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1. Introduction  

Matching the donor and recipient for class I and II human leukocyte antigens (HLA) is 
pivotal to the success of allogeneic hematopoietic stem cell transplantation (HSCT). 
Transplantation across HLA barriers will lead to the development of T-cell responses to the 
mismatched HLA molecules, resulting in T-cell–mediated graft-versus-host disease (GvHD) 
or graft rejection in patients with insufficient immune suppression. The accuracy of testing 
and matching criteria has an important impact on the transplant outcome, but exact 
matching across multiple HLA loci (e.g., HLA-A, HLA-B, HLA-C, and HLA-DRB1) is a 
challenging task. Today, serological HLA diagnostic tests are being replaced by DNA-based 
typing methods considering only selected regions of the genes. Therefore, HLA null alleles 
or expression variants bearing their variation outside of these regions may be misdiagnosed 
as normally expressed variants, resulting in HLA mismatches that are highly likely to 
stimulate allogeneic T cells and trigger GvHD. This chapter will address the relevance, 
genetics, prevalence and diagnosis of HLA expression, variants of HLA class I loci and will 
discuss their clinical implications for transplantation.  

2. The human major histocompatibility complex 

The human major histocompatibility complex (MHC), also referred to as the human 
leukocyte antigen (HLA) complex, is encoded on the short arm of chromosome 6 (6p21) and 
is extremely polymorphic (Parham et al. 1988). HLA class I molecules are expressed on most 
nucleated cells. The HLA class I region comprises the gene loci for the heavy chains of the 
three classical human leukocyte antigens, HLA-A, -B, and -C. They consist of a heavy chain 
(44 kDa) and a non-covalently bound ┚2 microglobulin (┚2m) light chain (12 kDa) encoded 
by chromosome 15. The heavy chain is made up of three extracellular domains: ┙1, ┙2, and 
┙3. The highly polymorphic region of HLA class I molecules is located in the DNA and 
amino acid sequences of the ┙1 and ┙ 2 domains, which form the peptide-binding groove. 
Endogenous 8 to 12 amino acid peptides are presented to CD8+ cytotoxic T lymphocytes 
(CTLs) (Natarajan et al. 1999). The ┙3 domain is mainly invariant and contains the binding 
site for the co-receptor CD8. Because of the MHC’s role in recognizing pathogenic and 
cancerous peptides, these genes are under high environmental pressure to be very 
polymorphic. A total of 4,946 HLA class I alleles have been identified to date 
(http://www.ebi.ac uk/imgt/hla; released April 2011).  
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HLA class I molecules are stabilized by disulfide bonds located in the ┙2 and ┙3 domains 
between cysteine (C) residues at amino acid positions 101/164 and 203/259. These bonds 
are essential for the correct processing and function of the molecules (Solheim 1999). Amino 
acid substitutions in these crucial C residues are likely to cause aberrant expression of the 
respective HLA class I molecules and may also change the affinity of the peptide-binding 
groove towards endogenous peptides (Warburton et al. 1994; Hirv et al. 2006; Hinrichs et al. 
2009; Hinrichs et al. 2010). 
HLA class II molecules (DR, DQ, DP) are mainly expressed on hematopoietic cells 
(macrophages, dendritic cells, T cells and B cells). The heterodimers are formed by two 
membrane-bound chains (┙ and ┚), each consisting of two domains (┙1/┙2 or ┚1/┚2, 
respectively) encoded by two genes co-located in the centromeric part of the MHC. The 
antigenic peptide (up to 30 amino acids) is presented to CD4+ T helper cells (Th cells) in a 
cleft formed by the outermost ┙1 and ┚1 domains. Nearly all of the polymorphisms occur 
at exon 2 of the respective A or B genes. Peptides presented by HLA class II molecules are 
derived from exogenous proteins as well as from epitopes of plasma membranes or 
endosomes ( Rudensky et al. 1991; Chicz et al. 1993; Sant 1994). The nonpolymorphic ┚2 
domain contains the binding site for the T cell co-receptor CD4. More than 1,457 HLA 
class II alleles have been identified to date (http://www.ebi.ac uk/imgt/hla; released 
April 2011). 

2.1 Peptide presentation by HLA 

The ability to recognize and distinguish between self and non-self is primarily mediated by 

T lymphocytes, which survey the protein environment of cell surfaces for binding partners, 

i.e. for signs of foreign invasion. T cells do not recognize proteins directly; instead, they 

recognize imprints of ongoing protein metabolism in the form of peptides presented by 

HLA molecules. This phenomenon is called MHC restriction. The biological function of 

HLA molecules is to present antigenic peptides to T cells. Therefore, HLA molecules play a 

central role in T cell-mediated adoptive immunity. MHC class I molecules present peptides 

from endogenously synthezised proteins, whereas MHC class II molecules present peptides 

from incorporated exogenous proteins. All of these peptides originate from foreign or host 

cell proteins and are generated by proteasomal cleavage (class I pathway) or lysosomal 

processing (class II pathway). It has been estimated that about 0.5% of presented peptides 

are bound to MHC molecules, whereas more than 99% are ignored. Consequently, peptide 

binding to HLA is the single most selective event involved in antigen processing and 

presentation (Yewdell, Norbury, and Bennink 1999; Yewdell and Bennink 2001). A T cell-

mediated immune response occurs when the T-cell receptor recognizes a specific peptide-

MHC complex and thus identifies cells that have been infected by intracellular parasites or 

viruses or cells containing abnormal proteins (e.g., tumor cells). The peptides beeing part of 

a certain peptide-MHC complex triggering T-cell recognition are important tools for 

diagnosis and treatment of infectious, autoimmune, allergic and neoplastic diseases (Ferrari 

et al. 2000; Haselden, Kay, and Larche 2000; Singh 2000; Wang, Phan, and Marincola 2001).  

Different polymorphic HLA molecules have different peptide binding specificities (Falk et 
al. 1991; Sette et al. 1994; Bade-Doeding et al. 2007; Bade-Doeding et al. 2011). Peptides 
presented by MHC class I molecules are derived from cytoplasmic proteins by proteolytic 
degradation in the proteasome. Therefore, the MHC class I presentation pathway is often 
called the cytosolic or endogenous pathway. The MHC class I crystal structure features a 
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unique peptide-binding groove at the outer polymorphic ┙2 and ┙3 domains (Bjorkman et 
al. 1987, Madden et al. 1991). This groove can be subdivided into six pockets (A-F) of 
different size, shape, and function (Garrett et al. 1989; Matsumura et al. 1992). A pocket is 
defined as a unit having an affinity for a certain peptide side chain (e.g., affinity of pocket A 
for peptide position P1 and pocket B for P2). Some pockets have a well-shaped structure 
with an affinity for only one side chain, whereas others have an affinity for a group of side 
chains. In some cases, the boundaries between pockets are unclear. The most important 
residues and positions of a peptide are known as anchor residues and anchor positions. The 
identity and spacing of these primary anchors constitutes the peptide motif of an HLA 
specificity (Sette et al. 1987; Sette et al. 1989; Jardetzky et al. 1991; Ruppert et al. 1994; 
Rammensee, Friede, and Stevanoviic 1995). A typical peptide is 8 to 12 amino acids in length 
and binds in the peptide-binding groove, exhibiting an extended conformation with its 
terminal amino group bound to a pocket at one end of the groove and its terminal carboxyl 
group bound to a pocket at the other end of the groove.  
Peptide binding motifs generally contain two to three anchor positions (Rammensee, Friede, 
and Stevanoviic 1995). Other features such as secondary anchors and disfavored residues 
have also been described as playing an important role in defining the peptide-MHC 
interaction (Ruppert et al. 1993). The peptide-binding cleft of HLA class II molecules is 
formed by the outer ┙1 and ┚1 domains. Since it does not narrow at the ends, it can 
accommodate longer peptides containing up to 30 but usually 13 to 17 amino acids. The 
peptides presented by class II molecules are derived from extracellular proteins internalized 
by endophagocytosis and degraded in an endocytic compartment. Hence, the MHC class II-
dependent pathway of antigen presentation is called the endocytic or exogenous pathway. 

2.2 HLA nomenclature and typing methods 

According to the World Health Organization (WHO) Committee on Nomenclature for 
Factors of the HLA System (Holdsworth et al. 2009), each HLA allele name has a unique 
number corresponding to up to four sets of digits separated by colons. The 2-digits before 
the first colon describe the type, which often corresponds to the serological antigen carried 
by an allotype. The next set of digits are used to list the subtypes, numbers being assigned in 
the order in which DNA sequences have been determined. Broad families of alleles are 
clustered into serotypes (e.g., HLA-A1). 
There are two levels of typing: low-resolution (2-digits) and high-resolution (at least 4-
digits). Low-resolution typing delivers results equivalent to serological typing and can be 
achieved by serological (microlymphocytotoxicity test) or molecular techniques. Due to its 
simplicity and low cost, serologic typing is still used in some laboratories. High-resolution 
typing can only be achieved by DNA-based techniques allowing classification of the 
individual alleles within each serotype (e.g., HLA-A*01:01). A number of HLA typing 
methods based on PCR technology have been developed. PCR with sequence-specific 
primers (PCR-SSP), PCR followed by sequence-specific oligonucleotide probing (PCR-SSO) 
and PCR followed by sequencing-based typing (PCR-SBT) are currently the most commonly 
used molecular methods for low- and high-resolution HLA typing. These methods have 
displaced serology in most laboratories because of a much greater accuracy.  

2.2.1 Types and nomenclature of HLA expression variants 

To label HLA alleles with an alternative expression pattern the WHO Nomenclature 

Committee for Factors of the HLA System defined suffixes (’N’, ’L’, ’S’, ’C’, ’A’, ’Q’), that are 
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added to an allele name to indicate its expression status (Holdsworth et al. 2009). Alleles 

shown to be not expressed ('Null' alleles) are given the suffix 'N'. The alteration does not 

necessarily imply the lack of production of an internal partial product which might be a T-

cell target (Elsner and Blasczyk 2004). HLA alleles with ‘Low’ cell surface expression of an 

intact antigen compared to normal levels are indicated using the suffix ‘L’. The suffix 'S' is 

used to denote an allele specifying a protein which is exclusively expressed as a 'Secreted' 

molecule but not as a cell surface protein. A 'Q' suffix is used when the expression of an 

allele is 'Questionable' given that the mutation seen in the allele has previously been 

shown to affect normal expression levels. The suffix 'C' is used to denote an allele product 

found in the 'Cytoplasm' but not on the cell surface, and the suffix ‘A’ indicates 'Aberrant' 

expression.  

Currently, 197 HLA class I alleles (168 N, 5 L, 24 Q and 1 S allele) and 21 HLA class II alleles 

(all null alleles) with variant expression are listed in the IMGT/HLA database on the HLA 

nomenclature website (www.ebi.ac.uk/imgt/hla; released April 2011). As of April 2011, no 

alleles have been named with a 'C' or 'A' suffix. Most of these alleles carry mutations causing 

stop codons, leaving no doubt about their non-expression. Examples include HLA-

A*02:82N, HLA-A*23:08N, HLA-A*24:132N, HLA-B*14:07N, HLA-B*39:40N, HLA-

B*46:07N, HLA-B*56:190N, or HLA-C*06:49N. In the case of HLA-A*03:03N, a frame 

deletion is responsible for non-expression (Lienert et al. 1996).  

Only four HLA-A alleles (HLA-A*01:01:38L, HLA-A*02:01:01:02L, HLA-A*24:02:01:02L, 

HLA-A*30:14L) and one HLA-B allele (HLA-B*39:01:01:02L) with low-expression patterns 

have been identified up to now (Balas et al. 1994; Magor et al. 1997; Laforet et al. 1997; Dunn 

et al. 2004; Hirv et al. 2006; Perrier et al. 2006). Low expression of these alleles is usually 

associated with a low expression of the corresponding mRNA. However, the alteration 

causing the low expression of HLA*A-30:14L is not associated with a reduced mRNA level, 

but rather seems to result from the loss of the disulfide bond between the cysteine residues 

at positions 101 and 164 in the ┙2 domain (Hirv et al. 2006; Hinrichs et al. 2009). 

The only soluble secreted allele (S) known so far is HLA-B*44:02:01:02S (Dubois et al. 2004). 

This HLA-B44 variant was typed as a null allele by microlymphocytotoxicity, whereas the 

B*44:02:01:01 allele was identified by PCR-SSP. DNA sequencing revealed a single 

nucleotide difference at the end of intron 4 in the acceptor splicing site, leading to a splicing 

error characterized by the deletion of exon 5 (transmembrane domain of the HLA antigen).  

All known HLA class I Q alleles (7 HLA-A, 9 HLA-B and 8 HLA-C) and the HLA-A*30:14L 

allele have cysteine residue mutations at amino acid position 101 or 164 affecting the 

101/164 disulfide bridge in the ┙2 domain. Point mutations altering codon 101 have been 

described for HLA-C*02:25Q and HLA-C*03:22Q (Middleton et al. 2006). In the case of HLA-

A*02:293Q, HLA-A*11:50Q, HLA-A*30:14L (Hirv et al. 2006), HLA-A*32:11Q (Tang et al. 

2006), HLA-B*15:218Q, HLA-B*35:65Q (Elsner et al. 2006), HLA-B*37:16Q, HLA-B*39:38Q 

(Tang et al. 2006), HLA-B*40:133Q, HLA-C*04:59Q, HLA-C*07:121Q, HLA-C*12:42Q, HLA-

C*15:32Q and HLA-C*16:16Q, point mutations in codon 164 result in a replacement of the 

Cys residue, causing disruption of the disulfide bond in the 2 domain. HLA-A*30:14L is 

the only one of these alleles described as having a low expression pattern not affecting the 

corresponding mRNA levels (Hirv et al. 2006; Hinrichs et al. 2009). There are no known 

alleles with an amino acid mutation at positions 203 or 259 affecting the bridge in the ┙3 

domain.  
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2.3 HLA in transplantation 

The best donor is an HLA genotypically matched sibling identified by family typing. When 
no identical sibling donor is available, transplantation of stem cells from an HLA-matched 
unrelated donor can result in comparable disease–free survival, particularly for good-risk 
patients (Petersdorf et al. 2004; Petersdorf 2007; 2008). Nevertheless, unrelated 
transplantation is associated with a higher frequency of post-transplant complications than 
in genotypically matched sibling HSCT, mainly because of undefined HLA 
incompatibilities. The negative impact of HLA mismatches on the outcome of hematopoietic 
stem cell transplantation has been demonstrated in a variety of studies (Mickelson et al. 
2000; Ottinger et al. 2003; Schaffer et al. 2003). Most allele mismatches affect differences in 
the T-cell receptor contact area of the heavy chain or the peptide-binding site causing a 
change in the peptide binding repertoire both leading to a T cell-mediated allorecognition.  
HistoCheck (www.histocheck.org) is an online tool which helps clinicians and researchers 
visualize the amino acid substitutions of HLA alleles so that they can make informed 
judgments about their functional similarity (Elsner et al. 2004). Because exact HLA matching 
is often not possible, it is important to understand which alleles are the most similar. 
HistoCheck provides crystallography-based 3-dimensional (3D) visualizations of the allelic 
mismatches by highlighting amino acid mismatches, positions, and functions. The user is 
provided with dissimilarity scores (DSSs) for the amino acids involved as well as an over-all 
DSS for the two alleles. However, scoring HLA mismatches by HistoCheck has not been 
shown to predict clinical outcome in unrelated hematopoietic stem cell transplantation.  
Several large-scale studies have shown that high-resolution matching of patients and 

unrelated donors significantly improves post-transplant survival (Bray et al. 2008), the 

incidence and severity of acute and chronic GVHD (Morishima et al. 2002; Morishima et al. 

2007), and engraftment (Petersdorf et al. 2001; Flomenberg et al. 2004; Lee et al. 2007; 

Petersdorf 2008). Regarding cord blood transplantation, several studies have shown that the 

degree of HLA match is important as well, but a large cell dose may be at least equally 

important (Laughlin et al. 2004; Rocha, Sanz, and Gluckman 2004; Arcese et al. 2006; Eapen 

et al. 2007). 

The National Marrow Donor Program (NMDP¸ www.marrow.org) proposed minimum 

HLA matching requirements for adult donors for HLA-A, -B, -C and -DRB1 (8/8) typed, at 

high resolution by DNA-based methods and cord blood units (CBU) for HLA-A, -B, (low 

resolution) and -DRB1 (high resolution) (Table 1) (Bray et al. 2008; Kamani et al. 2008). 

Considering HLA allele and haplotype frequencies can be very useful when interpreting 

typing results and finding appropriate donors. Simply knowing that a patient's haplotype is 

extremely rare can prevent futile registry searches. Considering allele frequency alone is 

insufficient, because a rare allele can be acceptable when it is found in its most common 

haplotype. Being aware of rare alleles and haplotypes is also an important factor in quality 

control. Furthermore, typing results in registries are often incomplete. In the case where 

there are two matching donors, but each donor typing is incomplete with respect to 

different alleles, then haplotype frequencies can help choose the donor who is most likely to 

be an exact match. To overcome these limitations the new matching algorithm HapLogic 

(www.marrow.org) and Haplocheck (www.haplocheck.org) were developed. HapLogic a new 

enhanced matching algorithm that automatically identifies the donors or CBUs with the 

highest potential to match the patient, was established by the NMDP to accelerate and 

improve the efficiency of searches. The new matching algorithm analyzes the haplotypes of 
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millions of donors on NMDP's Be The Match Registry. HapLogic uses advanced logic to 

predict a donor’s or CBU’s high-resolution match and builds upon mathematical formulas 

that predict DR match in AB donors (Hurley et al. 2006).  

 

HLA locus Tissue type patient? Match donor and patient? 

A Yes, allele level Yes 

B Yes, allele level Yes 

C Yes, allele level Yes 

DRA No No 

DRB1 Yes, allele level Yes 

DRB3, 4, and 5 Yes (DRB1 association) Unknown 

DQA1 No No 

DQB1 Yes (DRB1 association) Uncertain 

DPA1 No No 

DPB1 No Uncertain 

Table 1. HLA tissue typing recommended by the NMDP (from www.marrow.org) (Bray et 
al. 2008; Kamani et al. 2008) 

The web tool HaploCheck is addressing this chance by ranking typing results based upon 

haplotype frequencies. The user enters the typing results for a patient, for which the cis/trans 

phase is unknown. The result is a list of separated haplotypes, ordered by frequency. Very rare 

alleles and associations are highlighted to inform the user of potential problems when 

searching registries, or to identify potential typing errors. For the case that a single mismatch is 

unavoidable, the user is presented with a list of mismatch-containing haplotypes and their 

frequencies. This can not only prevent futile registry searches, but also enable the clinician to 

make decisions about accepted mismatches before initiating a registry search. 

3. Prevalence and allogenicity of HLA class I expression variants  

Few investigators have systematically addressed the prevalence of HLA null and 

alternatively expressed alleles, which has been shown to be about 0.003% and 0.3%, 

respectively (Noreen et al. 2001; Elsner and Blasczyk 2004; Smith et al. 2005). Considering 

that most studies indicate that the prevalence of these alleles is around 1 per 1000 

individuals, these alleles are not particularly rare. Consequently, it was recommended that 

laboratories typing unrelated bone marrow patients and donors should have a strategy to 

identify these expression variants (Elsner and Blasczyk 2004). 
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HLA null and expression variants are typically identified by the discrepancy between 
serological and molecular typing results. As molecular typing techniques have nearly 
displaced serological methods and are focusing on selected regions of the HLA genes many 
expression variants are likely to be overlooked. In solid organ transplantation, HLA 
expression variants are not considered in the matching procedure. In allogeneic HSCT, 
expression variants make an essential difference and can strongly affect transplant-related 
mortality since HLA mismatches are the major cause of severe GvHD or graft rejection. 
Thus, in contrast to solid organ transplantation, excluding HLA expression variants is 
required in the matching process for HSCT (Elsner and Blasczyk 2004; Hirv et al. 2006; 
Hinrichs et al. 2009).  
Overlooking an HLA null allele in the donor would result in a T cell-mediated 
allorecognition of the recipient’s HLA and may lead to the development of acute severe 
GvHD (Elsner and Blasczyk 2004). In the reverse setting (recipient null allele, donor 
expressed allele), allogeneic recognition of the recipient's stem cells may lead to their 
destruction and subsequent graft failure. Accordingly, mismatches between expressed and 
non-expressed HLA variants should be avoided in HSCT. In case of a recipient with an HLA 
null allele having no HLA-identical donor with the same null variant, matching must be 
performed as if the patient would be homozygous for the expressed allele of the respective 
HLA locus (Figure 1). 
 

 

Fig. 1. Haplotypes in a recipient-donor combination with a null allele in one of the 
recipient’s haplotypes. Shadowed boxes indicate normally expressed variants. The 
recipient carries an HLA-B null allele (white box). In the donor search the recipient's 
haplotype h2 has to be ‘replaced’ by haplotype (h3) containing the expressed HLA-B allele 
(var1). However, such a haplotype may be rare and a matching donor hard to find (Elsner 
and Blasczyk 2004). 

On the other hand, an incomplete HLA molecule may be generated, as has been shown for 

HLA-B*44:02:01:02S, which might be presented via the indirect allogeneic recognition 

pathway (Magor et al. 1997; Dubois et al. 2004). Provided that the HLA-derived peptides fit 

into the peptide-binding groove and are capable of triggering a strong T-cell response, they 

may act as minor histocompatibility antigens (mHags). This could also apply to those HLA 
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expression variants where the transcription of a truncated mRNA is known and/or 

translation is probable. It also shows that premature stop codons do not automatically lead 

to the interruption of transcription (Balas et al. 1994; Laforet et al. 1997; Magor et al. 1997; 

Dunn et al. 2004; Hirv et al. 2006; Perrier et al. 2006; Eiz-Vesper, Blasczyk, and Horn 2007). 

In the light of countless non-HLA mHags this is probably of inferior importance. 

4. Characterization of HLA expression variants by cytokine-induced HLA 
secretion 

Because of the clinical importance of expresion variants an HLA secretion assay was 

designed capable of discriminating between low-expression (L) and non-expressed (N) HLA 

variant alleles and assigning questionably expressed (Q) alleles to either group (Hinrichs et 

al. 2009).  

All of the aforementioned HLA class I alleles with an unknown expression profile (Q alleles; 

7 HLA-A, 9 HLA-B and 8 HLA-C) and HLA-A*30:14L, have a mutation of cysteine residue 

101 or 164 affecting disulfide bridge 101/164 in the ┙2 domain. Because HLA-A*30:14L is 

the only one of these alleles described to have a low expression pattern with no effect on 

mRNA levels (Hirv et al. 2006; Hinrichs et al. 2009), A*30:14L was used as an expression 

model. HLA-A*30:14L was reported to be non-expressed under normal conditions and to 

show weak aberrant expression after cultivation of the corresponding B-lymphoblastoid cell 

line at 30°C (Hirv et al. 2006).  

HLA-A*30:14L was originally identified in a patient suffering from chronic myeloid 

leukemia (Hirv et al. 2006). The sequence of this allele is identical to that of HLA-A*30:01 

except for a transversion at nucleotide position 563 in exon 3 (guanine to cytosine 

substitution), resulting in a replacement of cysteine by serine at position 164, impairing 

disulfide bridge formation in the ┙2 domain of the mature polypeptide. This alteration of 

the secondary structure presumably decreases expression, rendering HLA-A*30:14L 

basically undetectable by serology.  

Human cell lines (HEK293, C1R and K562) expressing recombinant soluble HLA (sHLA) 

molecules (Table 2) were incubated with interferon (IFN)- and/or tumor necrosis factor 

(TNF)-┙ (Hinrichs et al. 2009). These pro-inflammatory cytokines are known to enhance the 

expression of HLA molecules by affecting the interaction of DNA-binding proteins with the 

HLA-A promoter regions, resulting in the increased transcription of heavy and light chain 

genes (Girdlestone 1996; Gobin et al. 1997; Gobin et al. 1998; Gobin et al. 1999; Johnson 

2003). In addition, these cytokines induce the transcription of proteasome subunits, peptide 

transporters and chaperones that promote the expresson of HLA class I molecules by 

providing peptides for presentation (Ma et al. 1997; Lankat-Buttgereit and Tampe 2002).  

Expression of soluble HLA-A*30:14L and HLA-A*30:01 was measured in the 

supernatants of transfected and untransfected cells incubated with or without IFN- 
and/or TNF-┙ using a W6/32 and anti-┚2-microglobulin-based sandwich ELISA (Figure 

1) (Bade-Doeding et al. 2007). HLA-A*30:14L was not detected in the supernatant of 

unstimulated transfectants. Stimulation with IFN- and/or TNF-┙ increased HLA-

A*30:14L secretion to detectable levels and increased HLA-A*30:01 expression up to 8-

fold, but did not result in any difference between mRNA levels of HLA-A*30:14L and 

A*30:01 (Figure 2).  
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Day  Expression level (ng/ml) 

  HEK293 C1R K562 

1 HLA-A*30:01 31.3 ± 10.3 98.0 ± 14.7 155.8 ± 73.9 

 HLA-A*30:14L 0 3.2 ± 1.7 0 

3 HLA-A*30:01 383.2 ± 56.5 225.8 ± 177.5 143.5 ± 40.8 

 HLA-A*30:14L 1.8 ± 1.4 0 0 

7 HLA-A*30:01 160.4 ± 3.2 253.6 ± 16.1 175.9 ± 74.7 

 HLA-A*30:14L 0 9.7 ± 4.9 0 

Table 2. Soluble HLA-A*30:01 and HLA-A*30:14L expression levels (ng/ml) in the 
supernatant of three transfected cell lines (HEK293, C1R and K562) after 1, 3 and 7 days of 
incubation.  
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Fig. 2. Secretion of soluble HLA-A*30:01 and HLA-A*30:14L by transfected K562 cells 

Expression of mRNA transcripts of both alleles was determined by real-time PCR. For 

control, Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell line (B-LCL) 

expressing HLA-A*30:14L was established from cells of the patient’s mother (genotype 

HLA-A*30:14L,*02:01) (Hirv et al. 2006). The positive control was a B-LCL expressing HLA-

A*30:01 (genotype HLA-A*30:01,*02:01). In both B-LCLs and HEK293 cells, the mRNA level 

of HLA-A*30:14L was nearly identical to that of HLA-A*30:01 (Figure 3). This finding 

suggests that the mRNA transcription rate of sHLA-A*30:14L is not affected by the mutation 

at nucleotide position 563 (G->C). The mRNA levels of both alleles clearly increased in 

response to combined stimulation with IFN- and TNF-┙. In view of this lack of any 

difference in mRNA transcription, the protein expression defect is most likely caused by the 

missing disulfide bond in the ┙2 domain. 

                         untreated    IFN-       TNF-┙      IFN-+                untreated    IFN-      TNF-┙      IFN- +               untreated   IFN-      TNF- ┙      IFN- +                      
                                                                                          TNF- ┙                                                                                 TNF- ┙                                                                                TNF- ┙ 

www.intechopen.com



 
New Advances in Stem Cell Transplantation 

 

48

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

R
Q

 

Fig. 3. Detection of mRNA levels of HLA-A*30 alleles in B-LCLs and HEK293 cells 

mRNA expression of the HLA-A*30 alleles in transfected cell lines and B-LCLs was 

determined by real-time PCR. Shown are representative results for HEK293 cells measured 

after 3 days of culture in the presence (“treated”) or absence (“untreated”) of the cytokines 

IFN- and/or TNF-┙. Data were acquired using a probe specific for the HLA-A30 sequence. 

Similar results were achieved for all transfected cell lines. Lanes: a) sHLA-A*30:01-

transfected HEK293, b) sHLA-A*30:14L-transfected HEK293, c) EBRCC-256 (HLA-A*30:01), 

d) EBRCC-1818 (HLA-A*30:14L), 1 untreated, 2 IFN--treated, 3 TNF-┙-treated, 4 IFN- plus 

TNF-┙-treated 

The observation that HLA-A*30:14L protein accumulates inside the cells indicates that HLA-

A*30:14L translation is not affected. Consequently, the lack of protein secretion in the 

supernatant is best explained by post-translational instability of the HLA-A*30:14L 

molecules because of the missing disulfide bridge (Hinrichs et al. 2009). Based on these 

findings, it is likely that the intracellular enriched HLA-A*30:14L protein is a major substrate 

for proteasomal cleavage and that it provides a flood of peptide fragments presented to 

cytotoxic T lymphocytes. As a result of this indirect surface expression by the presentation 

of peptide fragments, it is possible that GvHD or graft rejection might be promoted in the 

event of mismatching (Benichou 1999). Consequently, considering HLA-A*30:14L as null 

allele is, in case of a mismatch with any other HLA-A allele, potentially more dangerous in 

terms of GvHD and graft rejection than a mismatch with its most related allele HLA-

A*30:01. Indeed, mistyping HLA-A*30:14L as an N allele has led to a severe GvHD in a 

patient transplanted with hematopoietic stem cells from an HLA-A*02:01 homozygous 

donor (Hirv et al. 2006).  

In recent studies, the cytokine-based HLA secretion assay was used to classify the 

expression patterns of HLA-A*32:11Q (Tang et al. 2006) and HLA-B*35:65Q (Elsner et al. 

2006). Both alleles undergo cysteine substitution at amino acid position 164 and thus lack 

the disulfide bond between the cysteine residues at amino acid positions 101 and 164 in 

the 2 domain of the mature protein. This interferes with HLA maturation inside the ER 

and therefore impairs cell surface expression. In concordance with the results of Hinrichs 

    a-1           a-2           a-3           a-4           b-1           b-2           b-3          b- 4          c-1           d-1 
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et al. (Hinrichs et al. 2009), IFN-┛ and TNF-┙ increased the expression of the HLA 

expression variants, making HLA-A*32:11Q and HLA-B*35:65Q distinctly detectable. 

Compared to HLA-A*32:01 and HLA-B*35:01, the variants have very weak protein levels, 

indicating a low expression status. Consequently, they should be handled as low 

expression variants (L alleles). 

5. The nature of peptides presented by HLA class I expression variants 

The functional integrity of HLA low-expression variants is a prerequisite for considering 

them as essential in hematopoietic stem cell donor and recipient matching to diminish the 

risk of serious complications such as GvHD or graft rejection. HLA class I molecules 

present endogenous peptides 8-12 amino acids in length to CD8+ cytotoxic T lymphocytes 

(Natarajan et al. 1999). Most amino acid polymorphisms of different HLA class I 

molecules are located in the peptide-binding region shaped by parts of the ┙1 and ┙2 

domains; these polymorphisms determine the characteristics of presented peptides. 

Peptide motifs have been reported for the most common HLA-A and B alleles and for 

some rare variants. Importantly, differences in peptide binding among the alleles of a 

serological group have also been described (Prilliman et al. 1999; Bade-Doeding et al. 

2011,). Identification and comparison of allele-specific peptide-binding motifs provide 

important information for donor-recipient matching and prediction of HLA subtype 

allogenicity in allogeneic HSCT. 

In order to determine the functionality of HLA low-expression alleles, peptides from 

recombinant truncated HLA-A*30:14L molecules secreted in the supernatant of a human cell 

line were eluted and sequenced (Hinrichs et al 2010). The suitability of the monoclonal anti-

HLA class I antibody W6/32 for purifying recombinant HLA-A*30:14L molecules suggested 

its proper folding and assembly. Presumably, more soluble HLA-A*30:14L is produced and 

secreted into the supernatant that might not be correctly folded because of the lack of a 

disulfide bridge in the ┙2 domain. 

Edman pool sequencing of eluted peptides corroborated the hypothesis that peptides are 

presented by HLA low expression variants and showed idential peptide motifs in HLA-

A*30:01 and HLA-A*30:14L confirming the previously described peptide motif of A*30:01 

(Lamberth et al. 2008; Sidney et al. 2008). The C-terminal position (P) was identified as a 

primary anchor position. The preferred residues of the HLA-A*30 peptide epitopes at this 

position are lysine (K), valine (V) or arginine (R). The preference for lysine as the top amino 

acid at the P position of the bound peptides, like described by positional scanning 

combinatorial peptide libraries (PSCPL) analysis, could be consolidated by the obtained 

peptide sequence data (Lamberth et al. 2008; Sidney et al. 2008). Position P3 of the peptides 

was identified as a primary-secondary anchor showing a high preference for the basic amino 

acids K and R. Six amino acids are reportedly favored at position P2: phenylalanine (F), 

serine (S), threonine (T), valine (V), isoleucine (I) or leucine (L).  

The size of the obtained peptides ranged from 8 to 14 amino acids, but most had a length of 

9 to 10 aa. The sequences of 200 HLA-A*30:01 ligands and of 100 HLA-A*30:14L ligands 

were identified. The following three peptide epitopes (3%) were presented by both HLA-

A*30:01 and HLA-A*30:14L: 1) VLDTPGPPV, a nonameric peptide derived from titin 

(isoform N2-A, aa position 19783-19791), a protein of human muscle ultrastructure and 

www.intechopen.com



 
New Advances in Stem Cell Transplantation 

 

50

elasticity; 2) EITALAPSTMK, an 11-mer peptide derived from human muscle protein 

ACTA1 (actin, alpha 1, skeletal muscle; aa position 301-311); and 3) DNIQGITKPAIR, a 12-

mer peptide derived from a histone protein (HIST2H4A; aa position 25-36) (Table 3).  

 
Peptide 

position 

1    2    3   4    5   6    7   8    9   10   11  12 Source 

Ligand V   L   D   T   P   G   P   P  V 

E    I    T   A   L   A   P   S  T   M   K 

D   N   I    Q  G   I    T   K  P   A    I     R 

Titin (TTN titin isoform N2-A) 

Actin (ACTA1) 

Histone (HIST2H4A) 

Table 3. Shared peptide epitopes of HLA-A*30:14L and HLA-A*30:01 

To verify the presentation of naturally presented peptides from recombinant HLA-
A*30:01/30:14L molecules, peptide binding was analyzed by flow cytometry ( Storkus et al. 
1993; Zeh et al. 1994; Maeurer et al. 1996) in three EBV-transformed B-LCLs expressing 
either HLA-A*30:14L,*02:01 (Ulm-241539), HLA-A*30:01,*02:01 (EBRCC-256) or HLA-
A*02:01 (EBRCC-2296) ( Warburton et al. 1994; Hirv et al. 2006; Hinrichs et al. 2009; 2010). 
Acid treatment of the cell lines resulted in the dissociation of the naturally bound peptides 
and the release of ┚2 microglobulin from the HLA class I heavy chain. The HLA class I 
molecules were then reconstituted by adding fluorescein isothiocyanate (FITC)-labeled HLA 
peptide ligands and recombinant ┚2 microglobulin. The synthetic FITC-labeled peptide 
EITALAK(FITC)PSTMK (HLA-A*30:01/30:14L) and the immunodominant HLA-A*02:01-
restricted CMVpp65495-503 peptide (NLVPMK(FITC)VATV) were used. Reconstitution of 
HLA with the HLA-A*30 ligand mounted up to 51% (Ulm-241539) and 74% (EBRCC-256), 
respectively, compared to 25% for the HLA-A*02:01 homozygous cell line (EBRCC-2296). 
Binding on cells expressing the normal HLA-A*30:01 allele was higher than on those 
expressing HLA-A*30:14L, the low expression variant (Figure 4). The results confirm that 
the A*30 peptide previously isolated binds to HLA-A*30 on the cell surface. Peptide binding 
was found for the A*30:01 specific peptide on the HLA-A*30:14L-expressing cell line (Ulm-
241539), indicating the stability of HLA-A*30:14L cell surface expression. 
 

0 20 40 60 80

Ulm-241539

EBRCC-256

EBRCC-2296

A*30 peptide/A*02 peptide binding [%]  

Fig. 4. Relative A*30/A*02:01 peptide-binding intensities for different HLA-expressing B-LCLs  
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Homology-based modeling for each HLA-A*30 alleles with the shared 9, 11 and 12-mer 
peptide epitopes revealed only marginal differences between the two HLA-A*30 alleles. The 
HLA-A*30:01 and HLA-A*30:14L models were essentially identical with the Cys164 Ser 
substitution, but simply adopted an alternate rotamer conformation upon breakage of the 
disulfide bond. Therefore, only the HLA-A*30:14L model is illustrated (Figure 5).  
Although the models look identical and the alleles appear to bind identical peptides, the 
Cys164Ser variation could potentially generate additional flexibility within the peptide-
binding groove, thereby influencing binding kinetics, particularly in peptides of lower 
affinity. Such an effect could stimulate a T-cell immune response and have serious 
implications in allogeneic HSCT.  
 

 

Fig. 5. Homology-based model of HLA-A*30:14L with the three shared peptide ligands 

Modeling of the HLA-A*30:01 and HLA-A*30:14L structures was carried out using the 
SCWRL homology-based modeling server (Wang, Canutescu, and Dunbrack 2008) while 
employing the crystal structure of the closely related HLA-A*11:01 (1Q94) as a template. 
Peptide templates for 9-mer (1Q94), 11-mer (2BVO) and 12-mer (3BW9) were superimposed 
and merged with the HLA-A*30:14L model. Peptide mutagenesis was then performed using 
DeepView (Guex and Peitsch 1997) and the rotamer library to find the best side chain 
orientations with minimum steric clashes. Each model was then subjected to energy 
minimization using DeepView software. The graphics program PyMOL 
(http://www.pymol.org) was used to generate the structural models.  

6. Conclusions 

Since HLA mismatches are the main cause of severe GvHD and graft rejection, 
misinterpretation of HLA null alleles and expression variants as irrelevant could strongly 
affect transplant-related mortality.  
The cytokine-based HLA secretion assay can be used to distinguish between low-expressed 
and non-expressed HLA alleles in order to classify alleles with a currently undefined 
expression status (questionable alleles, Q) as well as to re-classify certain alleles which have 
been assigned as null variants (N). Additionally, discrimination between cytokine inducible 
and non-inducible defect alleles may be important in allotransplant settings in which a 
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cytokine storm usually occurs following pre-transplant myeloablative conditioning or post-
transplant immunosuppressive therapy. 
The fact that the monoclonal anti-HLA class I antibody W6/32 is a conformational antibody 
implies that only correctly folded, ┚2 microglobulin-assembled and peptide-loaded MHC 
complexes can be detected. This suggests that parts of soluble HLA-A*30:14L molecules are 
assembled correctly and secreted by transfectants. Presumably, more soluble HLA-A*30:14L 
is produced and secreted into the supernatant, but it might not be correctly folded because 
of the lack of the disulfide bridge in the ┙2 domain. Therefore, these molecules are not 
detected by the conformational anti-HLA-ABC mAb. This assumption arose after comparing 
mRNA and associated protein levels of HLA-A*30:14L and HLA-A*30:01 alleles (Hinrichs et 
al. 2009). Additionally, it was found that HLA-A*30:14L accumulates inside the cells; 
therefore, it might be a major substrate for proteasomal cleavage and could provide a flood 
of peptide fragments presented to cytotoxic T lymphocytes. As a result of this indirect 
allorecognition pathway, GvHD or graft rejection might be promoted in the event of a 
severe mismatch. 
It was shown for the first time that an HLA low expression allele (HLA-A*30:14L) presents 

peptides with identical features to those of its most closely related relative, HLA-A*30:01 

(Hinrichs et al. 2010). The results indicate that a mismatch at amino acid position 164 might 

be permissive. Therefore, mismatching of these alleles will presumably be of low 

allogenicity in allogeneic HSCT. The fact that a low expression variant is not only functional 

and able to present peptides, but also shares epitopes with its related variant leads to the 

conclusion that low expression variants need to be considered in donor selection as 

permissive or non-permissive mismatches, respectively. Increasing knowledge of the 

expression behavior of HLA expression variants, such as L and Q alleles, will help to 

improve HLA allogenicity prediction algorithms by delivering proof that these variants are 

fully functional. Taking all relevant factors into account, the results shown allow to predict 

the immunogenicity of aberrantly expressed alleles in a transplant setting. 

In the case of HLA-A*30:14L misinterpreting it as a null allele is, in case of a mismatch with 

any other HLA-A allele, potentially more dangerous in terms of GvHD and graft rejection 

according to the direct and indirect allo-recognition pathway than a mismatch with its most 

related allele HLA-A*30:01. Indeed, mistyping HLA-A*30:14L as an N allele has led to a 

severe GvHD in a patient transplanted with hematopoietic stem cells from an HLA-A*02:01 

homozygous donor (Hirv et al. 2006).  

In order to predict the relevance of similar alleles with disulfide bridge rearrangements (e.g., 

HLA-A*32:11Q and B*35:65Q) in allogeneic HSCT, it is important to know their surface 

expression as well as their peptide binding of HLA variants. From a clinical perspective, 

HLA variants with similar disulfide bridge variations need to be considered as functionally 

active in an allogeneic HSCT setting as long as the opposite has not been shown.  
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