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1. Introduction 

Many large companies, especially those involved in chemical synthesis, for instance those 

that manufacture personal care products or pharmaceuticals, are increasingly reliant on high 

throughput screening techniques to develop their next generation products. This may be to 

facilitate product optimisation or quality control of existing processes. Many of these 

products are viscoelastic in nature and require sophisticated rheological techniques to 

determine their properties (Hansen & Quake, 2003). However, current rheological 

techniques are not well suited to high throughput characterisation of the generally small 

volumes of liquid available (Kumble, 2003). Recently a number of devices, known as 

microrheometers, have been fabricated with the ability to determine the properties of small 

samples of viscoelastic fluids (Cheneler, 2011, Crecea et al., 2009, Christopher et al., 2010). 

These devices are generally designed to dynamically manipulate isolated drops of fluid, 

usually contained in liquid bridges (Cheneler, 2011, Christopher et al., 2010), and are not in a 

form that is easily integrated into a commercial automated process, precluding high-

throughput analysis.  

One of the limitations to the development of microrheometers and their subsequent 
integration into commercial processes is the difficulty in modelling microfluidic systems. 
The issue is that only a few of the possible fluid geometries that can be realised in useful 
experimental set-ups lend themselves to analytical mathematical investigation. As such this 
causes, in the design of microrheometers, the analysis of the fluid mechanics to be highly 
idealised or restricted to simple cases (Christopher et al., 2010). Most microfluidic systems 
can be modelled in a numerical fashion, whether it is using finite element analysis, 
molecular dynamics or computational fluid dynamics (Sujatha et al. 2008). This would 
suffice if the microfluidic system was in isolation, but in a microrheometer, the system is 
integrated into a micro electro-mechanical system (MEMS). In such devices the mechanical 
dynamics, the electrical circuit analysis and fluid mechanics are all coupled together. These 
three facets require different techniques to model them and in general these techniques are 
incompatible. Therefore in order to get accurate quantitative data from a microrheometer, 
each aspect of the analysis has to be performed in a more consistent form. This requires 
there to be an analytical solution to the equations describing the microfluidics and for the 
solution to be in a form that can be coupled into the analysis of the rest of the system. This 
will allow the complete deterministic response of the microrheometer to be known. 
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The purpose of this chapter is to describe the complete system analysis of a new kind of 
coupled-mass microrheometer and show how such a device can be integrated into a real 
production process. It will be shown how the fluid mechanics can be fully analysed, starting 
from the basic governing equations, as a sinusoidal viscoelastic squeeze flow problem. The 
solution of which is coupled with the dynamical and electrical analysis of the 
microrheometer and a deterministic and quantitative method of measuring the viscoelastic 
fluid properties is given. 

2. Principles of the coupled-mass microrheometer 

The microrheometer to be described here is an oscillating coupled-mass device driven by a 
comb drive actuator (see Fig. 1). Its response is measured capacitively using a structure akin 
to the comb drive actuator. It incorporates a microfluidic channel through which the sample 
is delivered and removed, allowing simple integration with production lines and automated 
systems. At present this microrheometer has not been fabricated, but to do so would require 
only minor modifications to the standard techniques used to presently fabricate silicon-
based comb-drive actuated oscillators as discussed by Lee (Lee, 2011).   

 

Fig. 1. A schematic of the coupled-mass microrheometer 

The premise is that when a signal is applied to the actuating comb drive, it exerts a force on 
mass one (see Fig. 2) causing it to oscillate at a prescribed frequency. This squeezes between 
two parallel plates the fluid in the channel, which is formed from a compliant membrane. 
The fluid in turn applies a force to the second mass which then moves at the same frequency 
as the first. This uses the phenomena whereby micro-oscillators on the same chip suffer 
from unintentional cross-talk and frequency locking (Wei, 2009). Whilst normally this would 
be a problem, here it is beneficial. The movement of the second mass is detected by 
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measuring the change in capacitance of the sensing comb drive.  Knowing the force applied 
to the first mass and the response of the second mass allows for the determination of the 
fluids viscoelastic properties.  

 

Fig. 2. A schematic showing the dynamics of the microrheometer. Here x(t) denotes the 
displacement of each of the masses respectively and f1(t) denotes the force applied by the 
actuating comb drive 

3. Theoretical aspects 

As stated, the microrheometer described here is an oscillating coupled-mass device (see Fig. 
3) and as such lends itself to be modelled using a lumped-mass analysis (Wei, 2009). This 
method assumes that the dynamics of the device is identical to that of an equivalent system 
of masses, springs and dashpots which represent the inertial, restorative and dissipative 
components of the device respectively. In order for this analysis to represent the entire 
system however, the fluid mechanics and electrical circuitry will also have to be represented 
as spring, dashpots and external forces in a consistent fashion. This will be discussed in 
more fully in the subsequent sections. 

3.1 Dynamics of a coupled-mass microrheometer 

In lumped-mass analysis, it is assumed that the device can be represented by a system of 
masses, springs and dashpots. By this it is meant that the parameters such as stiffness and 
damping factors are constants so that forces are linearly dependent on velocity or 
displacement for instance. This is generally the case when displacements are small (Rao, 
2010) and nonlinearities in the motion are negligible. In this instance, it is assumed that all 
the parameters are defined as constants as shown Fig. 3:  
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Fig. 3. A schematic of the equivalent lumped-mass system. kS and cA denote the stiffness of 
the support springs and the air damping associated with each of the masses, m. kF and cF 
denote the effective stiffness and damping parameters which are a function of the fluids 
viscoelastic properties 

The coupled equations of motion for such a system is: 

 1 1 1 1 2 1 1 2 1

2 2 1 2 2 1 2 2

( ) ( ) ( )

( ) ( ) 0
A F F S F F

F F A F F S

m x c c x c x k k x k x f t

m x c x c c x k x k k x

      
      

  
  

 (1) 

where one dot signifies velocity and two dots denote acceleration. These equations need to 

be solved to give 2 .x This is the instantaneous position of mass 2 which is the value 

measured by the sensing electrode as shown in Fig. 1. The fluid properties can therefore be 

calculated from this value. As the force applied to mass 1 is sinusoidal and has the form 

1
i tf Fe  where F is the amplitude of the applied force and  is the angular frequency, the 

responses of mass 1 and 2 can be assumed to have the form 1 1
i tx X e  and 

2 2
i tx X e  where 1X and 2X are the amplitudes of the displacements of mass 1 and 2 

respectively. Differentiating and substituting these factors into eq. 1 allows the equations to 

be represented in matrix form: 

 
2

1 1 1 1

2
22 2 2

( ) ( )

0( ) ( )

A F S F F F

F F F A F S

m i c c k k i c k X F

Xi c k m i c c k k

  

  

           
     

            
 (2) 

From eq. 2 the following factors can be defined: 

 2
1 1 1 1S AZ m k i c      (3) 

 2
2 2 2 2S AZ m k i c      (4) 

 F F FZ k i c   (5) 

These are the mechanical impedances (Rao, 2010) related to mass 1, mass 2 and the fluid 
respectively. Note that all the coefficients are known in eqs. 3 and 4 and the coefficients in 
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eq. 5 are those related to the dynamic properties of the fluid and are hence the coefficients to 
be measured. Substituting these impedances into eq. 2 allows for the following 
simplification: 

 1 1

2 2 0
F F

F F

Z Z Z X F

Z Z Z X

      
           

 (6) 

Multiplying both sides of eq. 6 by the inverse of the impedance matrix gives the amplitudes 

1X and 2X . 2X  can be shown to be: 

 
  2 2

1 2

F

F F F

Z F
X

Z Z Z Z Z


  
 (7) 

This can be simplified to: 

 
 2

1 2 1 2

F

F

Z F
X

Z Z Z Z Z


 
 (8) 

Therefore the unknown fluid impedance can be given as: 

 2 1 2

2 1 2( )
F F F

X Z Z
Z k i c

F X Z Z
  

 
 (9) 

As evidenced in eqs. 3, 4 and 7, 1Z , 2Z and 2X are complex. This means the displacement of 

mass 2 can be given as: 

  2 2 cos sin i tx X i e     (10) 

where is the phase between the displacement of mass 2 and the force (and related voltage) 

applied to mass 1 and 2X  is the absolute (measured) amplitude of the displacement of mass 

2.  2 2 cos sinX X i   is the form that needs to be substituted into eq. 9 as all the values 

are measured and therefore known. The effective stiffness and damping parameters due to the 

fluids viscoelastic properties are given by the real and imaginary components of eq. 9, thus: 

 
2 1 2

2 1 2

Re
( )

F

X Z Z
k

F X Z Z

 
  

  
 (11) 

 
2 1 2

2 1 2

1
Im

( )
F

X Z Z
c

F X Z Z
 

  
  

 (12) 

If the air damping in eq. 1 is negligibly small, eqs. 11 and 12 become: 

 
     

        
2 2 2

2 1 1 2 2 2 1 2 1 2

2
2 2 2

2 1 2 1 2 2 1 2 1 2

( )( ) cos cos 2

2

S S S S

F

S S S S

X k m k m F X k k m m
k

F X F k k m m X k k m m

    

 

         
             

 (13) 
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     

        
2 2 2

2 1 1 2 2 2 1 2 1 2

2
2 2 2

2 1 2 1 2 2 1 2 1 2

( )( ) sin sin 2

2

S S S S

F

S S S S

X k m k m F X k k m m
c

F X F k k m m X k k m m

    

 

         
             

 (14) 

It should be noted that eq. 10 can be expanded to give: 

  2 2 cos cos sin sin cos sin sin cosx X t t i t t               (15) 

This simplifies to: 

     2 2 cos sinx X t i t        (16) 

As the force applied to mass 1 will actually be the real component of 1f , 

i.e.  1 Re( ) cosi tf Fe F t   , the actual response of mass 2 that is measured is the real 

component of eq. 16: 

 2 2 cos( )x X t    (17) 

Therefore given that 2x is measured, 1f is what was applied and everything in 1Z  and 2Z is 

known, Fk and Fc , and hence the fluids viscoelastic properties, can be explicitly calculated. 

3.2 Derivation of the viscoelastic fluid dynamics 

The squeezing of a Newtonian fluid between two plates was first detailed analytically by 

Reynolds (Reynolds, 1886) although it wasn’t solved at that time for viscoelastic materials or 

for fluids being squeezed between rectangular plates. There have been many subsequent 

studies into viscoelastic squeeze flow due to its pertinence to lubrication (Bell et al., 2005). 

These studies have mostly concentrated on axisymmetric squeeze flow (Engmann et al., 

2005) or constant load/velocity squeezing when considering rectangular plates and has 

generally been limited to plane strain cases (Denn & Marrucci, 1999). Therefore here a 

detailed derivation of the sinusoidal squeezing of a viscoelastic fluid between two parallel 

rectangular plates will be given. This will be achieved with a particular view of producing 

the relevant coefficients needed for the analysis in §3.1. To solve the squeeze flow problem 

consider the inertialess Navier-Stokes and continuity equations for Newtonian liquids in 

Cartesian coordinates (Reynolds, 1886): 

 
2 2 2

2 2 2

dp d u d u d u

dx dx dy dz

 

    
 

 (18) 

 
2 2 2

2 2 2

dp d v d v d v

dy dx dy dz

 

    
 

 (19) 

 
2 2 2

2 2 2

dp d w d w d w

dz dx dy dz

 

    
 

 (20) 
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 0
du dv dw

dx dy dz
    (21) 

where z is on one of the surfaces of the channel in the direction of relative motion, y is on 
the same surface in the direction perpendicular to relative motion and x is mutually 
perpendicular (see Fig. 4). u, v and w are the velocity components in the x, y and z 
directions respectively. p is the pressure distribution in the channel.  

 

Fig. 4. A close up of the geometry between the plates squeezing the fluid. Fluid and channel 
have been omitted for clarity. The blue arrows denote the coordinate system used 

As the channel width is small, w will be small compared to u and v, and the variations of u 
and v in the directions x and y are small compared with their variations in the z direction. 
The equations for the interior of the film then become:  

 
2

2

dp d u

dx dz
  (22) 

 
2

2

dp d v

dy dz
  (23) 

 0
dp

dz
  (24) 

These equations are subject to the following boundary conditions: 

 
0 0, 0.. ...

.. ..

, 0

0, 0, .

z u v w

z h u v w V

    
    

 (25) 

Where h is the instantaneous width of the channel and V is the relative velocity of the sides. 
As eq. 24 shows the pressure to be independent of z, eqs. 22 and 23 are directly integrable. 
Integrating gives: 
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  
1

2

dp
u zz h

dx
   (26) 

  
1

2

dp
v zz h

dy
   (27) 

Differentiating these equations with respect to x and y respectively and substituting into the 
continuity equation (eq. 21) gives: 

     1

2

dpdw d ddp
zz hzz h

dydz dx dydx
  

     
  

 (28) 

Integrating from z = 0 to z = h and using the boundary conditions in eq. 25 gives: 

 
2 2

2 2 3

12d p d p V

dx dy h


   (29) 

This is the equation that needs to be solved to calculate the pressure distribution in the 
channel so that the force required to squeeze the fluid at a certain velocity can be found. 
This is possible because this is Poisson’s equation of the form: 

 2 ( , )p q x y    (30) 

Therefore we can assume it to have a solution of the form (Strauss, 2007): 

 
1 1

( , ) ( , )mn nm
m n

p x y C x y
 

 
   (31) 

where ( , )nm x y are the eigenfunctions of the related Helmholtz equation: 

 2 0     (32) 

Substituting eq. 31 into eq. 30 gives: 

 2

1 1

( , ) ( , )mn nm
m n

C x y q x y
 

 
    (33) 

From eq. 32 we get: 

 2
mn mn     (34) 

This can be solved using separation of variables by assuming a solution of the form: 

 ( , ) ( ) ( )x y X x Y y   (35) 

Substituting this into eq. 34 gives: 

 ( ) ( ) ( ) ( ) ( ) ( ) 0X x Y y X x Y y X x Y y     (36) 
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Upon rearranging, this leads to: 

 
( )( )

( ) ( )

Y yX x

X x Y y
 


      (37) 

This results in two ODEs and their associated boundary conditions: 

 ...( ) ( ) 0 ..., (0) 0, ( ) 0X x X x X X a      (38) 

   ...( ) ( ) 0, (0) 0, ( )... 0Y y Y y Y Y b       (39) 

Where a is the width of the silicon plates and b is the depth (see Fig. 4). The boundary 

conditions are equivalent to stating the pressure is zero outside the gap between the plates. 

Eq. 38 has the solution: 

 ( ) sin , 1,2,3......m
m x

X x m
a

   
 

 (40) 

So that: 

 
2 2

2

m

a

   (41) 

Similarly: 

 ( ) sin , 1,2,3......n
n y

Y y n
b

   
 

 (42) 

And: 

 
2 2

2

n

b

    (43) 

Combining eq. 41 and eq. 43 gives: 

 
2 2

2

2 2
, , 1,2,3 .... ..nm

m n
m n

a b
 

 
  

 
 (44) 

Substituting eq. 40 and eq. 42 into eq. 35 gives: 

 sin sin , , 1,2.. ,3... .mn
n ym x

m n
a b

       
   

 (45) 

Combining eqs. 33 and 34 give: 

 
1 1

( , ) ( , )mn mn mn
m n

q x y C x y 
 

 
   (46) 

www.intechopen.com



 
Advances in Microfluidics 

 

64

Everything in eq. 46 is known except for the coefficients mnC . These can be found using the 

generalised Fourier series in two variables (Strauss, 2007) thus: 

 
0 0

12
( , )sin sin , , 1,2,3...

b a

mn
mn

n ym x
C q x y dxdy m n

ab a b




      
      (47) 

As 
3

12
( , )

V
q x y

h


  (from comparing eqs. 29 and 30) this becomes: 

  2 3

48
cos( )cos( ) cos( ) cos( ) 1 , , 1,2 3. ,. .mn

mn

V
C m n m n m n

mn h

    
 

      (48) 

Substituting this into eq. 31 gives: 

 

 2 3
1 1

48
( , ) cos( )cos( ) cos( ) cos( ) 1 .

.............

..

...sin sin , , 1,2.. .. ,3....

m n mn

V
p x y m n m n

mn h

n ym x
m n

a b

    
 



 

 
    

      
   


 (49) 

The force is found by integrating this pressure over the top surface thus: 

 

 2 3
1 1

0 0

............... ...

48
cos( )cos( ) cos( ) cos( ) 1 ...

... sin sin , , 1,2,3...

F
m n mn

b a

V
F m n m n

mn h

n ym x
dxdy m n

a b

    
 



 

 
    

      
   




 (50) 

This equals: 

  24 3
1 1

48
cos( )cos( ) cos( ) co .s( ) 1 , , 1,2,3..F

m n mn

ab V
F m n m n m n

mn h

    
 

 

 
      (51) 

This is the force required to squeeze a Newtonian liquid between two parallel rectangular 
plates at a known velocity. To see if this is a sensible result, compare it to the well-known 
force required to squeeze the fluid between two parallel circular plates, known as the Stefan-
Reynolds equation (Bell et al. 2005):  

 
4

3

3

2
FC

R V
F

h


  (52) 

In eqs. 51 and 52, is can be seen that the solutions for the rectangular and for the circular 

plates are both linearly dependent on the viscosity and the velocity and are both inversely 

proportional to the cube of the gap between the plates. Furthermore, if it assumed that the 

dimensions of the rectangular plates make them square and that the radius of the circular 

plates are such that the surface area of the square and circular plates are equal, as can be 

seen in Fig. 5, where the two plates are far apart the solution for the circular and rectangular 

plates are nearly identical as is expected.  
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The damping coefficient for a Newtonian liquid squeezed between two rectangular plates 
can then given simply as: 

  24 3
1 1

48
cos( )cos( ) cos( ..) cos( ) 1 , , 1,2,3.

m n mn

ab
c m n m n m n

mn h

    
 

 

 
      (53) 

 

Fig. 5. Comparison between the solution for squeeze flow between rectangular plates, eq. 51, 
and the classical Stefan-Reynolds equation, eq. 52, for circular plates. For the purposes for 
comparison it is assumed the plates are square with the same surface area as the circular 
plates 

For a viscoelastic liquid it is necessary to take into account the memory of the liquid. 
Therefore the force must take on the form (Bird et al., 1987): 

 
 24 3

1 1

48
( ') ' cos( )cos( ) cos( ) cos( ) 1

'

, 1,2,3...

t

F
m n mn

ab dh
F G t t dt m n m n

dtmn h

m n

   
 

 

  

    



   (54) 

If the boundaries of the channels are oscillating, the channel width has the form (Bell et al., 
2005): 

 ( ) i th t h e    (55) 

where h is the average gap,  is the angular frequency and  is the amplitude of oscillation. 

And by substituting: 

 't t    (56) 

into the integral found in eq. 54, we obtain: 
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 

0

'
( ') ' ( )

'

t
i t idh t

G t t dt i e G e d
dt

   






    (57) 

( )G  represents the memory function of the material. If the fluid inside the channel is 

assumed to be a Maxwell liquid, this is defined as (Macosko, 1994): 

 0( )

t

G t G e 


  (58) 

where 0G is the shear modulus and  is the relaxation time. Substituting into eq. 57 and 

integrating gives: 

 0 0

0

1 '
'

1 /
i t i dh dhG

i e G e e d G i
i dt dt


   

  

           (59) 

where ' is the dynamic viscosity and 'G is the storage modulus. Substituting this result 

back into eq. 54 gives the force required to squeeze a viscoelastic fluid sinusoidally between 

two rectangular plates as: 

 
   24 3

1 1

48
cos( )cos( ) cos( ) cos( ) 1'' '

, 1,2,3...

i t
F

m n mn

ab
F e m n m niG G

mn h

m n

    
 

 

 
   



  (60) 

''G is the loss modulus of the fluid and is defined as '' 'G  . It is the storage and loss 

modulus, i.e. 'G and ''G that is of rheological importance (Macosko, 1994) and are therefore 

the most commonly measured dynamic viscoelastic properties. Separating the components 

of eq. 60 that are in-phase with the displacement and velocity respectively gives the final 

stiffness, Fk , and damping, Fc , coefficients for the liquid that are to be used in §3.1:  

  24 3
1 1

48 '
cos( )cos( ) cos( ) cos( ) 1F

m n mn

abG
k m n m n

mn h
   

 

 

 
     (61) 

  24 3
1 1

48 ''
cos( )cos( ) cos( ) cos( ) 1F

m n mn

abG
c m n m n

mn h
   

 

 

 

     (62) 

3.3 Electrical considerations 

As shown in Fig. 1, the system is actuated using a capacitive lateral comb-drive. The force 

caused by applying a voltage to the comb-drive actuator is proportional to the change in 

capacitance and to the square of the applied voltage. Specifically for a comb-drive actuator 

this becomes (Lee, 2001): 

 
2 21

( ) ( ) ( )
2

cd

C t
F t v t n v t

x g


 


 (63) 
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where C is the capacitance of the comb-drive,  is the permittivity of the medium between 

the teeth, t is the thickness of a tooth, g is the gap between opposing teeth and n is the 

number of teeth. ( )v t is the applied voltage. As the force is proportional to the square of the 

voltage, if the voltage was purely a sinusoidal signal, the force will have double the 

frequency of the voltage. Therefore it is common practice (Lee, 2011) to add a DC bias 

voltage to the applied voltage signal, i.e.: 

  ( ) cosDC ACv t V V t   (64) 

where DCV is the amplitude of the DC bias voltage and ACV is the amplitude of the sinusoidal 

voltage. An example of the circuitry that could be used in this instance is shown in Fig. 6: 

 

Fig. 6. A schematic of the circuitry for the actuating comb-drive. Note the moving masses 
are grounded through the anchors on the springs 

The force therefore becomes: 

        2 2 2 2( ) cos 2 cos coscd DC AC DC DC AC AC

t t
F t n V V t n V V V t V t

g g

         (65) 

When DC ACV V eq. 65 can be approximated as: 

  ( ) coscd CF t F F t   (66) 

where CF is a constant force and F is the amplitude of the applied force as used in eqs. 11 

and 12. These constants can be shown to be: 

 
2

2

2
AC

C DC

Vt
F n V

g

  
   

 
 (67) 

 2 DC AC

t
F n V V

g


  (68) 
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The additional constant force naturally has an effect which wasn’t considered in §3.1. 
Plugging a constant force into eq. 2 gives the static displacement of mass 1 and 2 as: 

 2
1

1 2 1 2( )
S F

S C
S S F S S

k k
X F

k k k k k




 
 (69) 

 2
1 2 1 2( )

F
S C

S S F S S

k
X F

k k k k k


 
 (70) 

However as the fluid in the channel is defined as a Maxwell liquid, and Fk is proportional to 

the storage modulus as shown in eq. 60, Fk becomes zero as the force is constant. This is 

because the storage modulus varies as (Macosko, 1994):  

 
2 2

0
2 2

'( )
1

G
G

 
 




 (71) 

where 0G is the shear modulus introduced in eq. 57 and is the characteristic relaxation time 

of the liquid. Therefore:  

 1
1

C
S

S

F
X

k
  (72) 

 2 0SX   (73) 

It is important to note is that the average gap between the plates, h , is therefore smaller by a 

factor 1SX .  

4. Discussion 

For the sake of simplifying the discussion of the theory, it is assumed that the channel is 
filled with a simple Maxwell liquid whose relaxation modulus is described by the data 
given in Fig. 7.  

 

Fig. 7. Typical relaxation data for a simple Maxwell fluid 
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Fitting a Prony series to this data, such as that given by eq. 57, shows that the behaviour of 

this liquid can be described by a single relaxation time constant and a single shear modulus. 

For this hypothetical liquid these happen to be τ = 2 s and G0 = 100 kPa. These constants 

suggest that the storage and loss moduli of the liquid should take the form of that shown in 

Fig. 8: 

 

Fig. 8. The resultant dynamic properties of the simple Maxwell Fluid 

Here the storage modulus is defined as in eq. 71 and the loss modulus is defined as 
(Macosko, 1994):  

 0
2 2

''( )
1

G
G




 



 (74) 

The mechanical parameters of the coupled-mass microrheometer should also by known by 

design. Here, for simplicity it shall be assumed that 1m = 2m = 4x10-8 kg, 1Sk = 2Sk = 600 N/m 

and 1Ac = 2Ac = 0.1 kg/s. Also for the electrical parameters it will be assumed that n = 100, 

t = 50 μm and g = 0.1 μm. The applied voltages are DCV = 100 V and ACV = 1 V. This means 

the sinusoidal force given by eq. 68 is 9 μN and the constant force given by eq. 67 is 443 μN. 

Therefore if the original channel width was 10μm, h = 10.75 μm. As the measured material 

properties are calculated from eqs. 61 and 62, which are inversely proportional to the cube 

of the average channel width, ignoring the effects of the static deflection given by eq. 72 

could lead to substantial errors. In this case the error in the measured storage and loss 

moduli would have been c.a. 24%.  

Given these values, the displacement of mass 2 – the displacement that will be measured, 

can be predicted. The results are shown in Fig. 9.  
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Fig. 9. The dynamic response of mass 2 for the case (A) no air damping and for (B) 
significant air damping 

As can be seen the maximum displacement is only 52 nm. This is despite the relatively large 
voltage that was applied to the actuating comb-drive. The advantage of this is that it is very 
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likely that any non-linear effects are negligibly small and that the strains in the liquid are 
sufficiently low that linear viscoelastic theory is valid (Bird et al., 1987). The issue is that it 
may be too small to be measured. Ignoring parasitic capacitances, the change in the 
capacitance of the sensing comb-drive is: 

 2( ) ( )
t

dC t n x t
g


  (75) 

In this instance, the capacitance is nominally c.a. 39.8 pF. The sensitivity of the comb-drive, 
given by eq. 76, can be shown to be 0.44 pF/μm, which is low given that displacements are 
in the nanometre regime.  

 
C t

n
x g





 (76) 

This is one of the main problems with this sort of device: you need to apply large voltages to 
achieve reasonable displacements and it still results in small changes in capacitances which 
may be difficult to measure, as can be seen in Fig. 10. Fortunately, new capacitance 
measurement chips with accuracies as good as 4 aF/√Hz (Irvine Sensors, n.d.) are 
commercially available, making these devices viable. 

Another issue is the effect of air damping. Unless the comb-drives are sealed in a vacuum, it 
is likely that air-damping will be significant and will have to be included in the analysis 
using eqs. 11 and 12 rather than 13 and 14 (see Fig. 9). Unfortunately, in cases of complicated 
geometries such as this, damping is difficult to calculate. Even numerical analysis using 
CFD or FEA is unlikely to be accurate due to the number of assumptions and simplifications 
needed to get convergence (Ye et al., 2003). However, due to the comprehensive modelling, 
it is quite a simple task to curve fit to experimental data like that shown in Fig. 9, given a 
model fluid in the channel whose rheometry is well known, and ascertain the mechanical 
parameters more accurately. In practice it may be necessary to calibrate the rheometer in this 
manner anyway due to the variability of MEMS fabrication technologies in order to 
establish real values for the masses and stiffnesses. 

The purpose of this chapter was to describe the complete system analysis of a new kind of 

coupled-mass microrheometer and show how such a device can be integrated into a real 

production process. The main issue is that in the installation of a sensor into a commercial 

process there should be no disruption or chance of contamination of the main process flow 

line. Naturally, issues such as space constraints and cleaning cycles need to be addressed as 

well. A possible lay-out is shown in Fig. 11. Here the microrheometer is connected 

externally to the main process flow line and to cleaning lines via electrically actuated three-

way valves. Both the fluid to be tested and cleaning fluid are likely to need to be pumped 

into the microfluidic channel as the pressure required to push the fluid through the device 

will possibly be higher than that available in the main lines due to the constrictions in the 

channel. It can be imagined that at certain intervals of time, process fluid will be pumped 

into the channel, a frequency sweep performed and the channel washed clean while the data 

is analysed. Overall, as the device is channel-based rather than based on a liquid bridge, 

integration into automated commercial process lines is simple and allows for real-time, 

high-throughput analysis that can be used for quality control and product optimisation.  
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Fig. 10. Resultant change in amplitude of capacitance of sensing comb-drive 

 

 

Fig. 11. Potential layout for integration of sensor into a commercial process flow line 
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5. Conclusion 

A deterministic method of measuring viscoelastic fluid properties using a new kind of 
coupled-mass microrheometer has been shown. The fluid mechanics has been fully 
analysed as a viscoelastic squeeze flow problem and coupled with dynamical and 
electrical analysis. It has also been shown how such a device can be integrated into a real 
production process.  
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