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1. Introduction

In the last decade one of the quickest developing trends in fluid mechanics and chemical
engineering has been microfluidics, covering the issues of heat, mass and momentum
transfer in microscale. This corresponds directly to intensive research of nano- and
microscale technology, as in such scales the system behavior shows significant deviations,
compared to macroscale. That is mainly due to a drastically different surface-to-volume
ratio and a minor role of buoyancy and inertia forces compared to surface forces like surface
tension and adhesion. Due to the characteristic dimensions of microchannels, the flow of
liquid is characterized by parallel streamlines, Reynolds number is small and only molecular
diffusion is responsible for the inter-diffusion of a reagent.

One of the phenomena involved in a growing number of applications within the
microfluidics area is hydrodynamic focusing. Hydrodynamic focusing is a technique relying
on squeezing one of the streams in a four-microchannel intersection by two side streams and
reshaping it downstream into a thin sheathed film (Domagalski, 2011; Dziubinski and
Domagalski, 2007; Mielnik and Saetran, 2006). As can be seen in Fig. 1, the stream of interest,
Qc, is focused and sheathed downstream by streams Qg and Qa.

Index C refers to central inlet, A and B to side streams. Sheet width is denoted by s

Fig. 1. Schematic view of hydrodynamic focusing in a four-channel intersection

By manipulating flow rates of the focusing flows, location of the focused sheet can be
deformed and moved out of the symmetry plane. Achieving a precise control of the focused
stream width is crucial in various applications of the flow focusing systems.
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2. Applications of hydrodynamic focusing

Due to specific features it has been successfully involved in several microfluidic applications
ranging from ultra-fast mixers and microreactors via flow addressed in Lab-on-a-Chip
applications and cytometry, two-phase system generators, rheometry and flow visualization
to microfabrication. Chemical synthesis in microscale is faster, small volumes and high area-
to-volume ratios reduce risks and can improve economics, short diffusion lengths enable
fast mixing, generally showing a way for process intensification.

Hydrodynamic focusing is a well known phenomenon in the area of fluid mechanics thanks
to Osborne Reynolds, who first used it for flow visualization in his break-through
experiment and it is widely utilized as a pipe mixer in chemical technology. However, the
first ‘non-academic” microfluidic application of hydrodynamic focusing was in the area of
flow cytometry, a technique for counting, examining and sorting microscopic particles
suspended in a stream of fluid. Hydrodynamic focusing, where the core flow of investigated
sample is sheathed by an inert fluid, is used in flow cytometry as a way to deliver the
sample of suspended cells to the analyzed region in an appropriate form. Such technique is
used to precisely align optical detection system giving the possibility of high speed, high
through-output analysis easily integrated with sorting, which makes the hydrodynamic
focusing the main principle of flow cytometric hardware up to day ( Donguen et al., 2005;
Givan, 2011; Shapiro, 2003).

Focused stream residing in a channel centre gives a new possibility - to control the focused
sheet position by changing the ratio of side streams, which was quickly utilized in the area
of u-TAS (micro-total-analysis systems). In such systems of reactors, mixers and detectors, a
precise control of fluid flow is essential. This can be achieved by means of hydrodynamic
focusing presenting several advantages as the characteristic switching time being in the
order of magnitude of millisecond and near zero dead volume (see the example in Fig. 2).

a sheath inlet sorted sample
outlet
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sample inlet actuation
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g

Fig. 2. Flow addressing: overall channel design (a), CCD image of focused sample stream
(Lee et al.,2005b), visible focused sample stream

/
A

This idea was developed experimentally, theoretically and by CFD means by several
authors (Bang et al., 2006; Brody et al., 1996; Chein and Tsai, 2004; Dittrich and Schwille,
2003; Hyunwoo et al., 2006; Kruger et al., 2002; Lee et al., 2001a; Lee et al., 2005b; Stiles et al.,
2005; Vestad et al., 2004;) and it can be used in conjunction with electrokinetic effects
(Dittrich and Schwille, 2003; Schrum et al., 1999; Yamada and Seki, 2005). All proposed
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applications used initial pre-focusing prior to precise spatial manipulation of the stream
making it possible to integrate a whole system of mixers, reactors and separators at one chip
(Chung et al., 2003; Goranovic et al., 2001; Klank et al., 2002; Sundararajan et al., 2004). Such
approach is gaining a lot of enthusiasm in analytical science and engineering society as it
possesses unquestionable advantages - low sample consumption, possibility of in situ
analysis, low cost of single analysis due to mass production lying among the most
important ones.

The next area where hydrodynamic focusing is used lies directly within chemical
technology field of interest, namely in mixing. The geometrical setup used in cytometry was
adopted in a continuous flow mixer leading to laminar, diffusion based mixer which used
the hydrofocusing geometry (Knight et al., 1998). The proposed mixer consists of a system of
four 10 um wide channels of rectangular cross section, intersecting in the middle and
micromachined in silicon wafer by photolithographic technique. The chip is covered with a
glass slip providing the possibility of direct observation of the fluorescent quenching
reaction by means of fluorescent and confocal scanning microscopy. Mixing between the
inlet and side streams in such a system occurs at the interphase and is fully controlled by
diffusion. As the time scale for diffusion changes with the square of a characteristic length,
the micron dimensions of focused sheet (down to 50 nm) provides the efficient mixing. In a
mixer of such construction, the obtained mixing times are less than 10 ps and reagents
consumption is 3 orders of magnitude lower (5 nl/s compared to typical 10 ul/s) than in
turbulent continuous flow mixers, which was a big achievement bearing in mind mixing is a
challenging issue by itself in micro world.

Such a novel concept of mixer was very flexible and became a subject of many development
researches. The speed and efficiency was enhanced by flow segmentation (Nguyen and
Huang, 2005), side streams oscillations leading to focused film folding (Tabeling et al., 2004),
preventing the slow speed reaction stage which takes place in the intersection, before the
focusing process finishes (Park et al., 2006), working on slow reactions requiring steady
pumping system (Stiles et al., 2005) or by forcing the turbulence by increasing the flow rate
on the other hand (Majumdar et al., 2005) - see Fig. 3.

Advantages of radically quick mixing and low sample flow rate were used immediately in
protein folding research. The knowledge of three-dimensional structure of protein and its
dynamics is crucial for life sciences. However, the main problem and limiting factor in the
observation of such reactions is their time scale being of the order of microseconds. As
proposed by Knight et al. (1998), the mixer offers a possibility to change the reaction
environment in microseconds; it was adopted to trigger the protein folding due to rapid pH
change removing the limiting time scale boundary (Dittrich et al., 2004; Hertzog et al., 2004;
Pollack et al., 2001; Russell et al., 2002). The natural step forward for a mixer, integration
with a reactor was done. The future development showed more flexibility and advantages
of such continuous flow reactor design. Jahn et al.,, 2004 investigated the possibilities of
hydrodynamic focusing application in generation of liposome vesicles. Liposomes, being a
class of nanoparticles encapsulating the aqueous volume by phospholipid bilayer, play a
crucial role in biotechnology and life sciences delivering drugs or genetic material into a cell.
Jahn et al. (2004) took advantage of the laminar character of microfluidic flow, because the
lack of temperature, shear stress and composition fluctuations in the reaction environment
causes that the product can be characterized by high monodispersity compared to bulk
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produced liposomes - important progress bearing in mind that the vesicle size is one of the
basic liposome characteristics determining the quantity of encapsulated material.
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Fig. 3. Examples of mixing in microchannel

The use of hydrofocusing allows us to create well defined and predictable interphase
surface maintaining the fully controlled environment. Such conditions, connected with low
inertia typical of microfluidic systems caused by small volumes and laminar flow were used
in polymer production. The developed method of continuous fabrication of polymeric
microfibers consists in ‘on the fly’ photopolymerization of a hydrodynamically focused
coaxial stream (Atencia and Beebe, 2005; Hyun et al., 2006; Jeong et al., 2004) - see Fig. 4.

www.intechopen.com



Hydrodynamic Focusing in Microfluidic Devices 33

A

P ® 0 @570

FTi

A - idea of photopolymerization, B - morphology of product
Fig. 4. Continuous fabrication of polymeric microfibres (Hyun et al., 2006; Jeong et al., 2004)

The main achievement in such technology is flexibility, as controlling the flowrates of sheath
and core flow provides a tool to change the fiber diameter and morphology easily - by
simple changing the flow conditions the same setup can be used for fabrication of polymeric
microcapsules due to break-up of the liquid jet.

Hydrodynamic focusing microreactors can be used in microfabrication and patterning
inside the capillaries as well (Kenis et al., 1999; Kenis et al., 2000; Takayama et al., 2001). The
idea is to allow the reaction product to interact with the channel wall. Depending on the
wall material and reaction product, a wide variety of structures and devices can be
generated. Electrodes, wall etches, ridges or lines of crystals can be placed on the walls
within the accuracy of 5 um depending on flow volume rates control. Similarly, such an idea
can be used in selective, precise and local treatment of biological cells. As demonstrated by
Kam and Boxer (2003), Takayama et al. (2001), Takayama et al. (2003), it is possible to deliver
reagents to a cell using multiple laminar streams with subcellular spatial resolution.
Similarly, the discussed technique can be used in providing steady, controlled environment
for cell population. That can mean equally distributed shear stress (Mohlenbrock et al., 2006)
or stable in time, predictable and homogeneous chemical environment for lysis (Sethu et al.,
2004). The applications of precisely controlled laminar fluid layers were also presented as a
technique for fabrication of advanced membranes.

The characteristic features of hydrodynamic focusing can be used in rheology (Waigh, 2005;
Wong et al., 2003). Diluted polymer particles delivered and focused precisely in the channel
centre experience deformations due to shear forces and elasticity. Such an isolated molecule
in the focused stream has a determined position in transverse axis and forced orientation
parallel to flow direction. Labeling the endings of polymer chain by fluorescent probes
allows one to observe a single molecule dynamics and its response to changes in flow
conditions. Dynamics of such a single molecule can reveal complex rheological properties
providing deeper insight into fundamental issues comparing to bulk rheological
measurement.
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The hydrofocusing geometry is an example how a channel modification, channel
intersection can result in complication of physical phenomenon, implicating the possible
applications. The geometry consisting of intersection of four rectangular cross section
channel has found application also in two-phase flow. Many authors (Anna et al., 2003;
Caubaud et al., 2005; Cristobal et al., 2006; Dreyfus et al., 2003; Joanicot and Ajdari, 2005;
Garstecki et al., 2005a; Garstecki et al., 2005b; Raven et al., 2006; Seo et al., 2007; Utada et al.,
2005; Ward et al, 2005; Xu and Nakajima, 2004;) used this geometry in a straight
form or modified by a nozzle after the intersection to produce monodisperse two-phase
systems (cf. Fig. 5).
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Fig. 5. Examples of generation of two-phase system in microchannels

Recently, hydrodynamic focusing has been applied in micro-PIV as a selective seeding
technique (SeS-PIV) (Blonski et al., 2011; Domagalski et al., 2006; Domagalski et al., 2007;
Domagalski, 2010; Domagalski, 2011; Mielnik and Saetran, 2006). Particle image velocimetry
(PIV) is a flow visualization technique, where a flow velocity field is deducted from the
displacement of tracer particles moving with investigated medium over time intervals.
Simplifying, the flow field can be determined by correlating the tracer displacement on
sequential frames. Due to small dimensions, in opposition to standard PIV technique where
light is introduced in the form of a laser, in p-PIV the flow is subject to bulk illumination to
evade the technical problems with light alignment and light sheet generation. In SeS-PIV, a
modification of p-PIV, the tracer particles are introduced in the hydrofocused sheet making
the width of the sheet responsible for the resolution (in opposition to the focal depth of
optical system in the case of standard p-PIV). That can de-bottleneck the system, making the
measurement less dependent on the optical setup and permitting highly depth-resolved and
instantaneous (time-resolved) velocity field measurements.
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3. Three-dimensional aspect of hydrodynamic focusing

As was shown before, a lot of work concerning hydrodynamic focusing had been done and
many examples of applications exist in the literature. However, little is known about this
phenomenon on a basic level. So far, the papers on hydrodynamics of fluid focusing in
microchannels present theoretical approach based on analytical solution of the flow in a
rectangular cross-section channel (Chen et al., 2006; Solli et al., 2006; Wu and Nguyen, 2005
a,b,c).

The last publications, however, show the complexity of this phenomenon. A detailed
investigation of the three-dimensional structure of hydrodynamic focusing performed by
means of CLSM (confocal laser scanning microscopy) reveals two aspects of stream
deformation (Blonski et al., 2011; Domagalski et al., 2007; Domagalski,2011; Domagalski and
Dziubinski, 2010; Dziubinski and Domagalski, 2010). The first one consists in a non-uniform
distribution of stream width and the second one relies on an additional curvature of the
focused stream while pushing it away from the channel axis by non-symmetric side streams.

Experimental investigations indicated that in the case of symmetric side streams focused
flow sheet was not necessarily uniform and its thickening close to the walls of a
microchannel might reach undesirable values. A three-dimensional study of this effect
confirmed that the focused sheet was not flat and with an increasing flow rate it exhibited
nearly tripled thickness at both side walls, see Fig. 6.

channel
cross-section
1040x800 pm2

Nt MU

Fig. 6. The 3D projection of confocal microscopy image of hydrodynamic focusing with
cross-section a,b,c - thickening of the focused plane close to side walls observed when
increasing flow rate (Qa/Qsg = 1; Re= 3.28; 6.46 and 12.92, respectively)

A detailed flow pattern analysis revealed possible regimes of focused stream shape: barrel-
like shape, characterized by a decrease of width towards the top and bottom walls, Fig. 6a,
flat uniform shape, Fig. 6b, and double concave shape, Fig. 6c.

Analyses of available experimental data reveal three regimes of the flow-focusing
mechanism depending on the value of Reynolds number:

at 5<Re<8 a nearly flat focused plane with constant width can be obtained,

Re<5 creates a slightly convex shape of the focused streams,
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at Re > 10 double concave shape is present, complete layering of the focused flow on the
side walls takes place at the Reynolds number approaching 50.

Figure 7 show shapes of the focused stream obtained by CFD simulation for channels of
rectangular cross section 300 x 400 pm. The geometry and dimensions of the CFD model
were identical to the experimental device. The boundary conditions were set as mass flow at
the inlets and pressure at the outlet of microchannel (Blonski et al., 2011).

Focusing ratio - the ratio of flow of the focused flow to the sum of focusing streams

Qc/ (Qa+Qp)

A numerical simulation performed for four different focusing ratios indicates that thickness
of the focused plane decreases with an increase of the focusing ratio, Fig. 7. However, a very
strong effect on the focused sheet structure is observed by varying total flow rate (the flow
Reynolds number), see Fig. 7 and 8. Increasing the Reynolds number above 10 practically
destroys the flow focusing mechanism and for the Reynolds number above 50 the focused
liquid is fully layered on the top and bottom walls, being absent from the channel center.
Numerical calculation confirms very well the experimental data.

1

Re

Re = 10

100

Re

Fig. 7. Distribution of the focused liquid for three different Reynolds number (rows) and
four different focusing ratios (columns)
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Re=0.1 Re=5 Re=10 Re=25
Fig. 8. Effect of Reynolds number on distributions of the focused liquid. Focusing ratio is
1:20 (Blonski et al.,2011)

Description of the shape of focused stream is complicated in the case when the focused
stream is pushed away from the channel axis by non-symmetric side streams. Such behavior
of the focused stream is shown in Fig. 9 which presents images of stream projection
obtained by means of confocal microscopy with corresponding CFD simulations

(Domagalski, 2011).

Q,/Qg = 7.56

QA/QB = 1.73

>
Fig. 9. The shapes of focused stream CFD results (left) and confocal microscope CLSM
projections (right) for different ratios of side streams Qa/Qgp. Channel rectangular cross
section 1020 x 800 pm

When the stream is pushed away from the channel center, the previously described
deformation in the form of uneven width of the stream is overlapped by the next
deformation in the form of stream curvature perpendicular to flow direction. This behavior
is confirmed by CFD simulations, as shown in Fig. 10 which presents a comparison of
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relevant cross sections obtained experimentally by the confocal microscopy with results of
the CFD simulations for a channel cross section 1020 x 800 pm.

11
1

Fig. 10. The comparison of experimentally determined shape of focused stream (upper
diagram) with CFD modeling (bottom diagram) for different values of side streams ratio
Qa/Qg:a)1.0,b) 1.73, ¢) 2.0, d) 3.0 and e) 7.56

This figure makes it possible to compare directly the shapes of deformed stream, showing
good agreement of CFD simulation result and the observed system behavior.

4. The effect of properties and velocity of flowing media and channel size on
the shape of focused stream

A very significant aspect of designing and operation of the systems based on hydrodynamic
focusing is to determine the position of focused stream inside the outlet channel in given
conditions of flow. As it has been stated earlier, when the flow is focused by identical side
streams Qa=Qp, the focused stream leaves a microchannel flowing in the center of the outlet
channel. In the case when the focusing streams are not symmetric, the focused stream is
pushed away from the channel axis (Domagalski, 2007, Domagalski, 2008; Domagalski,
2011).

The basic geometric parameters that characterize the shape and position of stream in the
microchannel were displacement of the stream from the center of channel axis z and its
curving represented by distance ¢ which is the difference of displacement of central part of
the stream and its near-to-wall part, cf. Fig. 11.
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For example, Figure 12 shows dependence of the position of focused stream in the outlet
channel on the ratios of side flow rates for the system of channels with cross sections 1020 x
800pm and 260 x 200pm (Domagalski, 2011).

c

Fig. 11. The basic geometric parameters characterizing the shape and position of stream in a
microchannel
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Fig. 12. Displacement from the centre of channel axis z as a function of the side stream ratio

Qa/Qs

These diagrams have a characteristic point with coordinates A(1,0) corresponding to the
variant of symmetric focusing when volumetric flow rates of side flows are the same, and
horizontal asymptote corresponds to a physical border in the form of the channel wall. It can
easily be observed that pushing the focused stream away from the microchannel axis grows
with an increase of the ratio of side streams.

Another aspect of deformation of the focused stream is the dependence of stream curvature
on flow conditions. Figure 13 shows the dependence of curvature c of the focused stream on
pushing the stream away from the channel axis z.
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Fig. 13. Deformation of the focused stream as a function of pushing it away from the channel
axis. Channel dimensions: 1020 x 800 pm (left-hand side diagram) and 260 x 200 pm (right-
hand side diagram)

As follows from the figures, curving of the focused liquid stream pushed away from the
microchannel axis increases with the process of pushing it away. Additionally, this effect is
enhanced when the velocity of media flowing through the outlet channel grows.

While comparing diagrams shown in Fig. 12 and 13 one can observe that the relations have a
similar character irrespective of the channel cross section. To investigate whether it is
possible to exclude the effect of the channel cross section on the characteristics of
hydrodynamic focusing, it was proposed to use dimensionless values. For this purpose the
dimensionless pushing of the focused stream away from the channel center z' and
dimensionless curving c' was used. These values are defined as follows:

z'=z/D, 1)

c¢'=c/D, )
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where: D, - equivalent channel diameter, z - pushing away from the channel axis, ¢ -
channel curvature.

In the case of a channel with rectangular cross section of dimensions a x b, the equivalent
diameter has the form:

D,=4 A/O =2ab/(atb) 3)

where: A - cross section of the channel, O - channel perimeter flown by liquid, a and b -
channel dimensions.

To investigate the effect of the channel cross section on hydrodynamic focusing, the cases of
similar hydrodynamics were taken into account, and the criterion of similarity was the
Reynolds number defined by the equation:

Re=uD,p/p (4)
where: u - liquid velocity, p - liquid density, p - liquid viscosity

The effect of channel dimensions on pushing the focused stream away from its axis as a
function of the ratio of side stream flow rates for different values of the Reynolds number is
illustrated in Fig. 14, while the effect of the channel dimension on the dimensionless
curvature c' is shown in Fig. 15.

0.5 - 0.5 -
0.45 Of ¥ e 0.45 - SR
2T S
0.4} e 0.4t fe 0
0.35 o T 0.35
s
0.3 0.3
L p.25 - 0.25
~ ~
0.2 0.2
0.15 0.15
il G  Re=4,1 o o 1020x800 [um]
' o Re=8,1 © 400x300 [um]
0.05 > Re=14 0.05} o - 260x200 [um]
LI £ .
0 )
0 5 10 15 20 ) 10 15 20
Q,./Qy Q. Qy

Fig. 14. Dimensionless pushing of the focused stream away from the channel axis as a

function of the ratio of focused streams for different values of the Reynolds number (left-
hand side diagram) and for channels of different dimensions (right-hand side diagram)

From the analyses of experimental data shown in Fig. 14 and 15, it follows that the
dimensionless value of pushing the focused stream away does not depend on the channel
dimensions, while the dimensionless curvature of the focused stream c' is dependent on the
channel dimension. Curving of the focused stream is bigger in a smaller microchannel.
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Fig. 15. Dimensionless deformation of focused stream c' as a function of dimensionless
pushing off from the channel axis z' at constant Reynolds number Re=8.1

To estimate the position and shape of focused stream the following form of correlation
equations was proposed:

z' =£(Qa/Qs) (5)
c'=£f(z,Re, D,) (6)

Preliminary knowledge of the shape of stream focused in given flow conditions is a basic
information while designing and operating the devices in which hydrodynamic focusing is
applied.

Based on available experimental data, the following form of Equations (5) and (6) is
proposed

2'=-0.955 (Qa/Qp)018 +1.04 )

¢'=0.027 z' Re - 0.0393 (D,/ Dr.f) +0.0243 8)

A reference diameter Dy is assumed to be 1000 pm which is the upper limit of dimension of
the channel defined as a microchannel.

A comparison of experimental data with the values calculated using correlation equations
(7) and (8) is shown in Fig. 16.

Using Equations (7) and (8) it is possible to determine the position and shape of focused
stream with a maximum error reaching 25%. The equations are valid equally for channels of
dimensions ranging from 260 x 200 to 1020 x 800 pm and for media with the following
parameters: density 998 to 1097 kg/m?3, viscosity 0.997 to 12.5 mPas, surface tension 31 to 73
mN/m and for the range of liquid flow rate in the microchannel corresponding to the range
of Reynolds number from 4.5 to 14.
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Fig. 16. The comparison of experimental value of z' and c' with the value calculated from eq.

(7) and (8)

To investigate the effect of surface tension and liquid viscosity on the parameters of
focused stream, measurements were taken for liquid with the surface tension 31 mN/m?2
(water with surfactant Triton X-100, Sigma-Aldrich) and liquid of viscosity higher than
that of water amounting to 12.5 mPas. Results of exemplary measurements are given in

Fig. 17 and 18.

0,6
z
0,45
2 ﬁ_‘_’______f_____,_—
,=j’:-;:/ P
f‘///. i
0,3 "/
0,15 /
m 125 mPas
— 1 mPa:s
0 1
0 5 10 15

Qx/Qg

Fig. 17. The effect of liquid viscosity dimensionless pushing away of the focused stream
from the channel axis for different values of the ratio of focusing streams

Based on the investigations it can be claimed that in the used range of measurements the
effect of media properties on the character of a hydrodynamic phenomenon of stream
focusing in the microchannel is negligibly small.
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Fig. 18. The effect of surface tension of dimensionless stream curvature

5. Modification of micro-PIV flow visualization technique using hydrodynamic
focusing phenomena

Micro Particle Image Velocimetry (micro-PIV) is a flow visualization technique for
microfluidics (Raffel, 2007), where a flow velocity field is constructed from the displacement
of tracer particles moving with investigated medium over time intervals. Simplifying, the
flow field can be determined by correlating the tracer’s displacement on sequential frames.
Due to small length scales of the observed phenomena, the flow is a subject of volume
illumination, meaning the whole channel volume is illuminated and the measurement is
based on focal depth of optical system, as only tracers within the depth of focus are clearly
visible. That caused several problems as particles from below and over the focal plane
participate in image brightness as background noise and evidently depreciate the evaluation
accuracy.

To overcome this drawback, low concentration of tracers is usually used and the performed
averaged correlation procedure averages the results over a large number of pairs of images,
this however costs time.

Recently, the flow focusing method was proposed to introduce the tracers as a thin layer
instead of whole volume seeding (SeS-PIV Selective Seeding PIV) (Mielnik and Saetran,
2006; Domagalski et al., 2008; Blonski et al., 2011; Domagalski, 2011). Such layer can be
obtained in a rectangular cross-section channel via hydrodynamic focusing, which is shown
in Fig. 19. Limiting seeding to a thin layer improves spatial resolution of the velocity field
evaluation and permits to apply higher tracers concentration, hence allowing for acquisition
of shorter sequences of images.

As visible, the stream containing tracers is squeezed by tracer-free side streams, which
makes it possible to create the confined, narrow layer of tracers. Now, two conditions are
necessary to take the advantage of such a setup. First, the flow has to be laminar, so the
focused stream will not be perturbed, second, the diffusion effect has to be negligible. The
first condition is generally fulfilled in a micro-area - with sub-millimeter characteristic
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length and liquid flow that is usually true. The second condition is dependent on tracer
particle diameter, as the diffusion speed is proportional (Einstein-Stokes formula) to particle
diameter.

IQA

6(0 rr

o,

Fig. 19. The classical micro-PIV (A) and the idea of its modification as SeS-PIV (B)

Assuming that the focused stream is narrower than the depth of focus of a microscope, the
measurement becomes independent of optical parameters. Due to limiting the source of
fluorescent light to well-defined thin surface, the signal to noise ratio is strongly improved -
see Fig. 20.
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Fig. 20. Signal to noise ratio S/N as a function of test section depth (correlation depth)

What is more important, such a modification eliminates the seeding concentration limit,
allowing the tracer layer to seed densely, resulting in the possibility of analyzing flow field
on the basis of reduced (compared to standard, low concentration, volume illuminated
micro-PIV) number of image pairs. The measurement can take less time, allowing for the
measurement of non steady flows.
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The whole depth section of the flow contributing to the measured velocity field is called the
depth of correlation. Physically it is the depth of focus of the microscope, extended by the
effect of diffraction and tracer particles geometry (Meinhart et al., 2000).

At the first step of analysis it is useful to compare the raw images of micro-PIV and its
modification SeS-PIV. The comparison shown in Fig. 21 reveals a visible quality increase in
the case of the SeS-PIV method.
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Fig. 21. Comparison of SeS-PIV image (upper) and micro-PIV raw images (bottom)

One may find better contrast of the image with focused seeding. This is caused by the lack of
background, as no tracers are present outside focused, controlled tracer streams of known
geometry. Moreover, the tracers are flowing in a thin layer, thinner than the depth of focus,
so their images lack the diffraction rings as opposed to out-of-focus particles present in the
micro-PIV picture. The visible blurred area near the obstacle in SeS-PIV picture is due to the
three-dimensional deformation of focused stream. During flow over the ridge casing the
tracers are coming out of the depth of focus. However, this effect was observed only at the
highest tested velocities.

The velocity profiles determined by micro-PIV and SeS-PIV methods are presented in Fig. 22
(Blonski et al., 2011).

5.1 Applicability of the novel SeS-PIV technique

Applicability of the presented measuring technique is related directly to focusing
hydrodynamics, the shape of cross section of the focused stream and diffusion of tracers
used in the measurements. This applicability is limited by deformations of the focused
stream and tracer diffusion rate.

The limit of acceptable deformation of the stream is determined by its curvature not
exceeding the depth of correlation. The main mechanisms deforming the focused stream are
Dean vortices, Moffat vortices and diffusion (Dascopoulos and Lenhoff, 1989; Domagalski,
2009; Ismagilov et al., 2000; Kamholtz et al., 1999; Kamholtz and Yager, 2001; Kamholtz and
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Fig. 22. Comparison of the numerical (CFD) and experimental results (SeS-PIV and micro-
PIV) of vertical profile of velocity in the microchannel for Re=25 (left) and Re=0.4 (right)

Yager, 2002; Munson et al., 2005). Dean vortices formed as a result of unbalanced centrifugal
force during motion along the curved line play a key role in deformation of the stream,
inducing an increase of the cross section of the focused stream in near-to-wall regions.
Intensity of the Dean vortices is characterized by the Dean number which is directly
proportional to the Reynolds number (Munson et al.,, 2002). The effect of Dean vortices
decreases with a decrease of the Reynolds number which is illustrated by rectangular cross
section of the stream at Re=b5. Transition into the region Re<1 (particularly in the creeping
flow regime Re « 1) totally neutralizes the effect of Dean vortices on flow in the
microchannel but causes generation of Moffat vortices (Mercer, 2004; Moffat, 1964). These
are the structures formed due to wall action in the immediate vicinity of stagnation points.
However, they do not have such a destructive effect on the stream shape as the Dean
vortices have.

The effect of diffusion depends strongly on the particle size of tracers used in
measurements. For a typical tracer size d=2 pm, diffusion coefficient is of the order D=2.2
1013 m2/s. In this case the path of diffusion is of the order of several micrometers along the
whole length of a typical microchannel. Since the width of focused stream is much bigger,
the effect of diffusion on the accuracy of measurements is negligible. However, in the
literature there are examples of researches carried out with the use of quantum dots of size
20 nm, which much enhance the process of diffusion and do not allow us to abandon its
effect on the shape of focused stream.

Hydrodynamic focusing of a liquid stream provides an opportunity to control the position
of focused stream in the outlet channel. This technique used to illustrate velocity fields,
enables mapping of the velocity field in subsequent channel cross sections (at different
positions of the stream in the outflow channel), and consequently allows velocity to be
measured in the entire liquid volume. The limit of applicability of this technique is
determined by curvature of the focused stream which cannot be bigger than the depth of
correlation of micro-PIV. Deformations limiting in this way applicability of the
hydrodynamic focusing to a modification of the micro-PIV technique are primarily the
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functions of the Reynolds number, and for the non-symmetric variant of focusing also the
ratio of velocities of the flowing media.

Concluding, it should be stated that the applicability of the SeS-PIV method is determined
by three conditions:

1. The Reynolds number for the outlet stream is below Re=10.
2. The diffusion path is much smaller than the width of focused stream.
3. The width of focused stream is smaller than the depth of correlation of the microscope.

The proposed correlation equations (7) and (8) are used to estimate preliminarily the shape
and position of focused stream inside the channel which enables determination of the region
in which condition 3 is satisfied, and consequently enables quick identification of the
applicability of the SeS-PIV method.

6. Conclusions

This chapter presents a review of applications of hydrodynamic focusing and the latest
research in this area. Hydrodynamic focusing being a well established technique in
microfluidic area has found many applications. Due to specific features it has been
successfully involved in several microfluidic applications ranging from ultra-fast mixers and
microreactors via flow addressed in Lab-on-a-Chip applications and cytometry, two-phase
systems generators, rheometry and flow visualization to microfabrication. Chemical
synthesis in microscale is faster, small volumes and high area-to-volume ratios reduce risks
and can improve economics, short diffusion lengths allow for fast mixing, generally
showing a way for process intensification.

The latest researches, however show precisely a new complicated three-dimensional aspect
of this phenomenon indicating novel promising possibilities of future applications and
development. A detailed investigation of the three-dimensional structure of hydrodynamic
focusing performed by means of CLSM (confocal laser scanning microscopy) reveals two
aspects of stream deformation. The first one consists in a non-uniform distribution of stream
width and the second one relies on an additional curvature of the focused stream while
pushing it away from the channel axis by non-symmetric side streams. The influence of
properties and velocity of flowing media and channel size on the shape and position of
focused stream in the microchannel has been presented.

A modification of the micro-PIV technique by introducing the tracers in hydrodynamically
focused thin layer instead of volume seeding was proposed. Such modification known as
SeS-PIV improves the raw image quality by removing the background noise ratio and
permits higher seeding concentration. These features drastically improve the analysis of raw
images - comparing to micro-PIV technique, making SeS-PIV techniques a valuable tool for
microfluidic flow visualization.
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