control loop. Such a problem motivates
the development of techniques aimed at recovering feasibility without violating hard physical
constraints imposed by the nature of the plant. Currently, setpoint management approaches
and techniques dealing with changes in the constraints are two of the most effective solutions
to recover feasibility with low computational demand. In this chapter a review of techniques
that can be understood as one of the aforementioned is presented along with some illustrative
simulation examples.

1.2 Concepts and literature review

One of the main advantages of Predictive Control is the ability to deal with constraints over
the inputs and states of the plant in an explicit manner, which brings better performance and
more safety to the operation of the plant (Maciejowski, 2002), (Rossiter, 2003). Constraints
over the excursion of the control signals are particularly common in processes that operate
near optimal conditions (Rodrigues & Odloak, 2005). However, if the optimization becomes
infeasible, possibly due to model-plant mismatches, external perturbations, noise or faults,
a control sequence which is impossible to implement may be issued, leading to prediction
errors, as well as loss of stability of the control loop (Maciejowski, 2002). Such a problem
motivates the development of techniques aimed at recovering feasibility without violating
hard physical constraints imposed by the nature of the plant.

The MPC formulation itself allows for a simple solution, which consists of enlarging the
horizons, as means to allow for more degrees of freedom in the optimization. On the other
hand, an increase in the computational burden associated to the solution of the optimization
problem results, since there are more decision variables as well as constraints. Moreover,
enlarging the horizons cannot solve all sorts of infeasibilities.

Constraint relaxation is one alternative which involves less decision variables and is usually
effective. Nevertheless, it is often not obvious which constraints to relax and the amount by
which they should be relaxed in order to attain a feasible optimization problem. There are
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different approaches for this purpose, some of which will be briefly discussed in this chapter.
Initially, one must differentiate between two types of constraints (Alvarez & de Prada, 1997),
(Vada et al., 2001):

Physical constraints: those limits that can never be surpassed and are determined by the
physical functioning of the system. For instance, a valve cannot be opened more than 100% or
less than 0%.

Operating constraints: those limits fixed by the plant operator. These limits, which are
usually more restrictive than the physical constraints, define the band within which the
variables are expected to be under normal operating conditions. For instance, it may be more
profitable to operate a chemical reactor in a certain range of temperatures, in order to favor
the kinetics of the desired reaction that forms products of economical interest. However, if
maintaining such operating condition would compromise the safety of operation of the plant
at some point, then the associated constraints could be relaxed.

The literature has many different approaches to constraint relaxation. Some infeasibility
handling techniques are described in Rawlings & Muske (1993) and Scokaert & Rawlings
(1999):

Minimal time approach: An algorithm identifies the smallest time, κ(x), which depends on
the current state x, beyond which the state constraint can be satisfied over an infinite horizon.
Prior to time κ(x), the state constraint is ignored, and the control law enforces the state
constraint only after that time. An advantage of this method is that it leads to the earliest
possible constraint satisfaction. Transient constraint violations, however, can be large.

Soft-constraint approach: Violations of the state constraints are allowed, but an additional
term is introduced in the cost function to penalize the constraint violation.

In Zafiriou & Chiou (1993) the authors propose a method for calculating the smallest
magnitude of the relaxation that renders the optimization feasible for a SISO system.

The paper by Scokaert (1994) presents many suggestions to circumvent the problem of
infeasibility, among which, one that classifies the constraints in priority levels and tries to
enforce the ones with higher priority through relaxation of the others.

Scokaert & Rawlings (1999) introduce an approach capable of minimizing the peak and
duration of the constraint violation, with advantages concerning the transient response.

A relaxation procedure that can be applied either to the controls or to the system outputs is
described by Alvarez & de Prada (1997). The control-related approach consists of relaxing
the operating constraints on the control amplitude or rate of change according to a priority
schedule. The output-related approach consists of relaxing the operating constraints on the
output amplitude or modifying the time interval where such constraints are imposed within
the prediction horizon.

In Vada et al. (2001) the proposed scheme involves the classification of the constraints
in priority levels and the solution of a linear programming problem parallel to the MPC
optimization. In Afonso & Galvão (2010a), different weights are employed for the relaxation
of operating output constraints, up to the values of physical constraints, as means to overcome
infeasibility caused by actuator faults.

Another alternative to recover feasibility are the so-called setpoint management procedures
(Bemporad & Mosca, 1994), (Gilbert & Kolmanovsky, 1995), (Bemporad et al., 1997), which
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Infeasibility Handling in Constrained MPC 3

artificially reduce the distance between the actual plant state and the constraint set. The
reference governor proposed by Kapasouris et al. (1988) inspired many techniques to deal
with problems involving actuator saturation through manipulation of the setpoint or the
tracking error (Gilbert & Kolmanovsky, 1995). There are also papers aiming at imposing a
reference model to the behavior of the plant that employ setpoint management in order to
obtain feasibility when the control signals are bounded (Montandon et al., 2008).

Stability guarantees may be achieved with setpoint management by using a terminal
constraint invariant set parameterized by the setpoint. Limon et al. (2008) employ this
technique parameterizing the terminal set in terms of the control and state setpoints. The
authors show that an optimal management of the setpoint may be achieved, guaranteeing the
smallest distance between the desired setpoint and the one used by the MPC. This procedure
increases the domain of attraction of the controller dramatically.

An application of the parameterization of the terminal set in terms of the steady-state value
of the control can be found in Almeida & Leissling (2010). In that paper, the technique is
employed to circumvent infeasibility caused by actuator faults which limit the range of values
of control that the actuator can deploy. On the other hand, in Afonso & Galvão (2010b) the
authors manage the setpoint of a state variable that does not affect the control setpoint, making
parameterization of the terminal set unnecessary, as means to overcome infeasibility brought
about by similar actuator faults.

In this chapter, the treatment of infeasibility in the optimization problem of constrained MPC
will be discussed. Some illustrative simulations will provide a basic coverage of this topic,
which is of great importance to practical implementations of MPC due to the capability of
circumventing problems brought about by model-plant mismatch, faults, noise, disturbances
or simply reducing the computational burden required to calculate an adequate control
sequence.

2. Adopted MPC formulation
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Fig. 1. MPC with inner feedback loop.
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Fig. 1 presents the main elements of the MPC formulation adopted in this chapter. Since this
is a regulator scheme, the desired equilibrium value xre f for the state must be subtracted from
the measured state of the plant xP, in order to generate the state x read by the controller:

x = xP − xre f (1)

In a similar manner, the corresponding equilibrium value of the control ure f must be added to
the output of the controller u to generate the control uP to be applied to the plant, that is:

u = uP − ure f (2)

A mathematical model of the plant is employed to calculate state predictions N steps ahead,
over the so-called “Prediction Horizon”. These predictions are determined on the basis of
the current state (x(k) ∈ Rn) and are also dependent on the future control sequence. •̂(k +
i|k) denotes the predicted value of variable • at time k + i (i ≥ 1) based on the information
available at time k. The optimization algorithm determines a control sequence, over a Control
Horizon of M steps (v̂(k + i − 1|k), i = 1, . . . , M), that minimizes the cost function specified
for the problem, possibly subject to state and/or input constraints. It is assumed that the MPC
control sequence is set to zero after the end of the Control Horizon, i.e. v̂(k + i − 1|k) = 0, i >
M. The control is implemented in a receding horizon fashion, i.e., only the first element of the
optimized control sequence is applied to the plant and the solution is recalculated at the next
sampling period taking into account the new sensor readings. Therefore, the controller output
at time k is given by u(k) = û∗(k|k) = v̂∗(k|k)− Kx(k), where K is the gain of an internal loop.

It is assumed that the dynamics of the plant can be described by a discrete state-space equation
of the form xP(k + 1) = AxP(k) + BuP(k). Therefore, the relation between u and x is given by

x(k + 1) = Ax(k) + Bu(k) (3)

The MPC controller is designed to enforce constraints of the type

uP,min ≤ uP ≤ uP,max (4)

xP,min ≤ xP ≤ xP,max (5)

Considering Eqs. (1) and (2), the constrains in Eqs. (4) and (5) can be expressed as

uP,min − ure f ≤ u ≤ uP,max − ure f (6)

xP,min − xre f ≤ x ≤ xP,max − xre f (7)

The optimization problem to be solved at instant k consists of minimizing a cost function of
the form

Jmpc =
M−1

∑
i=0

v̂T(k + i|k)Ψv̂(k + i|k) (8)

subject to the following constraints:

û(k + i|k) = −Kx̂(k + i|k) + v̂(k + i|k), i ≥ 0 (9)

v̂(k + i|k) = 0, i ≥ M (10)

x̂(k + i + 1|k) = Ax̂(k + i|k) + Bû(k + i|k), i ≥ 0 (11)

x̂(k|k) = x(k) (12)

ŷ(k + i|k) = Cx̂(k + i|k), i ≥ 0 (13)

û(k + i|k) ∈ U, i ≥ 0 (14)

x̂(k + i|k) ∈ X, i > 0 (15)
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in which Ψ = ΨT > 0 is a weight matrix and U and X are the sets of admissible controls and
states, respectively, according to Eqs. (6) and (7).

Following a receding horizon policy, the control at the k-th instant is given by u(k) = v̂∗(k|k)−
Kx(k), where K is the gain of the internal loop represented in Fig. 1. At time k + 1, the
optimization is repeated to obtain v∗(k + 1|k + 1).

The inner-loop controller is designed as a Linear Quadratic Regulator (LQR) with the
following cost function:

Jlqr = ∑
∞
i=0

[

x̂T(k + i|k)Qlqr x̂(k + i|k) + ûT(k + i|k)Rlqr û(k + i|k)
]

,

Qlqr = QT
lqr ≥ 0, Rlqr = RT

lqr > 0
(16)

with Qlqr chosen so that the pair (A, Q
1
2

lqr) is detectable.

Let P be the only non-negative symmetric solution of the Algebraic Riccati Equation P =
AT PA − AT PB(Rlqr + BT PB)−1BT PA + Qlqr. It can then be shown that, if the weight matrix

Ψ is chosen as Ψ = Rlqr + BT PB, then the minimization of the cost in Eq. (8) subject to the
constraints of Eqs. (9) – (15) is equivalent to the minimization of the cost of Eq. (16) subject
to the constraints of Eqs. (11) – (15) (Chisci et al., 2001). The outcome is that the cost function
has an infinite horizon, which is useful for stability guarantees (Scokaert & Rawlings, 1998),
(Kouvaritakis et al., 1998). It is worth noting that, due to the penalization of the control signal
v̂ in the cost of Eq. (8), the MPC acts only when it is necessary to correct the inner-loop control
in order to avoid violations of the constraints stated in Eqs. (14) and (15).

Defining vector V̂ and matrix Ψ as

V̂ =

⎡

⎢

⎣

v̂(k|k)
...

v̂(k + M − 1|k)

⎤

⎥

⎦
, Ψ =

⎡

⎢

⎣

Ψ . . . 0
...

. . .
...

0 . . . Ψ

⎤

⎥

⎦
, (17)

the cost function can be rewritten as

Jmpc = V̂TΨV̂ (18)

which is quadratic in terms of V̂.

Defining the vectors

X̂ =

⎡

⎢

⎣

x̂(k + 1|k)
...

x̂(k + N|k)

⎤

⎥

⎦
, Û =

⎡

⎢

⎣

û(k|k)
...

û(k + N − 1|k)

⎤

⎥

⎦
, (19)

the state and control prediction vectors may be related to V̂ as (Maciejowski, 2002):

X̂ = HV̂ + Φx(k)
Û = HuV̂ + Φux(k)

(20)

It is important to remark that the presence of an infinite number of constraints in Eqs. (14)
and (15) does not allow the employment of computational methods for the solution of the

51Infeasibility Handling in Constrained MPC

www.intechopen.com



6 Will-be-set-by-IN-TECH

optimization problem. However, this issue can be circumvented by introducing a terminal
constraint for the state in the form of a Maximal Output Admissible Set (MAS) (Gilbert &
Tan, 1991). This problem will be tackled in section 4. For now, it is sufficient to state that
there exists a finite horizon within which enforcement of the constraints leads to enforcement
of the constraints over an infinite horizon, given some reasonable assumptions on the plant
dynamics (Rawlings & Muske, 1993).

3. Constraint relaxation approaches

3.1 Minimal-time approach

Minimal-time approaches allow constraint violations for a certain period of time, which is
to be minimized. There is no commitment to reduce the peaks of the violations during
this period. These are, respectively, the strongest advantage and the weakest drawback of
these methods. The constraint violations are usually allowed to take place in the beginning
of the control task, which reduces the time taken to achieve feasibility at the cost of
degrading the transient response of the control-loop. Scokaert & Rawlings (1999) introduce
an approach of minimal-time solution that considers the peak violation of the constraints as a
secondary objective, after the minimization of the time to enforce the constraints. This avoids
unnecessarily large peak violations.

One possibility to avoid control constraint violations, which are usually physical ones, is to
enforce them while relaxing operating constraints on the state. This way, the problem always
becomes feasible. One algorithm that implements a solution of this type may be stated as:

Data: x(k)
Result: Optimized control sequence V̂∗

Solve constrained MPC problem;
if infeasible then

Remove constraints on the state;
Solve MPC problem;
Find κ = κunc, which is the instant at which the state constraints are all enforced;

else
Employ obtained control sequence;
Terminate.

end
while feasible do

κ ← κ − 1;
Solve MPC problem with state constraints enforced from time κ until the end of the
prediction horizon;

end
Employ last feasible control sequence;
Terminate.

Algorithm 1: Minimal-time algorithm

This algorithm determines the smallest time window over which the state constraints must be
removed at the beginning of the prediction horizon in order to attain feasibility.
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3.2 Soft-constraint approach

In this approach the cost function is modified to include a penalization on the violation of
operating constraints. This way, a compromise is achieved between time and peak values of
the violations, as well as performance of the control-loop. Scokaert & Rawlings (1999) propose
the penalization of the sum of the square of the values of the violations instead of the peak as
means to reduce their time length. This can be accomplished by simply adding slack variables
to the state/output constraints of Eq. (7) in case of infeasibility and adding a term to the
right-hand side of Eq. (8), as follows:

JSo f t =
N−1

∑
i=0

v̂T(k + i|k)Ψv̂(k + i|k) + ǫ
T
p Wǫp ǫp + ǫ

T
n Wǫn ǫn (21)

xP,min − xre f − ǫn ≤ x ≤ xP,max − xre f + ǫp,

ǫp, ǫn ≥ 0
(22)

where Wǫn and Wǫn are positive-definite weight matrices. The additional restrictions ǫp, ǫn ≥
0 impose that the constraints are not made more restrictive than their original settings.

With the cost function of Eq. (21) subject to the constraints of Eq. (22), the amount by which
each constraint is prioritized can be tuned by the choice of the weight matrices.

To this end, a rule of thumb known as “Bryson’s rule” (Franklin et al., 2005), (Bryson &
Ho, 1969) can be used as a guideline. It states that one may use the limits of the variables
as parameters to choose their weights in the cost function so that their contribution is
normalized. Therefore, the weights must be chosen so that the product between the admissible
range (maximum value - minimum value) and the weight is approximately the same for all
variables. However, in the present case, it is desirable that deviations of the slack variables
from zero are more penalized than control deviations in order to enforce the constraints when
possible. Therefore, it is reasonable to choose the weights for these variables an order of
magnitude greater than the values obtained via Bryson’s rule.

Scokaert & Rawlings (1999) discuss the inclusion of a linear term of penalization of the slack
variables as means to obtain exact relaxations, i. e., the controller relaxes the constraints
only when necessary. This can be achieved by tuning the weights of this term based on
the Lagrange multipliers associated to the constrained minimization problem. However, an
advantage of introducing terms that penalize the square of the slack variables is that the
choice of a positive-definite weight matrix leads to a well-posed quadratic program, since
the associated Hessian is positive definite.

3.3 Hard constraint relaxation with prioritization

There are methods which relax the operating constraints, possibly according to a priority
list, in order to achieve feasibility of the optimization problem. There are various techniques
employing such policies, some of which resort to optimization problems parallel to the MPC
optimization in order to determine the minimum relaxation that is necessary to achieve
feasibility. In this line, the priority list can be explored by solving many Linear Programming
(LP) problems relaxing the constraints of lower priority until feasibility is achieved or by
solving a single LP problem online as proposed by Vada et al. (2001). In their work, offline
computations of the weights of the slack variables that relax the constraints are performed.

53Infeasibility Handling in Constrained MPC
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The calculated weights have the property of relaxing the constraints according to the defined
priority in a single LP problem.

3.4 Simulation example

This example is based on a double integrator model, with sampling period of 1 time unit.
Double integrators can be used to model a number of real-world systems, such as a vehicle
moving in an environment where friction is negligible (space, for instance).

The discrete-time model matrices are:

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

(23)

and the LQR weight matrices are:

Qlqr =

[

1 0
0 1

]

, Rlqr = 1 (24)

The control and prediction horizons were set to M = 7 and N = 20, respectively.

The constraints are: −0.5 ≤ x1 ≤ 0.5 (position), −0.1 ≤ x2 ≤ 0.1 (velocity) and −0.01 ≤ u ≤
0.01 (acceleration).

A comparison between the results obtained with a minimal-time solution and a soft constraint
approach is presented. Two choices of weight matrices were considered:

W1
ǫn

= W1
ǫp

= W1 =

[

10 0
0 20

]

, W2
ǫn

= W2
ǫp

= W2 =

[

100 0
0 10000

]

(25)

The application of Bryson’s rule to adjust the weight matrices would require the definition
of an acceptable violation of the constraints, which could be established as the difference
between physical and operating state constraints. However, since this example does not
discriminate between these two types of constraints, the W1 and W2 matrices were chosen
for the sole purpose of illustrating the effect of varying the weights.

The initial state of the system is x0 = [1.5 0]T , which violates the constraints on x1.

The first comparison involves the two infeasibility handling techniques (minimal-time and
soft constraint). For this purpose, the W1 weight matrix was employed. Figures 2 and 3
show the resulting state trajectories. It can be seen that the minimal-time approach leads to
a faster recovery of feasibility, as the soft constraint approach takes longer to enforce all the
constraints. This result can also be associated to the control profile presented in Fig. 4. In fact,
the control obtained with the minimal-time approach reverses its sign earlier, as compared to
the soft constraint approach.

The second comparison involves three scenarios: no state constraints and soft constraint
approach with weights W1 and W2. Figures 5, 6 and 7 show the resulting state and control
trajectories. As can be seen, a reduction in the weights tends to generate a solution closer
to the unconstrained case. In fact, smaller weights on the slack variables result in a smaller
penalization of the constraint violations. In the limit, if the weights are made equal to zero,
the constraints can be relaxed as much as it is needed and therefore the unconstrained optimal
solution is obtained.
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Fig. 2. Position (x1) with constraint relaxation.
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Fig. 3. Velocity (x2) with constraint relaxation.
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Fig. 4. Acceleration (u) with constraint relaxation.
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Fig. 5. Position (x1) without state constraints and with soft constraint relaxation.
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Fig. 6. Velocity (x2) without state constraints and with soft constraint relaxation.
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Fig. 7. Acceleration (u) without state constraints and with soft constraint relaxation.
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4. Setpoint management approaches

The main idea behind setpoint management schemes is to find a new setpoint x′re f (k) =

xre f (k)−Cμ at each time k in order to make the problem feasible and to progressively steer the
system state towards the original setpoint xre f . μ ∈ Rn is the setpoint management variable

and C ∈ Rq×n is a constant matrix. It is worth noting that, in the general case, changing the
setpoint xre f would also affect the corresponding setpoint ure f for the control. As a result,
the bounds on the control u would need to be changed, which would require the online
recalculation of the terminal constraint set. Therefore, the class of systems considered in this
study are restricted to those which require no adjustment in the control setpoint after a change
in the state setpoint. This is a property of plants with integral behavior.

It is worth noting that these setpoint modifications impose a need of redetermination of the
MAS every time the value of μ changes. The approach presented in the following subsection
introduces a parameterization of the MAS in terms of the possible values of μ, avoiding the
necessity to repeat the determination of the terminal set online.

4.1 Parameterization of the MAS

The parameterization of the MAS may be carried out through the employment of an
augmented state vector x̄ defined as (Almeida & Leissling, 2010)

x̄ =

[

x

μ

]

, (26)

which evolves inside the MAS according to

x̄(k + 1) = Āx̄(k), Ā =

[

A − BK 0

0 In

]

. (27)

It is worth noting that the identity matrix In ∈ Rn×n multiplies the additional components
of the state because these are supposed to remain constant along the prediction horizon.
Although Ā has eigenvalues in the border of the unit circle (eigenvalues at +1 associated
to the matrix In), it is still possible to determine the MAS in a finite number of steps because
the dynamics given by Eq. (27) is stable in the Lyapunov sense (Gilbert & Tan, 1991).

The state constraints are altered by the management variable μ in the following fashion:

xP,min − xre f + Cμ ≤ x ≤ xP,max − xre f + Cμ (28)

where C is a matrix that relates the vector μ ∈ Rn of setpoint management variables to the
corresponding component of the state vector x ∈ Rn whose setpoint is managed.

In order to incorporate the constraints to the parameterization, an auxiliary output variable z̄
may be defined as

z̄ =

[

x − Cμ

−x + Cμ

]

(29)

which is subject to the following constraints:
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z̄ ≤

[

xP,max − xre f

xre f − xP,min

]

(30)

Since u = −Kx inside the MAS, the output function for the determination of the MAS becomes
z̄ = C̄x̄ with

C̄ =

[

In −C

−In C

]

(31)

Having determined the MAS (Ō∞) associated to the dynamics of Eq. (27) with the constraints
of Eq. (30), it can be particularized online by fixing the value of μ. The set Ō∞ obtained is
invariant regarding matrix Ā. It is convenient to note that the terminal constraint x̂(k+ N|k) ∈
Ō∞ for a particular choice of μ can replace the constraints from i = N onwards in Eqs. (14)
and (15). Imposing x̂(k + N|k) ∈ Ō∞ is equivalent to imposing the constraints û(k + i|k) ∈ U

and x̂(k + i|k) ∈ X until i = N + t∗, with t∗ obtained during the offline determination of the
parameterized MAS. Therefore, the infinite set of constraints of Eqs. (14) and (15) is reduced
to a finite one.

4.2 Optimization problem formulation

Considering the setpoint management, the optimization problem to be solved at time k now
involves V̂ and μ as decision variables.

Thus, the optimization problem becomes

min
V̂, μ

V̂TΨV̂ + μ
TWμμ (32)

s.t.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

HU

−HU

H

−H

⎤

⎥

⎥

⎥

⎥

⎥

⎦

V̂ ≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

umax − ure f

]

N+t∗+1
− ΦU(xP(k)− xre f + Cμ)

ΦU(xP(k)− xre f + Cμ)−
[

umin − ure f +
]

N+t∗+1
[

xP,max − xre f + Cμ

]

N+t∗
− Φ(xP(k)− xre f + Cμ)

Φ(xP(k)− xre f + Cμ)−
[

xP,min − xre f + Cμ

]

N+t∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where Wμ is a positive-definite weight matrix, the operator [•]j stacks j copies of vector •, and

H, Hu, Φ and Φu are in accordance with Eq. 20.

The greater the weights in Wμ in comparison to Ψ, the closer the solution is to the one obtained
without the need of setpoint management.

After the solution of the optimization problem of Eq. (32), the control signal to be applied to
the plant is given by

uP(k) = ure f + v̂∗(k|k)− K(xP(k)− xre f + Cμ
∗) (33)

59Infeasibility Handling in Constrained MPC

www.intechopen.com



14 Will-be-set-by-IN-TECH

4.3 Simulation example

The simulation scenario employed in this example is the same as that of subsection 3.4. Only
the constraints over the position variable are different (−1 ≤ x1 ≤ 1). The determination of
the MAS leads to t∗ = 7 and M remains equal to 7. Therefore, the constraint horizon in order
to guarantee that the constraints are enforced over an infinite horizon is N = M + t∗ = 14.

The initial state is x0 = [1 0]T , which respects the constraints. However, the problem is
infeasible, making the employment of a technique to recover feasibility mandatory. The
procedure described in this section can be used to recover feasibility. The setpoint of the
position is chosen for management, meaning that μ ∈ R and

C =

[

1
0

]

(34)

It is desirable to keep the setpoint management as close to zero as possible. To this end, the
weight of the setpoint management variable is chosen as Wμ = 1000.

Figure 8 shows the position variable, which starts at the edge of the constraint and is steered
to the origin without violating the constraints.

0 10 20 30 40
−1

−0.5

0

0.5

1

t

x1(t)

Fig. 8. Position (x1) with setpoint management.

It can be seen in Fig. 9 that the velocity variable gets close to its lower bound (−0.1), but this
constraint is also satisfied. Figure 10 shows that the constraints on the acceleration are active
in the beginning of the maneuver, but are not violated.

The setpoint management variable μ is shown in Fig. 11. It can be seen that the management
technique is applied up to time t = 10. This time coincides with the change in the acceleration
from negative to positive.
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Fig. 9. Velocity (x2) with setpoint management.
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Fig. 10. Acceleration (u) with setpoint management.
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Fig. 11. Position setpoint management variable (μ).

5. Conclusions

In real applications of MPC controllers, noise, disturbances, model-plant mismatches and
faults are commonly found. Therefore, infeasibility of the associated optimization problem
can be a recurrent issue. This justifies the study of techniques capable of driving the
system to a feasible region, since infeasibility may cause prediction errors, deployment of
impracticable control sequences and instability of the control loop. Computational workload
is also of great concern in real applications, thus the adopted techniques must be simple
enough to be executed in a commercial off-the-shelf computer within the sample period and
effective enough to make the problem feasible. In this chapter a review of the literature
regarding feasibility issues was presented and two of the more widely adopted approaches
(constraint relaxation and setpoint management) were described. Simulation examples of
some illustrative techniques were presented in order to clarify the advantages, drawbacks
and difficulties in implementation of some techniques.
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