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1. Introduction

Model predictive control (MPC) is a modern control scheme that relies on the solution of an

optimal control problem (OCP) on a receding horizon. MPC schemes have been developed

in various formulations (regarding continuous/discrete-time systems, finite/infinite horizon

length, terminal set/equality constraints, etc.). Comprehensive overviews and references on

MPC can, for instance, be found in Diehl et al. (2009); Grüne & Pannek (2011); Kothare &

Morari (2000); Mayne et al. (2000); Rawlings & Mayne (2009).

Although the methodology of MPC is naturally suited to handle constraints and

multiple-input systems, the iterative solution of the underlying OCP is in general

computationally expensive. An intuitive approach to reducing the computational load is

to solve the OCP approximately, for instance, by using a fixed number of iterations in each

sampling step. In the next MPC step, the previous solution can be used for a warm-start of

the optimization algorithm in order to successively reduce the suboptimality of the predicted

trajectories. This incremental strategy differs from the “optimal” MPC case where the

(numerically exact) OCP solution is assumed to be known.

There exist various suboptimal and real-time approaches in the literature with different kinds

of terminal constraints and demands on the optimization algorithm (Cannon & Kouvaritakis,

2002; DeHaan & Guay, 2007; Diehl et al., 2005; Graichen & Kugi, 2010; Lee et al., 2002;

Michalska & Mayne, 1993; Ohtsuka, 2004; Scokaert et al., 1999). In particular, the approaches

of Ohtsuka (2004) and Diehl et al. (2005) are related to the MPC scheme presented in

this chapter. In Ohtsuka (2004), an algorithm is developed that traces the solution of the

discretized optimality conditions over the single sampling steps. The real-time iteration

scheme presented by Diehl et al. (2005) uses a Newton scheme together with terminal

constraints in order to compute an approximate solution that is refined in each sampling step.

Suboptimal MPC schemes require special attention regarding their convergence and stability

properties. This is particularly important if an MPC formulation without terminal constraints

is used in order to minimize the computational complexity and to allow for a real-time

implementation for very fast dynamical systems. In this context, a suboptimal MPC approach

without terminal constraints was investigated in Graichen & Kugi (2010). Starting from the

assumption that an optimization algorithm with a linear rate of convergence exists, it is
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shown that exponential stability of the closed-loop system as well as exponential decay of

the suboptimality can be guaranteed if the number of iterations per sampling step satisfies

a lower bound (Graichen & Kugi, 2010). The decay of the suboptimality also illustrates the

incremental improvement of the MPC scheme.

Based on these theoretical considerations (Graichen & Kugi, 2010), this chapter presents

a real-time MPC scheme that relies on the gradient method in optimal control (Dunn,

1996; Graichen et al., 2010; Nikol’skii, 2007). This algorithm is particularly suited for a

real-time implementation, as it takes full advantage of the MPC formulation without terminal

constraints. In addition, the gradient method allows for a memory and time efficient

computation of the single iterations, which is of importance in order to employ the MPC

scheme for fast dynamical systems.

In this chapter, the gradient-based MPC algorithm is described for continuous-time nonlinear

systems subject to control constraints. Starting from the general formulation of the MPC

problem, the stability properties in the optimal MPC case are summarized before the

suboptimal MPC strategy is discussed. As a starting point for the derivation of the gradient

method, the necessary optimality conditions for the underlying OCP formulation without

terminal constraints are derived from Pontryagin’s Maximum Principle. Based on the

optimality conditions, the gradient algorithm is described and its particular implementation

within a real-time MPC scheme is detailed. The algorithm as well as its properties and

incremental improvement in the MPC scheme are numerically investigated for the double

pendulum on a cart, which is a benchmark in nonlinear control. The simulation results as

well as the CPU time requirements reveal the efficiency of the gradient-based MPC scheme.

2. MPC formulation

We consider a nonlinear continuous-time system of the form

ẋ(t) = f (x(t), u(t)) x(t0) = x0 , t ≥ t0 (1)

with the state x ∈ R
n and the control u ∈ R

m subject to the control constraints

u(t) ∈ [u−, u+] . (2)

Without loss of generality, we assume that the origin is an equilibrium of the system (1) with

f (0, 0) = 0. Moreover, the system function f is supposed to be continuously differentiable in

its arguments. This section summarizes the MPC formulation as well as basic assumptions

and basic results for the stability of the MPC scheme in closed-loop.

2.1 Optimal control problem

For stabilizing the origin of the system (1), an MPC scheme based on the following optimal

control problem (OCP) is used

min
ū∈U[0,T]

J(xk , ū) = V(x̄(T)) +
∫ T

0
l(x̄(τ), ū(τ)) dτ (3a)

s.t. ˙̄x(τ) = f (x̄(τ), ū(τ)) , x̄(0) = xk = x(tk) , (3b)

10 Frontiers of Model Predictive Control
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where U[0,T] is the admissible input space

U[0,T] := {u(·) ∈ Lm
∞[0, T] : u(t) ∈ [u−, u+], t ∈ [0, T]} . (4)

The initial condition x(tk) = xk in (3b) denotes the measured (or observed) state of the

system (1) at time tk = t0 + k∆t with the sampling time ∆t. The bared variables x̄(τ),
ū(τ) represent internal variables of the controller with the MPC prediction time coordinate

τ ∈ [0, T] and the horizon length T ≥ ∆t.

The integral and the terminal cost functions in (3a) are assumed to be continuously

differentiable and to satisfy the quadratic bounds

ml(||x||
2 + ||u||2) ≤l(x, u)≤ Ml(||x||

2 + ||u||2)

mV ||x||
2 ≤ V(x) ≤ MV ||x||

2
(5)

for some constants ml , Ml > 0 and mV , MV > 0. The optimal solution of OCP (3) is denoted

by

ū∗
k (τ) := ū∗(τ; xk), x̄∗k (τ) := x̄∗(τ; xk, ū∗

k ) , τ ∈ [0, T] , J∗(xk) := J(xk , ū∗
k ) . (6)

To obtain a stabilizing MPC feedback law on the sampling interval [tk, tk+1), the first part of

the optimal control ū∗
k (τ) is used as control input for the system (1)

u(tk + τ) = ū∗
k (τ) =: κ(x̄∗k (τ); xk) , τ ∈ [0, ∆t) , (7)

which can be interpreted as a nonlinear “sampled” control law with κ(0; xk) = 0. In the next

MPC step at time tk+1, OCP (3) is solved again with the new initial condition xk+1. In the

absence of model errors and disturbances, the next point xk+1 is given by xk+1 = x̄∗k (∆t) and
the closed-loop trajectories are

x(t) = x(tk + τ) = x̄∗(τ; xk) ,

u(t) = u(tk + τ) = ū∗(τ; xk) , τ ∈ [0, ∆t) , k ∈ N
+
0 .

(8)

2.2 Domain of attraction and stability

The following lines summarize important results for the “optimal” MPC case without terminal

constraints, i.e. when the optimal solution (6) of OCP (3) is assumed to be known in each

sampling step. These results are the basis for the suboptimal MPC case treated in Section 3.

Some basic assumptions are necessary to proceed:

Assumption 1. For every x0 ∈ R
n and u ∈ U[0,T], the system (1) has a bounded solution over [0, T].

Assumption 2. OCP (3) has an optimal solution (6) for all xk ∈ R
n.

Since u is constrained, Assumption 1 is always satisfied for systems without finite escape

time. Moreover, note that the existence of a solution of OCP (3) in Assumption 2 is not

very restrictive as no terminal constraints are considered and all functions are assumed to

be continuously differentiable. 1.

1 Theorems on existence and uniqueness of solutions for certain classes of OCPs can, for instance, be
found in Berkovitz (1974); Lee & Markus (1967).

11A Real-Time Gradient Method for Nonlinear Model Predictive Control
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An MPC formulation without terminal constraints has been subject of research by several

authors, see for instance Graichen & Kugi (2010); Ito & Kunisch (2002); Jadbabaie et al. (2001);

Limon et al. (2006); Parisini & Zoppoli (1995). Instead of imposing a terminal constraint, it is

often assumed that the terminal cost V represents a (local) Control Lyapunov Function (CLF)
on an invariant set Sβ containing the origin.

Assumption 3. There exists a compact non-empty set Sβ = {x ∈ R
n : V(x) ≤ β} and a (local)

feedback law q(x) ∈ [u−, u+] such that ∀x ∈ Sβ

∂V

∂x
f (x, q(x)) + l(x, q(x)) ≤ 0 . (9)

There exist several approaches in the literature for constructing a CLF as terminal cost, for

instance Chen & Allgöwer (1998); Primbs (1999). In particular, V(x) can be designed as a

quadratic function V(x) = xTPx with the symmetric and positive definite matrix P following

from a Lyapunov or Riccati equation provided that the linearization of the system (1) about

the origin is stabilizable.

An important requirement for the stability of an MPC scheme without terminal constraints is

to ensure that the endpoint of the optimal state trajectory x̄∗k (T) reaches the CLF region Sβ.

The following theorem states this property more clearly and relates it to the overall stability

of the (optimal) MPC scheme.

Theorem 1 (Stability of MPC scheme – optimal case). Suppose that Assumptions 1-3 are satisfied
and consider the compact set

Γα = {x ∈ R
n : J∗(x) ≤ α} , α := β

(

1 +
ml

MV
T
)

. (10)

Then, for all x0 ∈ Γα the following holds:

1. For all MPC steps, it holds that xk ∈ Γα. Moreover, the endpoint of the optimal state trajectory

x̄∗k (τ), τ ∈ [0, T] reaches the CLF region, i.e. x̄∗k (T) ∈ Sβ.

2. Γα contains the CLF region, i.e. Sβ ⊆ Γα.

3. The optimal cost satisfies

J∗(x̄∗k (∆t)) ≤ J∗(xk)−
∫

∆t

0
l(x̄∗k (τ), ū∗

k (τ))dτ ∀ xk ∈ Γα . (11)

4. The origin of the system (1) under the optimal MPC law (7) is asymptotically stable in the sense

that the closed-loop trajectories (8) satisfy limt→∞ ||x(t)|| = 0.

The single statements 1-4 in Theorem 1 are discussed in the following:

1. The sublevel set Γα defines the domain of attraction for the MPC scheme without terminal

constraints (Graichen & Kugi, 2010; Limon et al., 2006). The proof of this statement is given

in Appendix A.

2. Although α in (10) leads to a rather conservative estimate of Γα due to the nature of the

proof (see Appendix A), it nevertheless reveals that Γα can be enlarged by increasing the

horizon length T.

12 Frontiers of Model Predictive Control
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3. The decrease condition (11) for the optimal cost at the next point xk+1 = x̄∗k (∆t) follows

from the CLF property (9) on the set Sβ (Jadbabaie et al., 2001). Indeed, consider the

trajectories

x̂(τ) =

{

x̄∗k (τ + ∆t), τ ∈ [0, T−∆t)

x̄q(τ − T + ∆t), τ ∈ [T−∆t, T]
, û(τ) =

{

ū∗
k (τ + ∆t), τ ∈ [0, T−∆t)

ūq(τ − T + ∆t), τ ∈ [T−∆t, T]

where x̄q(τ) with x̄q(0) = x̄∗k (T) is the state trajectory that results from applying the local

CLF law ūq(τ) = q(x̄q(τ)). Note that x̄q(τ) ∈ Sβ for all τ ≥ 0, i.e. Sβ ist positive invariant

due to the definition of Sβ and the CLF inequality (9) that can be expressed in the form

d

dτ
V(x̄q(τ)) ≤ −l(x̄q(τ), ūq(τ)) . (12)

Hence, the following estimates hold

J∗(x∗k (∆t)) ≤
∫ T

0
l(x̂(τ), û(τ))dτ + V(x̂(T))

= J∗(xk)−
∫

∆t

0
l(x̄∗k (τ), ū∗

k (τ))dτ

+ V(x̄q(∆t))− V(x̄q(0)) +
∫

∆t

0
l(x̄q(τ), ūq(τ)) dτ .

︸ ︷︷ ︸

≤ 0

(13)

4. Based on (11), Barbalat’s Lemma allows one to conclude that the closed-loop trajectories (8)

satisfy limt→∞ ||x(t)|| = 0, see e.g. Chen & Allgöwer (1998); Fontes (2001). Note that this

property is weaker than asymptotic stability in the sense of Lyapunov, which can be proved

if the optimal cost J∗(xk) is continuously differentiable (Findeisen, 2006; Fontes et al., 2007).

3. Suboptimal MPC for real-time feasibility

In practice, the exact solution of the receding horizon optimal control problem is typically

approximated by a sufficiently accurate numerical solution of a suitable optimization

algorithm. If the sampling time ∆t is large enough, this numerical approximation will be

sufficiently close to the optimal MPC case considered in the last section. However, for

large-scale systems or highly dynamical systems, an accurate near-optimal solution often

cannot be determined fast enough. This problem, often encountered in practice, gives rise

to suboptimal MPC strategies, where an approximate solution is computed in each sampling

step. This section develops the necessary changes and differences to the ideal case due to an

incremental solution of the underlying OCP solution for a class of optimization algorithms.

3.1 Suboptimal solution strategy

Several suboptimal MPC strategies were already mentioned in the introduction (Cannon &

Kouvaritakis, 2002; DeHaan & Guay, 2007; Diehl et al., 2005; Lee et al., 2002; Michalska &
Mayne, 1993; Scokaert et al., 1999). Moreover, a suboptimal MPC scheme without terminal

constraints – as considered in this chapter – was investigated in Graichen & Kugi (2010).

13A Real-Time Gradient Method for Nonlinear Model Predictive Control
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Instead of relying on one particular optimization method, it is assumed in Graichen & Kugi

(2010) that an optimization algorithm exists that computes a control and state trajectory

ū
(j)
k (τ) := ū(j)(τ; xk), x̄

(j)
k (τ) := x̄(j)(τ; xk, ū

(j)
k ) , τ ∈ [0, T] , j ∈ N

+
0 (14)

in each iteration j while satisfying a linear rate of convergence

J(xk , ū
(j+1)
k )− J∗(xk) ≤ p

(

J(xk , ū
(j)
k )− J∗(xk)

)

, j ∈ N
+
0 (15)

with a convergence rate p ∈ (0, 1) and the limit limj→∞ J(xk , ū
(j)
k ) = J∗(xk).

In the spirit of a real-time feasible MPC implementation, the optimization algorithm is

stopped after a fixed number of iterations, j = N, and the first part of the suboptimal control

trajectory ū
(N)
k (τ) is used as control input

u(tk + τ) = ū
(N)
k (τ) , τ ∈ [0, ∆t) , k ∈ N

+
0 (16)

to the system (1). In the absence of model errors and disturbances the next point xk+1 is given

by xk+1 = x̄
(N)
k (∆t) and the closed-loop trajectories are

x(t) = x(tk + τ) = x̄(N)(τ; xk) ,

u(t) = u(tk + τ) = ū(N)(τ; xk) , τ ∈ [0, ∆t) , k ∈ N
+
0 .

(17)

Compared to the “optimal” MPC case, where the optimal trajectories (6) are computed in each

MPC step k, the trajectories (14) are suboptimal, which can be characterized by the optimization

error

∆J(N)(xk) := J(ū
(N)
k , xk)− J∗(xk) ≥ 0 . (18)

In the next MPC step, the last control ū
(N)
k (shifted by ∆t) is re-used to construct a new initial

control

ū
(0)
k+1(τ) =

{

ū
(N)
k (τ + ∆t) if τ ∈ [0, T − ∆t)

q(x̄
(N)
k (T)) if τ ∈ [T − ∆t, T] ,

(19)

where the last part of ū
(0)
k+1 is determined by the local CLF feedback law. The goal of the

suboptimal MPC strategy therefore is to successively reduce the optimization error ∆J(N)(xk)
in order to improve the MPC scheme in terms of optimality. Figure 1 illustrates this context.

3.2 Stability and incremental improvement

Several further assumptions are necessary to investigate the stability and the evolution of the

optimization error for the suboptimal MPC scheme.

Assumption 4. The optimal control law in (7) is locally Lipschitz continuous.

Assumption 5. For every ū ∈ U[0,T], the cost J(xk , ū) is twice continuously differentiable in xk.

Assumption 6. For all ū ∈ U[0,T] and all xk ∈ Γα, the cost J(xk , ū) satisfies the quadratic growth

condition C||ū − ū∗
k ||

2
Lm

2 [0,T] ≤ J(xk , ū)− J∗(xk) for some constant C > 0.

14 Frontiers of Model Predictive Control
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tk+1 tk+20 tk tk+3 t

opt. error ∆J (N)(xk)

suboptimal cost J(xk, ū
(N)
k

)

optimal cost J∗(xk)

suboptimal

xk

xk+2

xk+3

optimal

traj. x̄∗

k
(τ)

xk+1 traj. x̄
(N)
k

(τ)

x

tk+1 tk+20 tk tk+3 t

J

Fig. 1. Illustration of the suboptimal MPC implementation.

Assumption 6 is always satisfied for linear systems with quadratic cost functional as proved

in Appendix B. In general, the quadratic growth property in Assumption 6 represents a

smoothness assumption which, however, is weaker than assuming strong convexity (it is well

known that strong convexity on a compact set implies quadratic growth, see, e.g., Allaire

(2007) and Appendix B). 2

The stability analysis for the suboptimal MPC case is more involved than in the “optimal”

MPC case due to the non-vanishing optimization error ∆J(N)(xk). An important question in

this context is under which conditions the CLF region Sβ can be reached by the suboptimal

state trajectory x̄
(N)
k (τ). The following theorem addresses this question and also gives

sufficient conditions for the stability of the suboptimal MPC scheme.

Theorem 2 (Stability of MPC scheme – suboptimal case). Suppose that Assumptions 1-6 are

satisfied and consider the subset of the domain (10)

Γα̂ = {x ∈ R
n : J∗(x) ≤ α̂} , α̂ =

mV

4MV
α < α . (20)

Then, there exists a minimum number of iterations N̂ ≥ 1 and a maximum admissible optimization

error ∆ Ĵ ≥ 0, such that for all x0 ∈ Γα̂ and all initial control trajectories ū
(0)
0 ∈ U[0,T] satisfying

∆J(0)(x0) ≤ p−N
∆ Ĵ the following holds:

1. For all MPC steps, it holds that xk ∈ Γα̂. Moreover, the endpoint of the (suboptimal) state trajectory

x̄
(N)
k (τ), τ ∈ [0, T] reaches the CLF region, i.e. x̄

(N)
k (T) ∈ Sβ.

2. Γα̂ contains the CLF region, i.e. Sβ ⊆ Γα̂, if the horizon length satisfies T ≥ ( 4MV
mV

− 1) MV
ml

.

3. The origin of the system (1) under the suboptimal MPC law (16) is exponentially stable.

4. The optimization error (18) decays exponentially.

The proof of Theorem 2 consists of several intermediate lemmas and steps that are given

in details in Graichen & Kugi (2010). The statements 1-4 in Theorem 2 summarize several

important points that deserve some comments.

2 A simple example is the function f (x) = x2 + 10 sin2 x with the global minimum f (x∗) = 0 at x∗ = 0.

Let x be restricted to the interval x ∈ [−5, 5]. Clearly, the quadratic growth property 1
2 |x − x∗|2 ≤

f (x)− f (x∗) is satisfied for x ∈ [−5, 5] although f (x) is not convex on this interval.

15A Real-Time Gradient Method for Nonlinear Model Predictive Control
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1. The reduced size of Γα̂ compared to Γα is the necessary “safety” margin to account for

the suboptimality of the trajectories (6) characterized by ∆J(N)(xk). Thus, the domain

of attraction Γα̂ together with an admissible upper bound on the optimization error

guarantees the reachability of the CLF region Sβ.

2. An interesting fact is that it can still be guaranteed that Γα̂ is at least as large as the CLF

region Sβ provided that the horizon time T satisfies a lower bound that depends on the

quadratic estimates (5) of the integral and terminal cost functions. It is apparent from the

bound T ≥ ( 4MV
mV

− 1) MV
ml

that the more dominant the terminal cost V(x) is with respect to

the integral cost function l(x, u), the larger this bound on the horizon length T will be.

3. The minimum number of iterations N̂ for which stability can be guaranteed ensures –

roughly speaking – that the numerical speed of convergence is faster than the system

dynamics. In the proof of the theorem (Graichen & Kugi, 2010), the existence of the lower

bound N̂ is shown by means of Lipschitz estimates, which usually are too conservative to

be used for design purposes. For many practical problems, however, one or two iterations

per MPC step are sufficient to ensure stability and a good control performance.

4. The exponential reduction of the optimization error ∆J(N)(xk) follows as part of the proof

of stability and reveals the incremental improvement of the suboptimal MPC scheme over

the MPC runtime.

4. Gradient projection method

The efficient numerical implementation of the MPC scheme is of importance to guarantee

the real-time feasibility for fast dynamical systems. This section describes the well-known

gradient projection in optimal control as well as its suboptimal implementation in the context

of MPC.

4.1 Optimality conditions and algorithm

The MPC formulation without terminal constraints has particular advantages for the structure

of the optimality conditions of the OCP (3). To this end, we define the Hamiltonian

H(x, λ, u) = l(x, u) + λT f (x, u) (21)

with the adjoint state λ ∈ R
n. Pontryagin’s Maximum Principle 3 states that if ū∗

k (τ), τ ∈ [0, T]
is an optimal control for OCP (3), then there exists an adjoint trajectory λ̄∗

k (τ), τ ∈ [0, T] such

that x̄∗k (τ) und λ̄∗
k (τ) satisfy the canonical boundary value problem (BVP)

˙̄x∗k (τ) = f (x̄∗k (τ), ū∗
k (τ)) , x̄∗k (0) = xk (22)

˙̄λ∗
k (τ) = −Hx(x̄

∗
k (τ), λ̄∗

k (τ), ū∗
k (τ)) , λ̄∗

k (T) = Vx(x̄
∗
k (T)) (23)

and ū∗
k (τ) minimizes the Hamiltonian for all times τ ∈ [0, T], i.e.

H(x̄∗k (τ), λ̄∗
k (τ), ū∗

k (τ)) ≤ H(x̄∗k (τ), λ̄∗
k (τ), u) , ∀ u ∈ [u−, u+] , ∀ τ ∈ [0, T] . (24)

3 The general formulation of Pontryagin’s Maximum Principle often uses the Hamiltonian definition
H(x, λ, u, λ0) = λ0 l(x, u) + λT f (x, u), where λ0 accounts for “abnormal” problems as, for instance,
detailed in Hsu & Meyer (1968). Typically, λ0 is set to λ0 = 1, which corresponds to the definition (21).

16 Frontiers of Model Predictive Control
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The functions Hx and Vx denote the partial derivatives of H and V with respect to x. The

minimization condition (24) also allows one to conclude that the partial derivative Hu =
[Hu,1, . . . , Hu,m]

T of the Hamiltonian with respect to the control u = [u1, . . . , um]
T has to satisfy

Hu,i(x̄
∗
k (τ), λ̄∗

k (τ), ū∗
k (τ))

⎧

⎪⎨

⎪⎩

> 0 if ū∗
k,i(τ) = u−

i

= 0 if ū∗
k,i(τ) ∈ (u−

i , u+
i ) ,

< 0 if ū∗
k,i(τ) = u+

i

i = 1, . . . , m , τ ∈ [0, T] .

The adjoint dynamics in (23) possess n terminal conditions which is due to the free endpoint

formulation of OCP (3). This property is taken advantage of by the gradient method,

which solves the canonical BVP (22)-(23) iteratively forward and backward in time. Table 1

summarizes the algorithm of the gradient (projection) method.

The search direction s̄
(j)
k (τ), τ ∈ [0, T] is the direction of improvement for the current

control ū
(j)
k (τ). The step size α

(j)
k is computed in the subsequent line search problem (28)

in order to achieve the maximum possible descent of the cost functional (3a). The function

1) Initialization for j = 0 :

– Set convergence tolerance ε J (e.g. ε J = 10−6)

– Choose initial control trajectory ū
(0)
k ∈ U[0,T]

– Integrate forward in time

˙̄x
(0)
k (τ) = f (x̄

(0)
k (τ), ū

(0)
k (τ)) , x̄

(0)
k (0) = xk (25)

2) Gradient step: While j ≤ N Do

– Integrate backward in time

˙̄λ
(j)
k (τ) = −Hx(x̄

(j)
k (τ), λ̄

(j)
k (τ), ū

(j)
k (τ)) , λ̄

(j)
k (T) = Vx(x̄

(j)
k (T)) (26)

– Compute the search direction

s̄
(j)
k (τ) = −Hu(x̄

(j)
k (τ), λ̄

(j)
k (τ), ū

(j)
k (τ)) , τ ∈ [0, T] (27)

– Compute the step size α
(j)
k by (approximately) solving the line search problem

α
(j)
k = arg min

α>0
J
(

xk, ψ(ū
(j)
k + αs̄

(j)
k )

)

(28)

– Compute the new control trajectory

ū
(j+1)
k (τ) = ψ

(

ū
(j)
k (τ) + α

(j)
k s̄

(j)
k (τ)

)

(29)

– Integrate forward in time

˙̄x
(j+1)
k (τ) = f (x̄

(j+1)
k (τ), ū

(j+1)
k (τ)) , x̄

(j+1)
k (0) = xk (30)

– Quit if |J(xk , ū
(j+1)
k )− J(xk , ū

(j)
k )| ≤ ε J . Otherwise set j ← j + 1 and return to 2).

Table 1. Gradient projection method for solving OCP (3).
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ψ = [ψ1, . . . , ψm]
T in (28) represents a projection function of the form

ψi(ui) =

⎧

⎪⎨

⎪⎩

u−
i if ui < u−

i

u+
i if ui > u+

i ,

ui else

i = 1, . . . , m (31)

which guarantess the adherence of the input constraints [u−, u+]. For the real-time

implementation within a suboptimal MPC scheme, the line search problem (28) can be solved

in an approximate manner (see Section 4.2). Finally, the control trajectory ū
(j+1)
k (τ), τ ∈ [0, T]

follows from evaluating (29) with s̄
(j)
k (τ) and the step size α

(j)
k .

The convergence properties of the gradient (projection) method are investigated, for instance,

in Dunn (1996); Leese (1977); Nikol’skii (2007). In particular, Dunn (1996) proved under

certain convexity and regularity assumptions that the gradient method exhibits a linear rate

of convergence of the form (15).

4.2 Adaptive line search

The line search (28) represents a scalar optimization problem that is often solved

approximately. The most straightforward way is to use a fixed step size α throughout all

gradient iterations. This, however, usually leads to a slow rate of convergence.

An attractive alternative to a constant step size is to use a polynomial approximation with an

underlying interval adaptation. To this end, the cost functional J
(

xk, ψ(ū
(j)
k + αs̄

(j)
k )

)
in the

line search problem (28) is evaluated at three sample points

α1 < α2 < α3 with α2 = (α1 + α3)/2 (32)

that are used to construct a quadratic polynomial approximation g(α) of the form

J
(

xk, ψ(ū
(j)
k + αs̄

(j)
k )

)

≈ g(α) := c0 + c1α + c2α2 . (33)

The coefficients c0, c1, c2 are obtained by solving the set of equations

J
(

xk , ψ(ū
(j)
k + αi s̄

(j)
k )

)

=: Ji = g(αi) , i = 1, 2, 3 (34)

with the explicit solution

c0 =
α1 (α1 − α2) α2 J3 + α2α3 (α2 − α3) J1 + α1α3 (α3 − α1) J2

(α1 − α2) (α1 − α3) (α2 − α3)

c1 =

(
α2

2 − α2
1

)
J3 +

(
α2

1 − α2
3

)
J2 +

(
α2

3 − α2
2

)
J1

(α1 − α2) (α1 − α3) (α2 − α3)
(35)

c2 =
(α1 − α2) J3 + (α2 − α3) J1 + (α3 − α1) J2

(α1 − α2) (α1 − α3) (α2 − α3)
.
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If c2 > 0, then the polynomial g(α) has a minimum at the point

α̂ = −
c1

2c2
. (36)

If in addition α̂ lies inside the interval [α1, α3], then α̂ = α
(j)
k approximately solves the line

search problem (28). Otherwise, α
(j)
k is set to one of the interval bounds α1 or α3. In this

case, the interval [α1, α3] can be adapted by a scaling factor to track the minimum point of the

line search problem (28) over the single gradient iterations. Table 2 summarizes the overall

algorithm for the approximate line search and the interval adaptation.

In general, the gradient method in Table 1 is stopped if the convergence criterion is fulfilled for

some tolerance ε J > 0. In practice this can lead to a large number of iterations that moreover

varies from one MPC iteration to the next. In order to ensure a real-time feasible MPC

implementation, the gradient algorithm is stopped after N iterations and the re-initialization

of the algorithm is done as outlined in Section 3.1.

1) Initialization: Default values and tolerances
– Set polynomial tolerances εc, εg (e.g. εc = 10−5, εg = 10−6)

– Set initial line search interval (32) (e.g. α1 = 10−2, α3 = 10−1)

– Set interval adaptation factors κ− , κ+ (e.g. κ− = 2
3 , κ+ = 3

2 )

– Set interval adaptation tolerances ε−α , ε+α (e.g. ε−α = 0.1, ε+α = 0.9)

– Set interval adaptation limits αmin, αmax (e.g. αmin = 10−5, αmax = 1.0)

2) Approximate line search

– Compute the cost values Ji := J(xk , ψ(u
(j)
k + αis

(j)
k )) at the sample points (32)

– Compute the polynomial coefficients (35) and the candidate point (36)

– Compute the approximate step size α
(j)
k according to

if c2 > εc : α
(j)
k =

⎧

⎪⎨

⎪⎩

α1 if α̂ < α1

α3 if α̂ > α3

α̂ else

(37)

else (c2 ≤ εc) : α
(j)
k =

⎧

⎪⎨

⎪⎩

α1 if J1 + εg ≤ min{J2, J3}

α3 if J3 + εg ≤ min{J1, J2}

α2 else

(38)

– Adapt the line search interval [α1, α3] for the next gradient iteration according to

[α1, α3] ←

⎧

⎪⎨

⎪⎩

κ+ [α1, α3] if α̂ ≥ α1 + ε+α (α3 − α1) and α3 ≤ αmax

κ− [α1, α3] if α̂ ≤ α1 + ε−α (α3 − α1) and α1 ≥ αmin ,

[α1, α3] else

α2 ←
α1 + α3

2
(39)

Table 2. Adaptive line search for the gradient algorithm in Table 1.
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xc

u(t) = xc(t)

φ1(t)

φ2(t)

0

a1

m1, l1, J1

a2

m2, l2, J2

Fig. 2. Inverted double pendulum on a cart.

5. Example – Inverted double pendulum

The inverted double pendulum on a cart is a benchmark problem in control theory due

to its highly nonlinear and nonminimum-phase dynamics and its instability in the upward

(inverted) position. The double pendulum in Figure 2 consists of two links with the lengths

li and the angles φi, i = 1, 2 to the vertical direction. The displacement of the cart is given

by xc. The mechanical parameters are listed in Table 3 together with their corresponding

values (Graichen et al., 2007). The double pendulum is used in this section as benchmark

example for the suboptimal MPC scheme and the gradient algorithm in order to show its

performance for a real-time MPC implementation.

5.1 Equations of motion and MPC formulation

Applying the Lagrangian formalism to the double pendulum leads to the equations of

motion (Graichen et al., 2007)

M(φ)φ̈ + c(φ, φ̇, ẍc) = 0 (40)

with the generalized coordinates φ = [φ1, φ2]
T and the functions

M(φ) =

⎡

⎣

J1 + a2
1m1 + l2

1 m2 a2l1m2 cos(φ1 − φ2)

a2l1m2 cos(φ1 − φ2) J2 + a2
2m2

⎤

⎦ (41a)

c(φ, φ̇) =

[
d1φ̇1 + d2(φ̇1 − φ̇2) + l1m2a2 sin(φ1 − φ2)φ̇

2
2 − (a1m1 + l1m2) [g sin(φ1) + cos(φ2)ẍc]

d2(φ2 − φ1)− a2m2

[
g sin(φ2) + l1 sin(φ1 − φ2)φ̇

2
1 + cos(φ2)ẍc

]

]

. (41b)

The acceleration of the cart ẍc serves as control input u. Thus, the overall model of the double

pendulum can be written as the second-order ordinary differential equations (ODE)

ẍc = u

φ̈ = −M−1(φ)c(φ, φ̇, u) .
(42)

The acceleration of the cart is limited by the constraints

u ∈ [−6,+6] m/s2 . (43)
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Pendulum link inner outer

i = 1 i = 2

length li [m] 0.323 0.480

distance to center of gravity ai

[m]
0.215 0.223

mass mi [kg] 0.853 0.510

moment of inertia Ji [N m s2] 0.013 0.019

friction constant di [N m s] 0.005 0.005

Table 3. Mechanical parameters of the double pendulum in Figure 2.

With the state vector x = [xc, ẋc, φ1, φ̇1, φ2, φ̇2]
T, the second-order ODEs (42) can be written as

the general nonlinear system

ẋ = f (x, u) , x(0) = x0 . (44)

For the MPC formulation, a quadratic cost functional (3a)

J(xk , ū) = ∆x̄T(T)P∆x̄(T) +
∫ T

0
∆x̄T(τ)Q∆x̄(τ) + ∆ūT(τ)R∆ū(τ) dτ , (45)

with ∆x̄ = x̄ − xSP and ∆ū = ū − uSP is used, which penalizes the distance to a desired

setpoint (xSP, uSP), i.e. 0 = f (xSP, uSP). The symmetric and positive definite weighting

matrices Q, R in the integral part of (45) are chosen as

Q = diag(10, 0.1, 1, 0.1, 1, 0.1) , R = 0.001 . (46)

The CLF condition in Assumption 3 is approximately satisfied by solving the Riccati equation

PA + ATP − PbR−1bTP + Q = 0 , (47)

where A =
∂ f
∂x

∣
∣
xSP,uSP

and b =
∂ f
∂u

∣
∣
xSP,uSP

describe the linearization of the system (44) around

the setpoint (xSP, uSP).
4 The sampling time ∆t and the prediction horizon T are set to

∆t = 1 ms , T = 0.3 s (48)

to account for the fast dynamics of the double pendulum and the highly unstable behavior in

the inverted position.

5.2 Simulation results

The suboptimal MPC scheme together with the gradient method were implemented as

Cmex functions under MATLAB. The functions that are required in the gradient method are

4 For the linearized (stabilizable) system ∆ẋ = A∆x + b∆u, it can be shown that the CLF inequality (9) is
exactly fulfilled (in fact, (9) turns into an equality) for the terminal cost V(x) = ∆xTP∆x and the linear
(unconstrained) feedback law q(x) = −R−1bTP∆x with P following from the Riccati equation (47).
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Fig. 3. MPC results for the double pendulum on a cart.

computed under the computer algebra system MATHEMATICA and are exported to MATLAB

as optimized C code. The numerical integrations of the canonical equations (25)-(30) are

performed by discretizing the time interval [0, T] with a fixed number of 30 equidistant points

and using a second order Runge-Kutta method. The nonlinear model (44), respectively (41),

is used within the MPC scheme as well as for the simulation of the pendulum.

The considered simulation scenario consists of an initial error around the origin (xSP = 0,

uSP = 0) and a subsequent setpoint step of 1 m in the cart position at time t = 2 s (xSP =
[1 m, 0, 0, 0, 0, 0]T, uSP = 0). Figure 3 shows the simulation results for a two-stage scenario

(initial error and setpoint change at t = 2 s). Already the case of one gradient iteration per

sampling step (N = 1) leads to a good control performance and a robust stabilization of the

double pendulum. Increasing N results in a more aggressive control behavior and a better

exploitation of the control constraints (43).

The lower plots in Figure 3 show the (discrete-time) profiles of the cost value J(xk , ū
(N)
k ) and

of the optimization error ∆J(N)(xk) = J(xk , ū
(N)
k )− J∗(xk). In order to determine ∆J(N)(xk),

the optimal cost J∗(xk) was computed in each step xk by solving the OCP (3) for the double

pendulum with a collocation-based optimization software. It is apparent from the respective

plots in Figure 3 that the cost as well as the optimization error rapidly converge to zero which

illustrates the exponential stability of the double pendulum in closed-loop and the incremental

improvement of the algorithm. It is also seen in these plots that the performance improvement
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MPC iter. N / CPU time [ms] / mean cost

sampling step sampling step value [–]

1 0.053 0.0709

2 0.095 0.0641

3 0.133 0.0632

5 0.212 0.0610

10 0.405 0.0590

Table 4. CPU time consumption of the real-time MPC scheme for different numbers of
gradient iterations N per sampling step.

between N = 1 and N = 10 iterations per sampling step are comparatively small compared

to the increase of numerical load.

To investigate this point more precisely, Table 4 lists the required CPU time for different MPC

settings. The computations were performed on a computer with an Intel i7 CPU (M620,

2.67 GHz) 5, 4 GB of memory, and the operating system MS Windows 7 (64 bit). The overall

MPC scheme compiled as Cmex function under MATLAB 2010b (64 bit). All evaluated tests

in Table 4 show that the required CPU times are well below the actual sampling time of
∆t = 1 ms. The CPU times are particularly remarkable in view of the high complexity

of the nonlinear pendulum model (40)-(42), which illustrates the real-time feasibility of the

suboptimal MPC scheme. The last column in Table 4 shows the average cost value that is

obtained by integrating the cost profiles in Figure 3 and dividing through the simulation time

of 5 s. This index indicates that the MPC scheme increases in terms of control performance for

larger numbers of N.

From these numbers and the simulation profiles in Figure 3, the conclusion can be drawn

that N = 2 gradient iterations per MPC step represents a good compromise between control

performance and the low computational demand of approximately 100 µs per MPC step.

6. Conclusions

Suboptimal solution strategies are efficient means to reduce the computational load for a

real-time MPC implementation. The suboptimal solution from the previous MPC step is used

for a warm-start of the optimization algorithm in the next run with the objective to reduce

the suboptimality over the single MPC steps. Section 3 provides theoretical justifications for a

suboptimal MPC scheme with a fixed number of iterations per sampling step.

A suitable optimization algorithm is the gradient method in optimal control, which allows

for a time and memory efficient calculation of the single MPC iterations and makes the

overall MPC scheme suitable for very fast or high dimensional dynamical systems. The

control performance and computational efficiency of the gradient method is illustrated in

Section 5 for a highly nonlinear and complex model of a double pendulum on a cart. The

suboptimal MPC scheme based on a real-time implementation of the gradient method was

5 Only one core of the i7 CPU was used for the computations.
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also experimentally validated for a laboratory crane (Graichen et al., 2010) and for a helicopter

with three degrees-of-freedom (Graichen et al., 2009), both experiments with sampling times

of 1-2 milliseconds. The applicability of the gradient-based MPC scheme to high dimensional

systems is demonstrated in (Steinböck et al., 2011) for a reheating furnace in steel industry.

7. Appendix A – Reachability of CLF region (Theorem 1)

This appendix proves the statements 1 and 2 in Theorem 1 concerning the reachability of the

CLF region Sβ by the MPC formulation (3) without terminal constraints. The discrete-time

case was investigated in Limon et al. (2006). The following two lemmas generalize these

results to continuous-time systems as considered in this chapter. Lemma 1 represents an

intermediate statement that is required to derive the actual result in Lemma 2.

Lemma 1. Suppose that Assumptions 1-3 are satisfied. If x̄∗k (T) /∈ Sβ for any xk ∈ R
n, then

x̄∗k (τ) /∈ Sβ for all times τ ∈ [0, T].

Proof. The proof is accomplished by contradiction. Assume that x̄∗k (T) /∈ Sβ and that there

exists a time τ̂ ∈ [0, T) such that x̄∗k (τ̂) ∈ Sβ. Starting at this point x̄∗k (τ̂), consider the residual

problem

Ĵ∗(x̄∗k (τ̂)) = min
ū∈U[T−τ̂]

{

V
(

x̄(T − τ̂; x̄∗k (τ̂), ū)
)

+
∫ T−τ̂

0
l
(

x̄(τ; x̄∗k (τ̂), ū), ū(τ)
)

dτ
}

subject to the dynamics (3b), for which the optimal trajectories are û∗(τ) = ū∗
k (τ̂ + τ) and

x̂∗(τ) = x̄∗k (τ̂ + τ), τ ∈ [0, T − τ̂] by the principle of optimality. Since x̄∗k (τ̂) ∈ Sβ by

assumption, the CLF inequality (9) with x̄q(0) = x̄∗k (τ̂) leads to the lower bound

V(x̄∗k (τ̂)) ≥ V(x̄q(T − τ̂)) +
∫ T−τ̂

0
l(x̄q(τ), ūq(τ))dτ

≥ Ĵ∗(x̄∗k (τ̂))

≥ V(x̂∗(T − τ̂)) = V(x̄∗k (T)) > β .

The last line, however, implies that x̄∗k (τ̂) /∈ Sβ, which contradicts the previous assumption

and thus proves the lemma.

Lemma 2. Suppose that Assumptions 1-3 are satisfied and consider the compact set Γα defined by

(10). Then, for all xk ∈ Γα, the endpoint of the optimal state trajectory satisfies x̄∗k (T) ∈ Sβ. Moreover,

Sβ ⊆ Γα.

Proof. We will again prove the lemma by contradiction. Assume that there exists a xk ∈ Γα

such that x̄∗k (T) /∈ Sβ, i.e. V(x̄∗k (T)) > β. Then, Lemma 1 states that x̄∗k (τ) /∈ Sβ for all

τ ∈ [0, T], or using (5),

||x̄∗k (τ)||
2 >

β

MV
∀ τ ∈ [0, T] . (49)
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This allows one to derive a lower bound on the optimal cost

J∗(xk) = V(x̄∗k (T)) +
∫ T

0
l(x̄∗k (τ), ū∗

k (t))dτ

≥ β +
∫ T

0
ml

β

MV
dτ

= β

(

1 +
ml

MV
T

)

= α . (50)

From this last line it can be concluded that xk /∈ Γα for all x̄∗k (T) /∈ Sβ. This, however, is a

contradiction to the previous assumption and implies that x̄∗k (T) ∈ Sβ for all xk ∈ Γα. To
prove that Γα contains the CLF region Sβ, consider xk ∈ Sβ and the bound on the optimal cost

J∗(xk) ≤ V(x̄q(T)) +
∫ T

0
l(x̄q(τ), ūq(τ))dt (51)

with the CLF trajectories x̄q(τ), x̄q(0) = xk , and ūq(τ) = q(x̄q(τ)). Similar to the proof of

Lemma 1, the CLF inequality (9) implies that

V(x̄q(T)) ≤ V(x̄q(0))−
∫ T

0
l(x̄q(τ), ūq(τ))dτ . (52)

Hence, (51)-(52) and definition (10) show that J∗(xk) ≤ V(xk) ≤ β < α for all xk ∈ Sβ, which

proves that Γα contains Sβ.

8. Appendix B – Verification of Assumption 6 for linear-quadratic OCPs

The following lines show that Assumption 6 is fulfilled for OCPs of the form

min u∈U[0,T]
J(u) = xT(T)Px(T) +

∫
T

0
xT(t)Qx(t) + uT(t)Ru(t)dt , (53)

subj. to ẋ = Ax + Bu x(0) = x0 , x ∈ R
n, u ∈ R

m (54)

with the quadratic cost functional (53), the linear dynamics (54) and some initial state x0 ∈ R
n.

The admissible input set U[0,T] is assumed to be convex and the weighting matrices P, Q, R are

symmetric and positiv definite. A useful property of the linear-quadratic problem is the strong

convexity property (Allaire, 2007)

C||u − v||2Lm
2 [0,T] ≤ J(u) + J(v)− 2J( 1

2 u + 1
2 v) (55)

for some constant C > 0 and all control functions u, v ∈ U[0,T]. To show this, first consider the

control term of the cost functional (53) and the right-hand side of (55), which can be written

in the form

∫
T

0
uTRu + vTRv −

1

2
(u + v)TR(u + v) dt =

1

2

∫
T

0
(u − v)TR(u − v)dt .
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The same simplifications can be used for the state-dependent terms in (53) since the linear

dynamics (54) ensures that the superposition of two input signals w(t) = 1
2 u(t) + 1

2 v(t) yield

a corresponding superposed state response xw(t) =
1
2 xu(t) +

1
2 xv(t) with xw(0) = x0. Hence,

the right-hand side of (55) can be written as

J(u) + J(v)− 2J( 1
2 u + 1

2 v) =
1

2
∆xT(T)P∆x(T) +

1

2

∫
T

0
∆xT(t)Q∆x(t)dt

+
1

2

∫
T

0

(

u(t)− v(t)
)T

R
(

u(t)− v(t)
)

dt

≥ C||u − v||2Lm
2 [0,T]

with ∆x(t) = xu(t) − xv(t) and the constant C = λmin(R)/2. Since J(u) is strongly

(and therefore also strictly) convex on the convex set U[0,T], it follows from standard

arguments (Allaire, 2007) that there exists a global and unique minimum point u∗ ∈ U[0,T].

Moreover, since U[0,T] is convex, 1
2 (u + u∗) ∈ U[0,T] for all u ∈ U[0,T] such that J( 1

2 u + 1
2 u∗) ≥

J(u∗). Hence, the strong convexity inequality (55) can be turned into the quadratic growth

property

C||u − u∗||2Lm
2 [0,T] ≤ J(u) + J(u∗)− 2J( 1

2 u + 1
2 u∗) ≤ J(u)− J(u∗) ∀ u ∈ U[0,T] .

This shows that Assumption 6 is indeed satisfied for linear-quadratic OCPs of the form (53).
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