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Sources of Hematopoietic Stem Cells 

Piotr Rzepecki, Sylwia Oborska and Krzysztof Gawroński  
BMT Unit, Military Institute of Medicine, Warsaw 

Poland 

1. Introduction 

Hematopoietic stem cell transplantation (HSCT) has the potential to cure a variety of 
malignant and non- malignant diseases. Sources of hematopoietic stem cells for 
transplantation have expanded progressively since the beginning of the modern era of 
transplantation in the late 1960s. Although bone marrow was the main source of stem cells 
in the early years of transplantation, in the past 10 to 15 years peripheral blood has assumed 
increasing importance. The initial impetus for the use of PBSCs for transplantation was to be 
able to offer transplantation to patients who were not candidates for the use of bone marrow 
cells (tumor contamination of the marrow or those with hypocellular marrows). Subsequent 
studies demonstrated that PBSCs could be mobilized from the bone marrow with either 
hematopoietic growth factors (GM-CSF, G-CSF) or a combination of chemotherapy and 
growth factors, which increased the number of hematopoietic progenitors collected from the 
blood by 10- to 1000- fold compared with steady-state conditions. Umbilical cord blood 
represents the newest source of stem cells for transplantation. At now peripheral blood is 
the main source in the autologous setting. Within the allogeneic setting, multiple sources of 
stem cells are possible and include those derived from individuals related or unrelated to 
the patient. 
Hematopoietic progenitor cell (HPC) products contain hematopoietic stem and lineage-
committed progenitor cells capable of providing hematopoietic and immune reconstitution 
after myeloablative or reduced-intensity preparative regimens. HPCs administered 
intravenously migrate to the marrow, where they adhere, expand, selfrenew (stem cells 
only), and differentiate. The differentiated cells are released into the blood, restoring blood 
counts and immunity. The time from administration of HPCs to recovery of adequate or 
normal blood counts is variable. Recipients of peripheral blood stem cells recover counts 
faster than recipients of bone marrow. Cord blood tends to be the slowest to engraft.  
The minimum number of HPCs necessary for engraftment in a myeloablated recipient has 
not been established. Different products have widely different numbers of progenitors and 
stem cells. However, eligibility criteria for some protocols usually dictate a minimum 
number of cells to be collected and infused.  
Several methods are used to measure the number of cells in an HPC collection. Simple cell 
count may be adequate for many marrow collections. Most centers use flow cytometric 
enumeration of CD34+ cells for the majority of cellular products. The discovery of the CD34 
antigen in the early 1980s revolutionized our understanding of hematopoiesis. Cells 
expressing CD34 are capable of reconstituting hematopoiesis in lethally irradiated animals 
and humans, indicating that the putative hematopoietic stem cell expresses CD34.  
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Fig. 1. Sources of haematopoietic stem cells for different types of transplantation 

This type I transmembrane glycoprotein is expressed on: 
1- 3% of bone marrow mononuclear cells 
0,01- 0,1% of peripheral blood mononuclear cells 
0,1- 0,4% of umbilical cord blood cells 

2. Marrow as a source of stem cells 

Marrow is collected in the day surgery suite using either general or regional anesthesia. 

With proper fluid and blood replacement, overnight hospitalization should not be required. 

For the healthy donor, the risks of serious complications from either general or regional 

anesthesia are about the same. Spinal or epidural anesthesia avoid the nausea that may 

occur with general anesthesia, especially for young women, but hypotension from loss of 

vascular tone in the lower extremities often occurs as the volume of marrow is collected. 

General anesthesia is preferable for the donor with comorbid disorders such as 

cardiovascular or cerebral vascular disease because of the better control of donor airway and 

lower risk of hypotension during the harvest procedures. Local anesthesia is acceptable only 

if a very limited harvest is being performed, as large quantities of lidocaine are cardiotoxic 

and local anesthesia does not achieve anesthesia of the marrow space. The technique of bone 

marrow harvest is straightforward and involves repeated aspirations of small volumes 

(10ml) of marrow. The marrow is removed sterilely from both posterior iliac crests by two 

operators simultaneously to minimize anesthesia time. Occasionally marrow is obtained 

from the anterior iliac crest or sternum.Typically we do two puncture through the skin and 

multiple bone punctures. Do not take more than 25 ml of bone marrow per kilogram of 

donor -  this is the upper limit on the volume of collected bone marrow. The marrow is 

placed in a sterile container with an electrolyte solution and an appropriate anticoagulant. 
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The cell suspension is passed through sterile filters to remove fat, bone particles, and 

cellular debris [4,5]. For patients with a history of radiation or tumor involvement of one 

pelvic crest, adequate cells can be harvested from the anterior and posterior crests of the 

other side [6-8]. 

2.1 Toxicity and adverse events associated with bone marrow collection 

Anesthesia complications present the major health risk to the donor. Marrow aspiration is 

generally well tolerated. Major complications occur in approximately 0.27% of healthy 

allogeneic donors and up to 0.97% of autologous transplant patients [9-10]. Complications 

include hemorrhage and infections at skin puncture sites. Severe hematomas and neuralgias 

rarely occur, but attention to pelvic anatomy is required to decrease the risk of damage to 

vessels and nerves lying under or adjacent to the iliac crest harvest sites. Irritation of the 

sacral nerves may result from needle penetration through the pelvic bone or from blood 

tracking into the nerve roots and requires several months of convalescence. Localized pain is 

common, may last for several days, and may require a brief period of medication with 

opioid/acetaminophen combinations [4]. In a survey of almost 500 donors for unrelated 

marrow transplantation, the average time for recovery was 15.8 days, although 10% of 

donors required more than 30 days for self-reported complete recovery [11]. Most donors 

are able to return to routine activities 1 to 2 days after harvesting. In a study of related 

donors, an equivalent level of pain was reported by donors undergoing bone marrow 

harvesting and those receiving filgrastim for mobilization of PBSC [12]. Minor complications 

occur in 6-20% of marrow donations [11]. These include such events  as hypotension, 

syncope, severe post-spinal headache, excess pain, unexpected hospitalization and minor  

 

Symptom Women % Men % 

Tired 85 76 

Collection site pain 78 75 

Back pain 67 68 

Nausea 63 40 

Sore throat 62 57 

Pain sitting 62 57 

Lightheadedness 53 42 

Headache 40 32 

Vomiting 39 17 

Intravenous site pain 37 23 

Fever 22 22 

Bandage pain 19 26 

Bleeding at site 10 8 

Fainting 7 5 

Table 1. Symptoms reported by National Marrow Donor Program (NMDP) bone marrow 
donors, 1987-2000 (n=9601) [8]  
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infections. In National Marrow Donor Program (NMDP) observation the frequency of 

serious adverse events following marrow donation is estimated at 0,1-0,3%. Reactions to the 

anesthetic agents administrated may be adverse reactions, hypersesitivity or idiosyncratic 

reactions. One NMDP donor experienced laryngospasm following extubation. Additionally, 

several NMDP donors have experienced profound bradycardia during anesthesia, including 

regional anesthesia (spinal and epidural), that required emergency treatment. Death has 

occurred among normal marrow donors. A recent revive of 7857 marrow collections 

reported two deaths [13].  

2.2 Quantity of bone marrow cells for transplantation 

Generally, 10-20ml marrow/kg of donor weight is harvested to achieve a minimum 

mononuclear cell (MNC) count of 2 x 10 to 8 MNC/kg of recipient body weight, although 

ideally up to 4,0 x 10 to 8 MNC/kg is preferred to compensate for cell loss during processing 

and to ensure adequate engraftment. The only setting in which higher numbers of MNC/kg 

definitely have been shown to be of benefit is aplastic anemia, in which low cell counts have 

been associated with an increased risk of rejection. Marrow contains mature red cells, white 

cells, platelets, mast cells, fat cells, plasma cells, committed progenitors of all lineages and 

hematopoietic stem cells. The most common modifications of allogeneic marrow are to 

decrease the volume of ABO-incompatible red cells, remove ABO- incompatible plasma, 

isolate CD34+ cells and remove donor T lymphocytes. The most common modification of 

autologous marrow is to reduce the volume by removing plasma and red cells before 

cryopreservation [4]. 

2.3 “Rich” bone marrow 

Pretreatment of the marrow donor with filgrastim (granulocyte- colony-stimulating factor 

G-CSF) may increase the number of myeloid progenitor cells harvested and decrease the 

period of posttransplant aplasia to that achievable by PBSC transplantation [14]. 

Hematologic recovery in patients who are treated with autologous stem cells taken from 

bone marrow after G-CSF stimulation (rich bone marrow – RBM) is faster than in patients 

without G-CSF. In the Polish study [15] were estimated engraftment outcomes of patients 

who received bone marrow unstimulated or stimulated with G-CSF. The median and range 

for neutrophil engraftment times in this study when they used stimulated bone marrow 

were comparable with those published by Lemoli et al. [16]. It seems that a better method of 

obtaining stem cells from bone marrow is the RBM. Using of stimulated bone marrow can 

faster engraftment comparing to non-stimulated bone marrow and can help patients, who 

fail to collect adequate number of stem cells from their peripheral blood. It is generally 

accepted that RBM engraft more rapidly than unstimulated bone marrow and that RBM 

appear to have similar engraftment times to peripheral blood stem cell transplantations 

suggesting that it is prior G-CSF exposure, not the anatomic site, which influences 

engraftment [14,17,18]. CD34+ cell dose now is being correlated with transplant outcomes, 

with more rapid engraftment kinetics, possibly lower transplant-related mortality, and 

better overall survival, for example, in recipients of allogeneic products containing higher 

quantities of CD34+ cells. Otherwise patients receiving filgrastim- primed bone marrow had 

significantly less steroid-refractory acute graft-vs-host disease (GvHD), less chronic GvHD 

and fewer days of immunosuppressive therapy. Download stimulated bone marrow may 
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favor the acquisition of more hematopoietic cells and facilitate reconstitution after 

myeloablative therapy with no significant increase in risk of GvHD [19].  

 

 PLT> 20 ANC> 0.5 G/L Length of 
hospitalization 

Median time to recovery (RBM) 12,6 days 13,0 days 17,3 
Median time to recovery 
(bone marrow without stimulation  
of G-CSF) 

18,8 days 17,8 days 23,1 

Table 2. Time to recovery of platelets (PLT) and neutrophils (ANC) and length of 

hospitalization when we used bone marrow after stimulation G-CSF and without 

stimulation of G-CSF [15] 

3. Peripheral blood stem cells (PBSC) 

Stem cells were detected in the peripheral blood of mice in 1962 and in human in 1971 [20]. 

However, interest in peripheral blood stem cell transplantation did not develop until mid- 

1980s. During 1985-1986 several centers from different parts of the world reported 

encouraging results of the autologous transplants using hematopoietic progenitor cells 

collected from peripheral blood [21,22]. The first allogeneic transplant with peripheral blood 

progenitor cells was reported in 1989 [23]. Use of PBSC became more common after 1995 

with the publication reports of successful allogeneic transplants with PBSC [24-26]. By 

stimulating the donor with either hematopoietic growth factors, or chemotherapy and 

growth factors, a sufficient number of circulating stem cells for marrow rescue can be 

collected in one to three apheresis procedures. Mobilized PBSC products are routinely used 

as an alternative source of HSCs for transplantation [27,28]. A PBSC collection is performed 

with a cell separation device originally developed for therapeutic leukapheresis, 

plasmapheresis and platelet donation procedures. This apheresis device uses a centrifuge to 

separate and collect mononuclear cells, including HSCs, from the blood. In order to achieve 

an adequate HSCs for transplantation it is necessary to process 12 to 25 liters of blood or 2.5 

to 6.0 times the patient’s/ healthy donor’s calculated blood volume. Investigators have 

reported that the yield of CD34+ cells increases continuously as more blood volumes are 

processed. Although up to six times the donor’s blood volume can be safety processed, 

some donors are not able to tolerate 4 or 6 hours being connected to an apheresis machine. 

Therefore, these donors require repeated collections on sequential days once the peripheral 

CD34+ count has increased to acceptable levels (>10 CD34+ cells/µl) for collection. There 

are currently three different commercially available apheresis instruments. In each case, 

instrument settings such as inlet flow rate, centrifuge speed, collect pump flow rate and 

anticoagulant: whole blood ratio vary, depending on the target cell type to be collected. The 

three instruments operate differently. The Amicus (Baxter) and the COM.TEC (Fresenius) 

are more automated, computer-controlled instruments; however, the Spectra is more widely 

used [1,29]. Because an apheresis procedure is used to collect PBSC products, they contain 

very few erythrocytes or granulocytes, compared to marrow, and are primarily composed of 

mononuclear cells (MNCs). PBSC products also contain larger numbers of HPCs than either 

marrow or cord blood, and therefore facilitate faster engraftment and shorter hospital stays. 

www.intechopen.com



 
New Advances in Stem Cell Transplantation 204 

Patients who have been heavily pretreated with multiple rounds of chemotherapy or 

radiation therapy often mobilize poorly and require multiple collection episodes [30].  

Although the peripheral blood of healthy individuals contains fewer than 0,1% HSCs, this 
number increases dramatically during recovery from cytotoxic therapy and even more so 
more so then recombinant CSFs such as G-CSF are administered. Various mobilizing 
techniques are used by centers and generally consist of growth factor administration alone 
or in combination with various types of chemotherapy. G-CSF and high-dose 
cyclophosphamide (CY) are the most commonly used agents [28, 31-33]. Currently, almost 
all of autologous and a majority of allogeneic transplants are performed with PBSC. 
Advantages of PBSC over bone marrow include [21,34]: 

 Elimination of the need of general anesthesia, pain and other side effects of bone 
marrow aspiration. 

 Patients with bone marrow metastases could be transplanted with autologous PBSC as 
there is a potential for tumor cell free collection. 

 The hematological recovery with PBSC was faster than bone marrow significantly 
reducing the time to transfusion independence. 

PBSC products contain larger numbers of T cells than marrow collections, and thus present 
a greater risk of causing graft-versus-host disease (GvHD) in the allogeneic setting, although 
the rate of acute GvHD is less than originally feared [35-39]. In a prospective randomized 
study comparing PBSC donation with bone marrow, PBSC products contained double the 
number of CD34+ cells, eight fold more of T and NK cells than bone marrow collection. The 
advantages to the recipient were faster recovery of both neutrophil and platelets with PBSC 
compared to marrow without increasing risk of graft-vs-host disease. Another multi-center 
study also reported faster neutrophil and platelet recovery but significantly more frequent 
acute and chronic GvHD in PBSC recipients than recipients of bone marrow cells. There 
were no significant differences in transplant related mortality, relapse rate and overall 
survival were found [40-42].  

3.1 Mobilization regimens 

Recent advances in stem cell mobilization techniques have exploited the interactions 

between stem cells and the bone marrow microenvironment. Composed of stromal cells, 

endothelial cells, osteoblasts and other matrix components (collagens, fibronectins, 

proteoglycans), the bone marrow microenvironment anchors hematopoietic stem cells 

though a wide range of adhesive interactions [43]. Hematopoietic stem cells express a broad 

array of cell surface receptors, namely the adhesion molecules lymphocyte function-

associated Ag-1, very late Ag-4, and Mac-1; the chemokine receptors CXCR4 and CXCR2; 

the cell surface glycoproteins CD44 and CD62L; and the tyrosine kinase receptor c-kit [43-

45]. The bone marrow stroma contains stromal cell-derived factor-1 (SDF-1), CXC 

chemokine GRO-┚, vascular cell adhesion molecule-1, kit-ligand, P-selectin glycoprotein 

ligand-1 and hyaluronic acid, all of which are cognate ligands for the stem cell adhesion 

molecules [43-45]. Data from a number of preclinical models showed that inhibition of these 

receptor-ligand interactions resulted in enhanced progenitor cell mobilization [46-48]. 

Several exogenous hematopoietic cytokines that can mobilize hematopoietic progenitor cells 

into circulation are now available. Granulocyte colony stimulating factor (G-CSF) 

(filgrastim, lenograstim, pegfilgrastim) and granulocyte macrophage colony stimulating 

factor (GM-CSF) (sargramostim) are most commonly used for mobilization. They are used  
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 G-CSF GM-CSF Erythropoietin Plerixafor 

Adhesion factors  

Additive effects 

with G-CSF. May 

inhibit osteoclast 

activation. 

Exact mechanism 

unknown, but 

additive when used 

in combination with 

G-CSF or GM-CSF 

 

CXCR4       or  
No effect  

or  

SDF-1   

MMPs   

Neutrophil elastase   

MMP- matrix metalloproteinase; SDF-1: stromal-derived factor 1┙ 

Table 3. Factors using for mobilization- mechanism of action [31] 

alone to mobilize hematopoietic stem cells into circulation in healthy donors for allogeneic 
transplantation and in patients who are in complete remission or in heavily pretreated ones 
for autologous transplantation. Approximately 4 days after the daily administration of G-
CSF at a dose of 8-20 mcg/kg body weight, there is an increase in the number of CD34+ cells 
in the blood of patients and healthy stem cell donors. With this method, the progenitor cell 
peak is reached between days 5 and 6 [49]. The extent of mobilization is determined by the 
age of the patient, the diagnosis, the earlier cytotoxic therapy, the dose of G-CSF and the 
sequence of G-CSF administration [50]. Kroger et al [51] showed that mobilization was more 
effective if the total dose of G-CSF was divided into two equal fractions and given in the 
morning and in the evening rather than as a single dose once daily. G-CSF administered 
every 12 h at doses of 5 µg/kg provides better CD34+ cell yield than 10 µg/kg once a day in 
normal donors which may translate into a decrease in the number of apheresis required to 
obtain enough numbers of CD34+ cells for allogeneic PBSC transplant.  

3.2 Which growth factor should we choose? 

Filgrastim is commonly used to mobilize peripheral blood stem cells. Pegylation of 
filgrastim (pegfilgrastim) leads to prolongation of its half- life without loss of activity. 
Attachment of the polyethylene glycol (PEG) moiety reduces renal excretion and masks 
proteolytic cleavage sites resulting in elevated G-CSF serum levels for up to 14 days after a 
single injection. While filgrastim is also cleared by the kidneys, pegfilgrastim is mainly 
eliminated via a neutrophil-mediated clearance mechanism [52-54]. The initial results of 
using pegfilgrastim obtained in limited numbers of patients with solid tumours showed that 
pegylated G-CSF was principally capable of mobilizing haematopoietic progenitor cells [54]. 
In 2001 and 2003, two studies were designed for the treatment of myeloma patients. The 
treatment regimens were comparable and employed DT-PACE [55,56] as mobilization 
chemotherapy. In the first study patients received twice a day filgrastim, until completion of 
stem cell collection; in the second study two doses of pegfilgrastim were administered after 
DT-PACE. After a cycle of DT-PACE, pegfilgrastim 6 mg was given subcutaneously on days 
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+6 and +13. If the WBC count > 100 G/l by day +13 the second dose of pegfilgrastim was 
not administered. Investigators found some advantages when pegfilgrastim was used: 

 A higher percentage of patients collected 15 x 10^6/kg in the first three days (p < 0.001) 

 The median number of CD34 cells/kg collected on day 1 was higher (p= 0.004) 

 The median number of growth factor injections was 2 versus 26 (p < 0.0001) 

 Post- transplantation neutrophil recovery was faster after first and second transplant (p 
< 0.001) 

 Platelet recovery was faster after first transplant (when less stem cells were infused) (p 
= 0.01) 

 Authors concluded, that pegfilgrastim may be considered the standard of care for stem 
cell mobilization. 

Kobbe et al. [54] found that in patients with multiple myeloma, a single dose of 6 mg 

pegfilgrastim after cyclophosphamide (4g/m^2) is equally effective in terms of the 

mobilization of haematopoietic progenitor cells as daily administration of conventional G-

CSF. There is no increase in this effect if the dose is doubled to 12 mg. This finding is 

consistent with the results of a recently published, blinded, placebo- controlled multicenter 

study conducted in patients with malignant lymphomas [57]. These results were also 

confirmed by other groups of investigators [58,59]. There are no studies on the use of 

pegfilgrastim to mobilize haematopoietic stem cells in patients with acute leukemia. 

Pegylated G-CSF has not also been studied in the so-called “poor mobilizers”.  

Two formulations of recombinant human (rh) G-CSF, one glycosylated form and one non-

glycosylated, are available. The glycosylated form, lenograstim, possesses at least 25% 

greater bioactivity in vitro. Some comparative studies into the preparation’s potential to 

mobilize haematopoietic stem cells were performed to assess the potential greater efficacy of 

lenograstim in vivo. Ataergin S et al. [60] investigated whether a 25% reduced dose of 

lenograstim at 7.5 µg/kg/day is equivalent  to 10 µg/kg/day filgrastim for autologous 

peripheral blood stem cell mobilization and transplantation. The two evaluated patients’ 

cohorts were similar in regard to disease, sex, body, weight, body surface area, conditioning 

regimens, previous chemotherapy cycles and radiotherapy. Each growth factor was 

administered for 4 consecutive days. The first PBSC apheresis was done on the 5th day. In 

the posttransplant period, the same G-CSF was given at 5 µg/kg/day until leukocyte 

engraftment. No significant difference was seen in the median number of CD34+ cells 

mobilized, as well as the median number of apheresis, median volume of apheresis, 

percentage of CD34+ cells, and CD34+ cell number. Leukocyte and platelet engraftments, 

the number of days requiring G-CSF and parenteral antibiotics, the number of transfusions 

were similar in both groups in the posttransplant period. In conclusion, lenograstim 7.5 

µg/kg/day is as efficious as filgrastim 10 µg/kg/day for autologous PBSC mobilization and 

transplantation. 

Another study [61] explored the efficacy of the IGEV regimen (ifosfamide, gemcytabine, 

vinorebline and prednisone) combined with a fixed dose of lenograstim (263 µg/day) to 

mobilize PBSCs in 90 Hodgkin’s lymphoma patients. An adequate number of CD34+ cells (> 

3 x 10^6/kg) were collected in 98,7% mobilized patients. Hematological and non-

hematological side effects were acceptable, and no toxic deaths occurred. These results 

confirm that the IGEV regimen with lenograstim support can be used successfully and 

safely to mobilize PBSCs.  
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Kopf B et al.[62], in 2006 conducted a prospective randomized clinical trial to assess the 
mobilizing efficacy of filgrastim, lenograstim and molgramostim (GM-CSF) following a 
disease-specific chemotherapy regimen. In conclusion, all three growth factors were 
efficacious in mobilizing peripheral blood progenitor cells with no statistically significant 
difference between CD34+ cell yield and the different regimens, and the time to apheresis is 
likely confounded by the different mobilization regimens. An advantage on platelet 
recovery with molgramostim, suggested by other authors [63,64] was not confirmed by 
results of this study. 

3.3 G-CSF in conjunction with chemotherapy 

Growth factor combined with chemotherapy are given for patients, who are candidates to 

autologous transplantation and need additional treatment as debulking therapy or to 

achieve complete/ partial remission before transplantation [65]. A variety of 

chemotherapeutic agents are used with G-CSF or GM-CSF to mobilize hematopoietic stem 

cells for autologous transplantation. Administration of CY with G-CSF is widespread, as this 

regimen mobilizes hematopoietic stem cells effectively and is highly active against tumor 

cells [65]. Successful chemomobilization regimens used in combination with G-CSF are often 

disease oriented. Some of the most frequently used chemotherapeutic regimens in 

lymphoma patients include IEV (ifosfamide, epirubicin and etoposide), DHAP and ESHAP 

(etoposide, Ara-C, methylprednisolone and cisplatin) [66,67]. Patients with other 

hematologic malignancies are frequently treated with ICE (ifosfamide, carboplatin and 

etoposide) plus G-CSF for mobilization [68].  

Chemomobilization is widely used in clinical practice because the addition of a 

myelosuppressive chemotherapy agent to a cytokine mobilization regimen results in higher 

CD34+ cell yields, which may promise better outcomes for patients. In particular, 

mobilization with CY and G-CSF rather than with G-CSF alone improves CD34+ cell 

collection significantly in patients with either MM [69,70]  or NHL [71,72]. However, it has 

been noted that the use of CY plus G-CSF severely depletes T cells and spares regulatory T 

cells, which could negatively affect immune reconstitution [73]. The benefits of adding 

chemotherapeutic agents to a G-CSF mobilization regimen may be offset by the increased 

risk of complications to the patients. Compared with mobilization regimens using G-CSF 

alone, chemomobilization is associated with increased morbidity, greater risk of infection, 

more hospital admissions, transfusions, antibiotic therapy and considerably greater cost 

overall. [28]. Although treatment-related mortality is rare, significant morbidity related to 

neutropenia that can often require hospitalization has been described, and many reports 

point to greater resource utilization with chemomobilization than with cytokine-alone 

mobilization [28]. 

Koumakis et al [74] compared various time schedules of granulocyte colony-stimulating 
factor (G-CSF) treatment in a clinical model of patients who received high-dose 
cyclophosphamide (4.5 g/m^2). They found, that: 

 G-CSF administration after high-dose cyclophosphamide has a similar effect upon the 
incidence and duration of severe leukopenia and thrombocytopenia 

 Severe leukopenia is shorter when G-CSF starts up to 72 hours after high-dose of 
cyclophosphamide 

 The length of G-CSF administration and its cost is also in favor of early initiation of 
treatment as well as the number of febrile days and antibiotic use 
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 Delayed (> 72 hours) or supportive treatment indicate more febrile days, antibiotic use 
and higher cost when compared to the early groups 

For these reasons, preemptive rather than therapeutic administration of G-CSF is indicated 
in patients who receive high-dose cyclophosphamide as treatment for mobilization CD34+ 
cells into peripheral blood.  

3.4 Toxicity of growth factors 

Cytokine-mobilized PBSC collected from healthy sibling or unrelated donors are 

increasingly used as stem-cell source in the allogeneic setting. PBSCs have been shown to be 

superior to BM-derived stem cells during the early posttransplant course. The high CD34+ 

cell yield in PBSC grafts significantly shortens the posttransplant aplasia and the need for 

blood component support, especially platelets [40,41]. Both cytokine administration and 

harvest procedure cause unphysiological conditions in healthy individuals. The effects of 

rhG-CSF on peripheral blood count and leukocyte function, cytokine release and response, 

coagulation parameters and metabolic changes have been reviewed by Anderlini et al 

[75,76]. Limited data exist on the late effects of cytokine mobilization and PBSC collection. 

Until now, there is no convincing evidence that rhG-CSF administration leads to an 

increased risk to develop hematological malignancies in healthy individuals [77]. Leitner GC 

et al [78] investigated the actual quality of life (QoL) and health status of the donors as well 

as the need for medical treatment since PBSC donation by a questionnaire (151 donors were 

evaluated). The questionnaire was sent to donors at a median of 4 (range: 0.2-11) years after 

donation. rhG-CSF mobilization as well as subsequent PBSC collection is shown to be well 

tolerated in the short- and long-term profiles in these sibling donors. It had no negative 

influence on health status and QoL in the majority of them. Investigators observed no 

increased risk for hematological or oncological disorders. However, to acquire profound 

knowledge about rhG-CSF- and donation-related long term risks, consecutive monitoring of 

more donors for at least 10 years has to be performed. Hasenclever and Sextro [79] stated 

that to exclude or to show a 10-fold increase in the 10-year cancer incidence, a long-term 

prospective follow-up of several thousand donors for at least 10 years would be necessary. 

In 2009 the report from European Group for Blood and Marrow Transplantation Group was 

published [80]. Three hundred and thirty-eight allogeneic transplant teams from 35 

European countries were asked to report numbers of fatalities, severe adverse events and 

hematologic malignancies occurring among their hematopoietic stem cell donors. 51024 first 

allogeneic hematopoietic stem cell transplantations were evaluated, of which 27770 were 

bone marrow and 23254 peripheral blood. They observed five donor fatalities, one after a 

bone marrow donation and four after peripheral blood donation (incidence 0.98 per 10000 

donations; 95% CI 0.32-2.29), 37 severe adverse events (7.25/10000; 95% CI 5.11-9.99), of 

which 12 in bone marrow donors (4,32/10000; 95% CI 2.24-7.75) and 25 in peripheral blood 

donors (10.76/10000; 95% CI 6.97-15.85; p< 0.05) and 20 hematologic ,malignancies 

(3.92/10000; 95% CI 2.39-6.05), of which 8 after donating bone marrow and 12 after donating 

peripheral blood stem cells. The observed incidence rate of hematologic malignancies did 

not exceed the expected incidence in an age- and sex-adjusted general population. Authors 

concluded, that hematopoietic stem cell donation is associated with a small but define risk 

of fatalities and serious adverse events. True incidences might be higher, due to potential 

underreporting by study design. A continuous, standardized donor follow-up is needed to 

define donor risk groups and to monitor intermediate and long-term sequelae.  
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Healthy donors who were mobilized using lenograstim and who were undergoing 
peripheral hematopoietic cell collection with apheresis were enrolled in a surveillance 
protocol. The study was conducted by Martino et al [81]. The median dose of lenograstim 
was 10 µg/kg (range 5-15). 184 healthy donors have been assessed with a median follow-up 
of 62 months (range 2-155). The short-term adverse events: 

 Bone pain     71,2% 

 Headache    27,7% 

 Insomnia    22,3% 

 Fatigue    19,0% 

 Nausea    12,0% 

 Fever    5,4% 

 Increased spleen size   4,3% 
No vascular disorders, no cardiac disease 
Long-term follow-up included monitoring of adverse events, neoplastic disease or other 
pathologies: 
 

Type of adverse event Number of donors suffered 
from 

Time of occurrence after 
donation [months] 

Transit ischaemic attack 1 39 
Ankylosing spondylitis 1 28 
Secondary polyglobulia 1 50 
Lung cancer 1 19 

No haematological disease was observed 

 
During hematopoietic stem cell mobilization in healthy donors, slight thrombocytopenia is 
common and is attributed to the leukapheresis procedure or to splenomegaly. The platelet 
depletion is a recognized effect of continuous flow leukapheresis, particularly large-volume 
leukapheresis [75].  
About one-third of neutropenic patients chronically treated with rh-G-CSF develop 
palpable splenomegaly and there have been reports of spontaneous spleen rupture in 
rhG-CSF or cyclophosphamide plus rh G-CSF- mobilized individuals or even in patients 
treated with rhG-CSF  or rhGM-CSF after chemotherapy for acute leukemia or lymphoma. 
Few data are available on changes in spleen size as a result of a brief course of rhG-CSF 
[82]. Picardi et al. evaluated spleen size, comparing palpation with ultrasound (US)-
evaluated longitudinal diameter and volume, in 13 healthy donors and 22 patients with a 
hematological malignancy who were undergoing PBSC mobilization with rhG-CSF-
including regimens. When evaluated by sensitive methods, rhG-CSF caused spleen 
enlargement in almost all individuals treated. US-calculated volume proved to be an 
excellent method, much better than longitudinal diameter, for detecting non-palpable 
splenomegaly induced by rhG-CSF [83].  
G-CSF has been also discussed as the causative agent for the occurrence of [84-94]: 

 Sweet syndrome 

 Leukocytoclastic vasculitis 

 Interstitial pneumonitis 

 Adult respiratory distress syndrome (ARDS) 

 Pyoderma gangraenosum 
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 Capillary leakage 

 Stroke 

 Acute gouty arthritis 

 Iritis 

 Severe anaphylactoid reactions 

 Non-traumatic rupture of the spleen 

 Severe pyogenic infection (painful perianal abscess and apical abscess) 

3.5 How can we predict the optimal time for adequate collection of peripheral blood 
progenitor cells after chemotherapy ? 

The absolute number of circulating Cd34+ cells was found to correlate closely with the 

CD34+ cell yield of the corresponding leucapheresis product. The number of CD34+ cells 

circulating in the peripheral blood reliably predicts both: 

 The number of CD34+ cells 

 The number of CFU-GM harvested 
By monitoring the level of circulating CD34+ cells during the mobilization period, generally 

starting at about day 9 or 10, the day to perform the leucapheresis can be planned. The 

optimal time for collecting PBSC is when a peripheral blood sample contains at least 20 x 

10^3 circulating CD34 cells/ml. This value provided at least 2 x 120^6 CD34+ cells/kg in a 

single leucapheresis, harvested the following day, in 94% of the collections regardless of the 

patient’s diagnosis or mobilization regimen [95]. In Hill’s study [96] a total of 168 adult 

patients with haematological malignancy were primed using low-moderate dose 

cyclophosphamide (1.5-3 g/m^2) with G-CSF 5-10 µg/kg per day. Harvesting was booked 

and peripheral blood counts first checked between 6 and 10 days post-priming. The 

peripheral blood CD34+ cell count correlated significantly with harvest yield (r= 0.8448, p< 

0.0001). A peripheral blood CD34+ count ≥ 10/ µl predicted  a collection of ≥ 2 x 10^6/kg 

(positive-predictive value of 61%, negative-predictive value 100%). There was no benefit to 

checking the peripheral blood CD34+ count or booking apheresis before day 9 post- 

cyclophosphamide. 

3.6 What is the minimal CD34+ cells threshold collected from peripheral blood for 
sufficient engraftment? 
What is the optimal CD34+ cells number for transplantation? 

Gandhi et al.[97] advocated a minimum CD34+ threshold of > 1.0 x 10^6/kg in patients 

without extensive prior chemoradiotherapy, and ≥ 2.0 x 10^6/kg in all other patients. In this 

study all patients infused with grafts containing CD34+ cell doses between 1.0 and 2.0  x 

10^6/kg engrafted by day 51. The only variable associated with slow platelet recovery was 

exposure to stem cell toxins (BCNU, melphalan, CCNU and mustine). The majority of 

patients with CD34+ > 1.0 x 10^6/kg achieved rapid and sustained engraftment and the 

only predictive factor of delayed recovery is prior exposure to stem cell toxins.  

Villalon et al. [98] analyzed the factors affecting mobilization and engraftment in autologous 

peripheral blood progenitor cell transplantation according to the number of CD34+ re-

infused ( < 2.0 x 10^6/kg CD34+ vs > 2.0 x 10^6/kg CD34+). They found that,: 

 Neutrophil and platelet engraftment was significantly longer with < 2.0 x 10^6/kg (12 
vs 10 days, p = 0.014 and 16 vs 13 days, p = 0.0001 respectively) 
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 Platelet recovery was affected by exposure to alkylating agents (p = 0.04), refractory 
disease (p= 0.02), and AML (p= 0.0001), but only the last two variables remained 
significant in Cox regression (p < 0.01) 

 Granulocyte engraftment was longer in CML (univariate, p = 0.04) and in refractory 
disease (multivariate, p= 0.02) 

 In patients re-infused with > 2.0 x 10^6/CD34+/kg, the Cox model did not identify 
prognostic factors for haematopoietic recovery 

They concluded, that although mobilization schedules and disease status influenced not 
only the yield of progenitor cells, but also the engraftment kinetics, the number of CD34+ re-
infused was the main predictor of hematopoietic recovery. While engraftment succeeded in 
most of the cases, the re-infusion of > 2.0 x 10^6/kg resulted in significantly shorter 
recovery times. Thus, for autologous stem cell transplantation, it is common practice to 
infuse at least 2.0 x 10^6/CD34+/kg to ensure rapid engraftment. But investigators [99-102] 
found, that when comparing patients receiving at least 5 x 10^6/kg and 2-5 x 10^6/kg 
CD34+ cells there are: 

 A significant reduction in the median number of days with fever 

 Incidence of fever 

 Duration of antibiotic treatment 

 Faster neutrophil recovery 
There was no significant difference in the number of platelet or red cell transfusions 
Thus, transplantations with stem cell dose of at least 5.0 x 10^6/kg reduce infectious 

complications and should thereby increase the safety of this type of therapy while reducing 

duration (and cost) of antibiotic therapy. 

In Bolwell study [103] investigators checked whether patients collecting high numbers of 

CD34+ cells (“super mobilizers”) have a better outcome than other patients. Super 

mobilizers were defined as collecting a minimum of 8.0 x 10^6/CD34+/kg. In this study 

super mobilizers were younger and more likely to have received two or fewer prior 

chemotherapy regimens. Median CD34+ cell dose for the super mobilizing group was 13.7 x 

10^6 CD34+/kg versus 4.4 x 10^6 CD34+/kg in the standard collecting group. The super 

mobilizer group had a superior overall survival (p = 0.006). In multivariable analysis, 

favorable disease status and younger age at transplant, and super mobilization were 

associated with improved survival. 

It is reasonable to believe that the CD34+ cell dose has a positive influence on engraftment 
and survival. But, when compared with BM, PBSC grafts contain significantly more 
nucleated cells, more CD34+ hematopoietic stem cells, and more CD3+ lymphocytes 
[104,105]. It has been shown that granulocyte colony-stimulating factor (G-CSF)-mobilized 
CD34+ hematopoietic stem cells not only participate in engraftment, but also have an 
immunogenic role [106-108]. In the setting of T-cell-depleted allogeneic transplants using 
CD34+ positive selection as T-cell-depletion method, Urbano- Ispizua et al [109] could show 
that a high CD34+ cell dose not only does not improve the clinical results, but also actually 
may be associated with a poorer outcome. There is the suggestion, that transplantation with 
a higher CD34+ cell dose was detrimental in terms of chronic GvHD in allogeneic CD34+ 
cell-selected peripheral blood stem cell transplantation. Moreover, this association may also 
exist in the context of allogeneic unmanipulated PBSCT where a higher T-cell content or 
extremely high dose of CD34+ cells can be involved. It should be noted that CD34+ cells not 
only participate in engraftment, but also have an immunogenic role. However, although 
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cGvHD is a leading cause of late mortality in allogeneic settings, it also plays a positive role 
in preventing relapse, especially in advanced hematological malignancies with a high risk of 
relapse [110]. Sohn et al [111] investigated the impact of the CD34+ cell dose on chronic 
graft-versus-host disease and the clinical outcome in adult patients submitted to allogeneic 
peripheral blood stem cell transplantation from HLA-identical siblings. The patients were 
classified into “low” or “high” CD34+ cell dose groups based on whether they received less 
or more than a median CD34+ cell dose of 10.5 x 10^6/kg, respectively. There was a 
significant difference in the incidence of extensive cGvHD and relapse between the two 
groups. With a median follow up of 335 days, the 3-year survival estimate for whole 
population was 47.9%, while that for the low and high groups was 29.9 and 67.8% 
respectively (p = 0.0434). An inverse relation was noted between the relapse rate and the 
incidence of extensive cGvHD (p = 0.043). Authors concluded, that is would appear 
reasonable that the optimal dose of CD34+ cells should be determined based on the disease 
status or aggressiveness of the malignant cells in each patient. Thus, in the case of patients 
with a high risk of relapse, transplantation with a CD34+ cell dose > 10.5 x 10^6/kg would 
seem to be acceptable to minimize the risk of relapse. Mohty et al [110], Sohn et al [111] 
investigated whether there was a correlation between the composition of PBSC grafts 
(CD34+ and CD3+ cells) and hematological recovery, GvHD, relapse and relapse-free 
survival after myeloablative HLA-identical sibling PBSCT. Neither hematological recovery, 
acute or chronic GvHD, nor relapse, was significantly associated with CD3+ cell dose. 
Increasing CD34+ stem cells was associated with faster neutrophil and platelet recovery. 
The probability of extensive cGvHD at 4 years was 34% in patients receiving a “low” CD34+ 
cell dose (< 8.3 x 10^6/kg) as compared to 62% in patients receiving a “high” CD34+ cell 
dose (> 8.3 x 10^6/kg) (p = 0.01). At a median follow-up of 59 months, this has not 
translated into a difference in relapse. In patients evaluable for cGvHD relapse free survival 
was significantly higher in patients receiving “low” CD34+ cell dose as compared to those 
receiving a “high” CD34+ cell dose (p = 0.04). This difference was mainly because of a 
significantly higher cGvHD-associated mortality (p = 0.01). 

3.7 Factors to predict the efficiency of blood progenitor cell mobilization 

It is important to note that most patients mobilize adequate numbers of CD34+ cells using a 
regimen of G-CSF alone. Although the addition of chemotherapy improves CD34+ yield, 
this comes at the expense of increased short-term toxicity and, possibly, the increased risk of 
secondary myelodysplastic syndrome [112]. Even with chemotherapy-growth factor 
combination regimens, it may be difficult to achieve an adequate CD34+ cell yield in some 
patients. Several studies have identified  predictors of poor PBSC yield. 

 The most important factor is the amount of myelosuppressive therapy (chemotherapy 

+/- radiation therapy) received prior to mobilization 

 Using stem cell toxic agents prior to mobilization: nitrogen mustard, procarbazine, 

melphalan, carmustine and > 7.5 g of cyclophosphamide 

 The number of chemotherapeutic regimens > 6 and ≥ 11 

 Duration of exposure to chemotherapy (> 12 months) 

 Short time interval since last chemotherapy < 6 months and < 65 days 

 Previous radiation therapy 

 Hypocellular marrow 

 Refractory disease 
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A recent scoring system based on previous therapy may be useful in predicting CD34-
positive cell yield.  
Treatment score was built by Drake et al [113], and then improved by others [114,115]. 

Treatment score was evaluated (as given in detail by Drake et al ) [113] by Clark [114]. There 

was one except in Clark study, in addition, arbitrarily allocated a score of 2 for ifosfamide 

per treatment cycle.  

Briefly, chemotherapy drugs are assigned a toxicity factor as follows: 

0. prednisolone, dexamethasone; 

1. vincristine, vinblastine, bleomycin, alpha interferon; 

2. cyclophosphamide, anthracyclines, cisplatin, etoposide, ifosfamide; 

3. chlorambucil, procarbazine; 

4. melphalan, carmustine, mechlorethamine, lomustine. 

The number of courses of each drug received was multiplied by its toxicity factor, and the 

score for each drug administered was summed to yield an overall treatment score. An 

additional 2 points were added if mediastinal radiotherapy was administered. In this study 

was validated this scoring system on an independent group of 99 patients undergoing 103 

harvesting episodes. In 61 patients mobilized with cyclophosphamide 1.5 g/m2 and G-CSF, 

those with treatment scores less than 21 yielded significantly more CD34-positive cells than 

patients with scores greater than 63 (P = 0.0012). Previous treatment with melphalan or 

carmustine was associated with a significantly lower yield of CD34-positive cells (P = 

0.0001). No relationship was seen between the time from previous chemoradiotherapy and 

harvest outcome. Patients with treatment scores less than 21 required a shorter duration of 

G-CSF therapy (P = 0.05). Similar findings were seen in 42 further mobilization cycles 

undertaken with alternative mobilization schedules. The data suggest that a score 

summarizing previous treatment can be used to predict CD34 yields, and could be of clinical 

use to identify poor PBPC mobilisers in advance. The next improvement in scoring system 

was done by Jantunen et al. [115]. Results are shown in the table. 

 

0 Prednisolone, dexamethasone, METHYLPREDNISOLONE 

1 Vincristine, vinblastine, bleomycin, METHOTREXATE, alpha-interferon, CYTOSINE 
ARABINOSIDE 

2 MITOGUAZON, cyclophosphamide, IFOSFAMIDE, cisplatin, anthracyclines, 
MITOXANTRONE, etoposide 

3 Chlorambucila, procarbazine, FLUDARABINE, DACARBAZINE

4 Melphalan, carmustine, metchlorethamine, lomustine 

Changes to the original scoring system proposed by Drake et al [113] are shown in capital letters. 

aoral continuous treatment (4–6 mg/day) for a month=1 cycle. 

Table 4. An improved chemotherapy scoring system [115] 

3.8 Strategies of remobilization/ second-line stem cell harvest of patients who fail to 
achieve minimal progenitor thresholds at the first attempt 

After an initial mobilization attempt, if too few CD34+ cells are collected to ensure prompt 
engraftment, patients often undergo additional mobilization attempts, which increase the 
risks associated with treatment [116]. Several salvage regimens have been developed to 
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improve mobilization in patients in whom a first mobilization attempt with G-CSF alone 
fails to result in collection of an adequate cell dose. In recent years, several investigational 
agents have been developed that may prove useful for amplifying yields of CD34+ cells 
without introducing additional toxicity. As the understanding of stem cell interactions with 
the BM microenvironment grows, new mobilizing agents will emerge. 
 

STRATEGY 
second PBSC mobilization using the same regimen 
steady-state bone marrow 
stimulated BM-“rich bone marrow” 
Increase chemotherapy dose: 4-7 g/m^2 CTX apprears more effective than 2-4 g/m^2 
Prolong duration between last chemotherapy and planned collection 
Increase growth factor dose (up to 24 µg/kg G-CSF) and use twice daily schedule 
Use investigational agents  

Table 5. Strategies of remobilization/ second-line stem cell harvest of patients who fail to 
achieve minimal progenitor thresholds at the first attempt [27,28,117] 

 

Mobilization agent Mechanism

Cytokines approved for mobilization
GM-CSF Stimulates production of granulocytes and macrophages 
G-CSF Granulocyte expansion/activation, protease release and cleavage 

of adhesion molecules 
Chemotherapeutic agents commonly used for mobilization

CY 
Expansion and activation of granulocytes after bone marrow 
suppression 

Paclitaxel 
Etoposide 

Investigational mobilization agents
Pegylated G-CSF Granulocyte expansion/activation, protease release and cleavage 

of adhesion molecules 
EPO Stimulates erythropoiesis
Stem cell factor G-CSF potentiation
Plerixafor Disrupts CXCR4/SDF-1 ┙ interactions
SB-251353 GRO- analog involved in directing the movement of stem cells 

and other leukocytes
TPO Regulates megakaryocyte development, G-CSF synergism 
Parathyroid hormone Activates osteoblasts, which produce HGFs in the stem cell niche 

Abbreviations: CXCR4=chemokine receptor 4; GRO- ┚=a human CXC chemokine; SDF-1=stromal cell-
derived-factor-1. TPO- thrombopoietin, HGFs- hematopoietic growth factors  

Table 6. Mobilization agents currently used in auto-HSCT [27,28,117] 

3.8.1 Erythropoietin- EPO 

EPO, which is commonly used to preserve blood hemoglobin concentrations in patients 
undergoing chemotherapy, has also been shown to potentiate the mobilization effect of G-
CSF or GM-CSF [118]. Although the mechanism of this cooperative effect is unknown, it is 
thought that expression of EPO receptors on CD34+ progenitor cells primed with G-CSF or 
GM-CSF may promote survival of these cells [119]. However, EPO use is generally regarded 
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as inefficient and, as such, has not become a standard of care. Studies evaluating the 
mobilization efficacy of EPO plus G-CSF or G-CSF alone in various doses have generated 
mixed results [120-122]. Further investigation is required to ascertain the clinical benefits of 
EPO combined with G-CSF [123].  

3.8.2 High-dose G-CSF 

High-dose G-CSF was investigated as a primary mobilization regimen throughout the 1990s. 
[49,124,125]. Although seldom used today for primary mobilization, high-dose G-CSF 
regimens are occasionally used for remobilization [126,127]. Although there is no standard 
protocol for high-dose G-CSF administration, doses ranging from 16 to 32 μg/kg s.c. daily to 
12–16 μg/kg s.c. twice daily have been considered high-dose regimens even though some of 
the available data apply to patients with aplastic anemia, solid tumors or hematological 
malignancies other than NHL [124,126,128]. 

3.8.3 GM-CSF plus G-CSF 

Significant synergism has been reported between GM-CSF and G-CSF in the formation of 
granulocytic colonies in vitro [129]. Mobilization regimens combining GM-CSF with G-CSF 
have consisted of sequential or concurrent administration of these agents at a range of doses 
(G-CSF, 5–10 μg/kg; GM-CSF, 5 μg/kg–250 μg/m2), with or without chemotherapeutic 
agents [130-133]. These combination regimens have not been shown to have substantial 
benefits over regimens that use G-CSF alone; therefore, GM-CSF and G-CSF are not 
commonly administered together for primary mobilization. However, the combination of G-
CSF and GM-CSF is used as a salvage mobilization regimen when mobilization with G-CSF 
alone has been unsuccessful [126,134,135].  

3.8.4 SCF 

The c-kit ligand SCF is produced in BM stromal cells and acts as a potent co-mitogen for 

many hematopoietic growth factors [32]. Recombinant methionyl human SCF (ancestim, 

Stemgen, Amgen Inc.) administered sc. in combination with G-CSF has been shown to 

enhance mobilization and may fasten recovery in transplant recipients [32, 136]. The 

combination of SCF and G-CSF exerts a sustained mobilization effect that persists longer 

than does the effect of G-CSF alone, which persists for up to 7 days, as shown by an increase 

in the numbers of circulating CD34+ cells for up to 13 days in patients with breast cancer 

(BC) who received the combination treatment [32]. Despite the efficacy of SCF, its use is 

hindered by the infrequent occurrence of severe anaphylactoid reactions and the resultant 

need to closely monitor patients after SCF administration [137]. Although approved for use 

in Canada and New Zealand, ancestim is not currently available in the United States, and it 

is seldom used in Europe because of the relatively high risk of side effects. 

3.8.5 Plerixafor 

Plerixafor is a reversible bicyclam inhibitor of hematopoietic stem cells (HSC) binding to 
SDF-1┙ on marrow stromal cells via the chemokine receptor 4 (CXCR4) on HSC [138-140]. 
Plerixafor used in conjunction with G-CSF has been shown in a phase 2 studies to quickly 
and predictably enhance the numbers of CD34+ cells circulating in the peripheral blood 
[141]. In patients in whom mobilization with G-CSF either alone or in combination with 
chemotherapy has previously failed, CD34+ cell yields have been noted to increase by 5- to 
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100-fold in response to administration of plerixafor plus G-CSF [141,142]. Preliminary 
results of two phase 3 multicenter randomized placebo-controlled studies indicated that the 
addition of plerixafor to a G-CSF regimen resulted in greater efficacy than was seen with a 
regimen of G-CSF alone [140, 143]. In general, treatment with plerixafor and G-CSF was 
associated with side effects similar to those seen with treatment with G-CSF alone. Most 
treatment-related AEs appeared to be mild and transient. The most common AEs were 
gastrointestinal tract effects, such as diarrhea, nausea and vomiting, and injection-site 
reactions, such as erythema or edema[140, 143].  

3.8.6 SB-251353 

SB-251353 is another investigational mobilization agent currently in preclinical studies 
[144,145]. SB-251353 is an analog of GRO-┚, a human CXC chemokine involved in directing 
the movement of stem cells and leukocytes. Although human data are lacking, this agent, 
when combined with G-CSF in rhesus monkeys, was shown to greatly increase mobilization 
of stem cells and progenitor cells in comparison with G-CSF alone. Further research is 
necessary to determine the efficacy and potential toxicities of this treatment in humans. 
[144,145]. 

3.8.7 Thrombopoietin- TPO 

Endogenous TPO is the primary regulator of megakaryocyte development. Recombinant 
human TPO (rhTPO) has been shown to act synergistically with G-CSF to enhance stem cell 
mobilization [146]. This regimen has not been shown to be more efficacious or safer than 
existing mobilization regimens; however, a few studies document encouraging results [147]. 
AEs associated with the use of rhTPO plus G-CSF appear to be similar to those seen with the 
use of G-CSF alone [146,147], however, cytopenias owing to neutralizing antibodies to TPO 
have been reported in a small number of patients who were given rhTPO to treat 
chemotherapy-induced thrombocytopenia [148]. Currently, no TPOs have been approved by 
the FDA for mobilization [149].  

3.8.8 Parathyroid hormone 

Parathyroid hormone (PTH) activates osteoblasts, which produce hematopoietic growth 
factors in the stem cell niche, thereby increasing the numbers of circulating stem cells 
[150,151]. The efficacy and safety of PTH have yet to be established. In a recent phase 1 
study, 20 patients with MM, NHL, HD or AML, in whom one or two previous mobilization 
attempts had failed, received escalating doses of 40, 60, 80 and 100 μg of PTH (s.c.) for 14 
days; PTH doses were combined with G-CSF 10 μg/kg on the last 4 days of treatment [151]. 
Overall, 47% of patients in whom one previous mobilization attempt had failed reached the 
mobilization criterion of >5 CD34+ cells/μl in the peripheral blood, and 40% of patients who 
had previously experienced two failed mobilization attempts reached the mobilization 
criterion. No dose-limiting toxicity was evident, and PTH was well tolerated; AEs included 
headache, muscle pain, back pain, fatigue and hypothermia [151].  

3.9 BM vs. PBSC for whom? [152]  

BM for: 
a. Good risk younger patients 

 Children 
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 Aplastic anemia, CML in first chronic phase (CP1) 
b. PBSC for: 

 Advanced phase of diseases 

 If graft manipulation is needed 

 Reduced intensity transplants 

 Donor’s preference 

4. Umbilical cord blood 

The use of allogeneic blood and bone marrow stem cell transplantations are limited by the 

availability of suitably HLA- matched donors. Only 30% of patients have HLA-identical 

sibling donors and through the National Marrow Donors Program and other registries 

worldwide nearly 75% of Caucasians, but far fewer racial minorities find suitably HLA-

matched donors. In 1988 umbilical cord blood (UCB) hematopoietic stem cells from a related 

sibling were transplanted successfully into a 5-year-old child with Fanconi anemia. Fifteen 

years later, this patient is doing well with full donor hematopoietic and lymphoid 

reconstitution. UCB offers the advantages of easy procurement, no risk to donors, the 

reduced risk of transmitting infections, immediate availability of cryopreserved units and 

acceptable partial HLA mismatches. Nearly all patients can find at least one potential 4 of 6 

HLA-matched UCB units through either Netcord or other banks. Limited cell dose has been 

the major limitation to the wide use of UCB for allogeneic transplantation.  

The blood in the umbilical cord of newborn babies contains large numbers of stem cells, 

which have been shown to be capable of long-term engraftment in children and some 

adults after transplantation. Cord blood cells obtained from the umbilical cord at the time 

of delivery are used mainly for unrelated allogeneic stem cell transplantation. Patients 

without time to find an unrelated stem cell donor or who do not have a HLA 10/10 or 

9/10 unrelated bone marrow graft donor should be considered for cord blood cells 

transplantation (CBCT). The cord blood cells may also be used for family- member 

transplantation, particularly in children for both malignant or nonmalignant diseases 

[153-155].  

Advantages of CBCT compared with bone marrow or mobilized peripheral blood 
transplantations [156-161] : 

 significantly faster graft availability (patients receiving CBCT in a median of 3-5 weeks 
earlier than those receiving an unrelated bone marrow graft), 

 lack of risk to the donor,  

 higher frequency of rare haplotypes compared to bone marrow donor registries, 

 CD34+/CD38 cord blood cells proliferate more rapidly and generate large number of 
progenitor cells [162] 

 extension of the donor pool due to tolerance of 1-2 HLA mismatches out of 6,  

 lower incidence and severity of acute graft-versus-host disease, 

 lower risk of infections by latent viruses – such as Epstein-Barr virus or 
cytomegalovirus   

Disadvantages of CBCT compared with bone marrow or mobilized peripheral blood 
transplantations: 

 cell dose is based per kilogram of recipient weight, which can be limiting. Target is 1,7- 
3,5 x 10^7 total nucleated cells/kg, 
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 low number of hematopoietic progenitor cells- single cord blood unit transplantation 
(100ml) contains 0,3x10^6 CD34+ cells/kg (small recipient, below 40kg), 

 in adults, single cord blood unit transplantation is associated with very delayed 
engraftment, combining two products seems to provide more rapid engraftment, albeit 
at the expense of higher rates of acute graft-versus-host disease, 

 donor cannot be used for donor lymphocyte infusion, 

 donor cannot be used for treatment of graft rejection or failure. 
The cell dose infused is consistently an important marker for improved engraftment and 
survival. The lower dose of CD34+ cells translate into increased risk of graft failure, delayed 
hematopoietic engraftment [160] and delayed immune reconstitution [162,163]. Because of 
the delayed  immune reconstitution infections are a serious problem in cord blood 
transplantation [164]. 
Many tests have been performed to enhance collection of hematopoietic stem cells in cord 
blood units. Examples include: in vivo or ex vivo expansion of cord blood cells [165,166], 
injecting cord blood cells directly into the bone marrow [167], use of double unit CBCT 
[168,169], use of reduced intensity conditioning  regimen [170,171], coinfusion with a 
haploidentical T cell depleted graft [172,173] or mesenchymal stem cells [174].  

5. Storage [1] 

Hematopoietic progenitor cell products are stored using various methods depending on the 
required duration of storage. Products used fresh can be refrigerated for at least 24 hours 
before infusion. If there is a > 48-hour delay before infusion, most products are frozen to 
maintain viability. Most frozen products are stored in the vapor phase of liquid nitrogen (< -
50 C). Products may be stored for up to 10 years although no longevity limit has yet been 
determined. Long-term storage is generally done in the liquid phase of liquid nitrogen. 
Hematopoietic progenitor cells have been frozen using cryoprotectant solutions. The most 
commonly used cryoprotectant is 10% DMSO and a protein additive such as human serum 
albumin. 
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