
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



14 

Dynamics of Protein Complexes  
Tracked by Quantitative Proteomics 

Séverine Boulon 
Macromolecular Biochemistry Research Centre (CRBM) – CNRS /  

University of Montpellier 
France 

1. Introduction 

Cellular proteins rarely function as individual entities, instead they form multi-molecular 
complexes that are themselves interconnected in dense functional networks. These networks 
can perform a diverse range of highly coordinated biological processes. The characterization 
of protein-protein interaction networks is therefore crucial, not only to elucidate the local 
function and regulation of single proteins but also, and above all, to capture a 
comprehensive snapshot of cellular activity as a whole system.  
The term “protein complexes” describes structures of varying nature. Protein complexes can 
be formed both by stable or transient interactions. Stable, long-term interactions can bridge 
core components of large multi-protein complexes, or molecular machineries, such as the 
RNA polymerase II complex and the 26S proteasome. On the other hand, interactions that 
are transient and dynamic in nature are often highly sensitive to regulatory stimuli and 
signaling events, such as enzyme/substrate complexes.  
However, in all cases, protein interactions are prone to strict regulation and vary upon 
change in cellular environment. In human, the activity and the expression levels of cellular 
proteins may diverge between various differentiated states and thus lead to specific protein 
interactome network maps for each cell type. In addition, in a particular cell type, protein 
interactions are dependent upon physiological and pathological conditions, for example cell 
proliferation or stress response, and protein interactomes may thus fluctuate, hence 
reflecting the spatial and temporal complexity of cellular activity. Deciphering the dynamics 
of these protein interaction networks by assembling sets of various interactomes that echo 
different cellular conditions, rather than simply draw a comprehensive map of a static 
protein interactome, remains one of the key challenges in cell biology. Once solved, this will 
greatly aid understanding of complex mechanisms underlying normal cell behavior and 
how they are modified by genetic alterations, cancer and other types of diseases. Is this goal 
completely unrealistic, not to say utopist, given that the mapping of the human protein 
interactome has not yet been completed? I am eager to believe that the accumulation of 
outstanding studies and the emergence of new powerful techniques will certainly lead to the 
achievement of this ambitious project. In fact, various high throughput methodologies have 
already proven to be very efficient to characterize protein-protein interactions on a 
proteome scale, yet the scientific community is still far from building a dynamic map of the 
human protein interactome.  
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The quest of protein interactome dynamics raises several issues. First, protein interaction 
analyses must be freed from the non-specific contaminants that are inevitably identified along 
with genuine, specific protein interactors. This issue represents a major challenge not limited 
to dynamic studies alone but applicable in the wider field. In addition, it cannot be satisfactory 
to characterize the existence of interactions only. It is necessary to carry out quantitative 
studies, which provide scales of interaction intensities and thus help determine the strength of 
each interaction identified. As a result, protein interaction strengths can be compared between 
different conditions, which consequently allows for the dynamics of the protein interactome to 
be, at least partially, dissected. This exploration of the dynamic properties of protein 
complexes during biological responses is absolutely essential to shift from a descriptive 
inventory of all possible protein interactions to a more functional pathway analysis. 
However, it is necessary to keep in mind that this will not be achieved by a single large-scale 
experiment but rather by the integration of a large number of individual studies. This will 
only be possible thanks to an international coordinated effort that will guarantee the 
collection of high quality protein interaction data that can be efficiently exploited and 
compiled by the scientific community. This requires that the vast amount of protein 
interaction data generated is somehow controlled, at the level of experimental procedures, 
metadata acquisition, data analysis and storage, to ensure reproducibility and reliability. 
The benefit of compiling such interaction datasets may be immense, both in basic and in 
clinical research. This will certainly allow for an improved understanding of protein 
function and regulation in different physiological conditions. This might also provide 
crucial information to elucidate genotype/phenotype relationships and mechanisms 
underlying several diseases, including cancer. Finally, this concerted effort will, in a 
comprehensive manner, help dissect the cell response to different types of drug treatment 
and chemotherapy, underline all cellular pathways that are altered and therefore grasp the 
causes of the efficacy and/or the side effects of a treatment.  
In this chapter, I will review the different high throughput techniques that are used to study 
protein-protein interactions, including yeast two-hybrid assays and the combination of 
affinity purification techniques with mass spectrometry. The latter emerges as a method of 
choice to analyze the dynamics of protein complexes, especially with the development of 
MS-based quantitative proteomics strategies. I will particularly describe a workflow that 
uses affinity purification techniques combined with a triple SILAC labeling, quantitative 
proteomics approach, which has proven to be efficient, both (i) to reliably distinguish 
between specific and non-specific interaction partners and (ii) to quantify the changes of 
protein interactions occurring between different cellular conditions. The workflow 
illustrated here has been applied to the analysis of RNA polymerase II complex dynamics, 
which will be explained briefly. I will also present a new methodology, called the Protein 
Frequency Library (PFL), which can be used as an additional criterion to highlight putative 
false-positives identified in any pull-down experiment. Finally, the need for the scientific 
community to compile and standardize protein interaction data of high quality will be 
discussed, as well as the immense possibilities available to the clinical field through 
assembling proteome-scale maps of the human protein interactome networks. 

2. Towards a comprehensive map of the human protein interactome 

2.1 A set of complementary high throughput techniques 

Various strategies have been developed to study protein-protein interactions. The goal of 
this chapter is certainly not to describe all of them. Instead, I will focus on those that have 
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been commonly used in various large-scale studies and have already enabled important 
insights into the mapping, on a proteome-scale, of the human protein interaction network. 
Among these strategies, the most common include yeast two-hybrid (Y2-H) and affinity 
purification coupled to mass spectrometry (MS) techniques, which will be briefly described 
below, along with a selection of other innovative experimental techniques and in silico 
approaches.  

2.1.1 Yeast two-hybrid 

Most binary interactions available thus far have been produced by high throughput Y2-H 
screens that were performed in parallel by many different groups to characterize large 
interaction networks, or “interactomes”, in model organisms and in humans (Parrish et al., 
2006). These screens allowed for the identification of several thousand binary protein 
interactions in Saccharomyces cerevisiae, in Drosophila melanogaster, in Helicobacter pilori, in 
Caenorabditis elegans and in human (reviewed by Ghavidel et al., 2005). Of note, the Center 
for Cancer Systems Biology (CCSB), hosted at Dana-Farber Cancer Institute, is dedicated to 
mapping and systematically characterizing protein-protein interactions using Y2-H, an 
approach referred to as “interactome modeling” (Vidal, 2005). One of the leading projects of 
the CCSB is based on the comprehensive characterization of the human interactome 
network, using ORFs contained in the human ORFeome (http://ccsb.dfci.harvard.edu). Y2-
H principle is simple and thus it is one of the most standardized techniques used to identify 
protein interactions (Figeys, 2008). Bait and prey proteins are co-expressed in yeast, the bait 
being fused to the DNA-binding domain of a transcription factor (usually Gal4 yeast 
transcription activator) and the prey being fused to the transactivation domain of this 
transcription factor. The two modules of the transcription factor can only induce the 
transcription of the reporter gene when brought together by the interaction between the bait 
and the prey. Therefore, the efficient induction of the reporter gene shows an association 
bait/prey, which can be considered as a binary interaction, i.e. a direct interaction between 
the two proteins tested.  

2.1.2 Affinity purification combined to mass spectrometry 

Despite the early prevalence of the Y2-H strategy, the combination of affinity purification 
procedures to mass spectrometry (AP-MS) has now emerged as the method of choice for 
mapping protein interactions. AP-MS provides a highly sensitive technique that enables the 
comprehensive identification of proteins associated with proteins of interest (baits) in multi-
molecular complexes (reviewed by Vasilescu and Figeys, 2006). AP-MS has therefore been 
widely used for the large-scale characterization of protein complexes in different model 
organisms, including yeast and Escherichia coli. In human, large-scale analyses enabled the 
identification of thousands of interactions between more than 2,700 proteins, organized into 
more than 500 distinct complexes (Ewing et al., 2007; Gavin et al., 2006; Krogan et al., 2006).  
AP-MS is based on the affinity purification of protein baits and binding partners using 
antibodies to endogenous or recombinant tagged proteins coupled to affinity matrices, e.g. 
sepharose and magnetic beads. The co-immunoprecipitation (co-IP) step is followed by the 
MS identification of proteins present in the eluate. Unlike Y2-H, protein interactions 
characterized by AP-MS are not necessarily direct interactions, but instead reflect the 
association between baits and identified interaction partners in multi-protein complexes. 
Interestingly, quantitative MS-based proteomics strategies hold great promise in the 
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analysis of protein complex dynamics, as they enable a relative quantification of protein 
interaction intensities and therefore enable comparison between different cellular conditions 
(see section 3: SILAC-based Quantitative Proteomics). Another essential point resides in the 
fact that proteins analyzed by AP-MS techniques are expressed under near-physiological 
conditions, with correct regulation and post-translational modifications (Kocher and 
Superti-Furga, 2007). 

2.1.3 Other biochemical techniques 

Alternative high throughput methods have been developed to analyze protein interactions, 
however these are not as widely used as Y2-H and AP-MS. Among those, the LUMIER 
approach (LUminescence-based Mammalian IntERactome mapping) is based on the IP of 
FLAG-tagged baits that are co-expressed in mammalian cells with putative interaction 
partners fused to the Renilla Luciferase (RL) enzyme. The intensity of the interaction 
between the two proteins of interest can then be determined by measuring luciferase 
enzymatic activity in FLAG immunoprecipitates (Barrios-Rodiles et al., 2005). Applied to the 
analysis of transforming growth factor– (TGF) pathway, this semi-quantitative 
methodology was shown to efficiently detect protein interactions dependent on pathway-
specific, post-translational modifications (PTMs) and, interestingly, interactions involving 
membrane proteins, which are usually under-represented in large-scale studies due to their 
poor recovery in fractionation procedures (Barrios-Rodiles et al., 2005). Both LUMIER and 
AP-MS approaches identify protein interactions within protein complexes, using 
quantitative measurements and therefore allow for comparisons between different cellular 
conditions (for example, in the absence or presence of TGF signaling). However, unlike 
AP-MS, the LUMIER technique requires the overexpression and tagging of both baits and 
preys, limiting the reliability and the coverage of the results obtained.  
Protein-fragment Complementation Assay (PCA) enables the detection of binary protein-
protein interactions (PPIs) in vivo, in their natural environment. Using the PCA approach 
described by Tarassov et al (Tarassov et al., 2008), baits and preys are fused to F[1,2] and 
F[3] complementary N- and C-terminal fragments of a mutant of the mDHFR reporter 
protein that is insensitive to the DHFR inhibitor methotrexate but retains full catalytic 
activity. The F[1,2] and F[3] fragment fusions are expressed in Saccharomyces cerevisiae MATa 
and MAT strains, respectively, which are then mated and selected for methotrexate 
resistance. If the proteins of interest physically interact, the DHFR fragments are brought 
together and fold into their native structure, thus reconstituting the reporter activity and 
permitting the survival of the diploid colonies. Binary protein interactions can therefore be 
directly deduced from the measurement of colony growth. This methodology is an 
interesting alternative to the Y2-H assay as it enables the identification of direct binary 
interactions (less than 82 Å between the two proteins of interest) in vivo and, unlike Y2-H, is 
based on proteins in their native subcellular location and post-translationally modified state 
(Tarassov et al., 2008).  

2.1.4 In silico approaches 

Techniques described above are all based on large-scale experimental methodologies that 
search for physical interactions in vivo and/or in vitro. In contrast, in silico approaches, 
which represent an alternative way to obtain protein interaction information, rely upon the 
curation of all publications in literature that describe either low or high throughput protein 
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interaction studies (where an experiment reporting less than 40 interactions is considered as 
low throughput). Literature-curated protein interactions are reported in web based 
interaction databases, most of which are now freely available online. Of note, low-
throughput analyses account for a third of the total number of interactions in Biomolecular 
Interaction Network Database (BIND), i.e. 67,789 low-throughput interactions from a total of 
206,859 (Isserlin et al., 2011). Other curated protein interaction resources include the Munich 
Information center for Protein Sequence (MIPS) protein interaction database, the Molecular 
INTeraction database (MINT), the Database of Interacting Proteins (DIP), the protein 
InterAction database (IntAct), the Biological General Repository for Interaction Datasets 
(BioGRID) and the Human Protein Reference Database (HPRD), which currently report 
more than 200,000 protein interactions resulting from large-scale curation of several 
thousand publications.  
In silico approaches are precious in compiling, and regularly updating, all protein interaction 
evidences reported in the literature, and in making them publicly available for the scientific 
community, however they are not as reliable as generally presumed (Cusick et al., 2009). 
They indeed rely upon individual studies that are of highly variable quality and often do 
not provide curators, and readers in general, with essential pieces of information, such as 
correct gene names, species and precise experimental parameters, making it difficult to 
decide on interpretations in a reliable manner. In addition, most protein interactions 
contained in databases (>75%) are only supported by one publication, with only 5% of the 
total number of interactions being described in three or more publications (Cusick et al., 
2009).  
However, the main issue raised by these in silico approaches resides in the fact that they rely 
upon small-scale focused studies, which are, by definition, biased towards hypothesis-
driven investigations and tend to search for proteins that are already known and have 
therefore a higher probability of being investigated again. In contrast, high throughput 
strategies rely upon unbiased discovery-driven explorations, which are absolutely necessary 
to unveil new unpredictable protein interactions and investigate novel functions (Cusick et 
al., 2009). Therefore, high throughput methods appear as essential tools to uncover the vast 
number of protein interactions that remain to be identified for assembling a comprehensive 
map of the human protein interactome network.  

2.2 Comparison of technique limitations 

Not a single high throughput method is perfect and, on its own, none will enable the 
comprehensive characterization of the human protein interactome and its dynamic 
properties. Drawbacks are inherent to the technique used and are therefore inevitable. For 
example, in Y2-H, protein interactions are investigated in the yeast system, which does not 
reflect the native environment of human proteins and is characterized by improper PTMs, 
processing and regulation of proteins in general. In addition, baits and preys are 
overexpressed and constrained to the nucleus, which might force interactions that would 
not occur in natural conditions. These limitations have to be taken into account to interpret 
results obtained through large-scale Y2-H screens, which might not be ideal to analyze 
protein interaction dynamics but offer the advantage of identifying binary interactions 
between protein pairs tested. 
In contrast, the AP-MS technique enables the comprehensive identification of all 
individual protein interaction partners (direct or indirect) for any given bait, thereby 
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leading to the characterization of multi-protein complexes. Interestingly, the combination 
of AP-MS with quantitative proteomics strategies can efficiently, and quantitatively, 
reveal changes occurring in protein complexes between different conditions. Limitations 
of AP-MS techniques reside in the fact that protein complexes have to be “artificially” 
extracted from their natural environment, e.g. by cell lysis or possibly by cellular 
fractionation, and immunopurified before MS analysis, leading to putative perturbations 
of the complex and disruption of weak interactions. To avoid this problem, proteins can 
be cross-linked before extraction. Alternatively, protein purification may be performed in 
very poor stringency conditions, to preserve weak interactions, which are often of great 
biological importance as they can, for example, reveal regulatory mechanisms (discussed 
in more details below).  
From this list of limitations, it is claimed that one assay may be more efficient to capture one 
type of protein interaction and vice versa. This might explain, at least partially, the small 
overlap between protein interactions identified by these techniques, due to how 
fundamentally different they are (Cusick et al., 2005; Figeys, 2008). This does not necessarily 
reflect the poor reliability of the reported data, but instead, the poor sensitivity of these 
approaches, which cannot individually cover the whole interactome network due to the 
technique limitations described above and a still weak sensitivity of detection (Lemmens et 
al., 2010). Therefore, it may be very powerful to combine these complementary strategies to 
study protein interactions, each of them providing a partial view of the whole system, with 
AP-MS identifying protein complexes in their natural environment and Y2-H indicating 
binary interactions within these protein complexes (Boulon et al., 2010b). 

2.3 Reducing the numbers of false positives and false negatives: A major challenge 

Before interpreting any high throughput protein interaction data, it is however necessary 
to discriminate between genuine interactions and non-specific ones, i.e. false positive 
interactions that are inevitably recovered in all large-scale studies. This represents one of 
the major challenges in the field, given that non-specific contaminants often represent 
more than 50% of the identified protein interaction partners. In contrast, false negatives 
often are transient interactions and/or interactions that only occur in specific conditions 
and cannot be detected by the experimental setup. These false negatives constitute 
another important issue in these assays, as low affinity and/or low abundance specific 
interaction partners are generally of great biological importance to understand protein 
function, regulation and dynamics. To overcome these issues, it is essential to strive for 
the highest signal to noise ratio, which encompasses both sensitivity and reliability. High 
sensitivity, which reduces the number of false negatives, will be achieved through the 
increase of detection tool performance and the optimization of experimental procedures. 
High reliability, which reduces the number of false positives or experimental 
contaminants, also depends on optimal experimental set up but above all, it relies on 
adequate data analysis.  
To date, most data obtained by large-scale studies undergo computational assessments that 
provide confidence scores or biological significance for each protein interaction identified, 
based on comparison with other approaches. For example, protein interactions are 
considered as more reliable if they are supported by data showing either phylogenetic 
conservations, genetic interactions, subcellular co-localization, similar functional 
interactions in Gene Ontology (GO) or correlated expression profiles between interacting 
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proteins (Ge et al., 2001; Tong et al., 2004). Indeed, a correlation has been shown between 
protein interactions and protein localization and expression, with 27% of interacting proteins 
sharing the same subcellular localization (Ge et al., 2001; Reguly et al., 2006; Tong et al., 2004). 
In addition, confidence scores also reflect the integration of different properties of the 
interaction network generated by the analysis, e.g. interaction bi-directionality and network 
topology (Cloutier et al., 2009; Ewing et al., 2007). However, the calculation of these confidence 
scores raises two problems. First, these confidence scores are based on the comparison, and the 
correlation, between new protein interactions and previous observations, thus leading to a bias 
towards already known data versus unpredictable interactions. Second, confidence scores that 
rely upon properties of the network can only be calculated when there are a sufficient number 
of experiments performed, i.e. this analysis pathway is limited to large-scale studies and 
cannot be applied as efficiently to small-scale studies.  

2.4 Analyzing the dynamics of protein complexes 

Characterizing protein interactions alone, without mentioning in which specific cellular 
context the interaction has been found, might be misleading. Indeed, as discussed 
previously, all protein interactions are dynamic and may be subjected to variations in 
response to changes in cellular environment, either physiological or pathological. This 
means that all protein interaction networks are prone to an extreme plasticity, which needs 
to be taken into account if one wants to draw a faithful map of the human interaction 
network, or rather faithful maps of the human interaction networks. Does that mean that the 
scientific community needs to assemble as many protein interaction networks maps as 
possible conditions? This might seem unrealistic, and it certainly is. But one should 
definitely aim to notify precise conditions in which each protein interaction was found. This 
is absolutely essential, when assembling the different pieces of the protein interaction 
network jigsaw puzzle, to avoid bringing together things that just do not match, e.g. mixing 
together in a network protein interactions that specifically occur in proliferating cells with 
interactions that specifically occur in differentiated tissues. In the end, many proteins 
potentially interact with each other, but the interesting question is “when?”. Most 
researchers are interested in these problems and have already sought for variations in 
interaction patterns in different cellular contexts, such as cancer and neurodegenerative 
diseases (Lim et al., 2006).  
Interestingly, the combination of affinity purification with quantitative proteomics 
overcomes most limitations in the sense that it provides high sensitivity, with the 
development of highly performing MS equipment, and high reliability. Quantitative 
proteomics indeed enables (i) the identification of protein interactions in their natural 
environment, with native PTMs and subcellular localization, (ii) the efficient discrimination 
between specific interaction partners and the non-specific background of contaminants, i.e. 
proteins that bind non-specifically to the affinity matrices and (iii) the comparison of protein 
interaction intensities between different conditions.  

3. SILAC-based quantitative proteomics: A method of choice to reliably analyze 
specific protein interactions and protein complex dynamics 

MS-based proteomics is not inherently quantitative. Quantitative proteomics strategies 
that have been developed recently mostly involve isotope labeling via either metabolic 
incorporation in vivo/in cellulo (¹΁N/¹΀N metabolic labeling, Stable Isotope Labeling by 
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Amino acids in Cell culture (SILAC)) (Ong et al., 2002), chemical modification in vitro 
(ICAT, iTRAQ) (Gygi et al., 1999; Ranish et al., 2003) or enzymatically catalyzed 
incorporation (¹⁸O labeling) (Yao et al., 2001). Alternatively, label-free strategies for 
protein quantification are based either on the comparison of precursor signal intensity for 
each peptide across multiple LC-MS data, or on spectral counting (Collier et al., 2010; 
Wepf et al., 2009). These different methods for quantitative proteomics will not be 
detailed in this chapter, as they are described in this book by Sap and Demmers 
(Quantitation in mass spectrometry based proteomics) and Leroy, Matallana and Wattiez 
(Gel free proteome analysis – isotopic labeling vs. label free approaches for quantitative 
proteomics). It is noteworthy however that isotope labeling appears to be more sensitive 
than label free to detect small variations, which means that until label free techniques are 
more robust and statistically reliable, isotope labeling strategies might be more powerful 
to analyze subtle changes occurring in protein interaction intensities between different 
conditions.  

3.1 Triple labeling SILAC pull-down workflow 

Among isotope labeling strategies, SILAC has emerged as a simple and powerful approach, 
now widely used to study protein-protein interactions in various organisms and cell types 
(Boulon et al., 2010a; Mann, 2006; Trinkle-Mulcahy et al., 2008). SILAC methodology relies 
upon the metabolic labeling of proteins in cell culture, through the incorporation of light, 
medium and heavy isotope containing amino-acids (arginine and lysine) that can be 
resolved and quantitated by MS. Light amino-acids refer to naturally occurring 
environmental isotopes of carbon, nitrogen and hydrogen, i.e. “unlabeled” 12C, 14N and 1H, 
whereas medium- and heavy-labeled arginine (R) and lysine (K) refer to (i) medium (R6K4): 
[13C6]arginine (R6) and 4,4,5,5-D4-lysine (K4) and (ii) heavy (R10K8): [13C6, 15N4]arginine 
(R10) and [13C6, 15N2]lysine (K8) (Ong et al., 2002). Cells are cultured in SILAC media 
containing light, medium or heavy amino-acids for at least 5-6 doublings to ensure complete 
incorporation of isotopic amino-acids.  
Various studies have used the SILAC methodology to characterize dynamic changes in 
protein interactions (reviewed by Dengjel et al., 2010; Gingras et al., 2007; Vermeulen et al., 
2008). For example, Blagoev et al identified novel proteins binding to the SH2 domain of the 
adapter protein Grb2 upon EGF stimulation, by using GST-SH2 fusion protein and GST-
based affinity purification (Blagoev et al., 2003). Only two SILAC conditions were used 
(light and heavy), which allowed for the comparison of SH2 interacting proteins in 
untreated versus EGF-stimulated cells, with no control IP. Similarly, Foster et al exploited 
the SILAC method, to identify proteins that interact with GLUT4 in an insulin-dependent 
manner (Foster et al., 2006). Recently, Kaake et al reported an interesting study based on 
three SILAC IP experiments performed in parallel in yeast. Their approach was called 
QTAX (Quantitative analysis of TAP in vivo Xlinked protein complexes). TAP-tagged Rpn11 
was used as bait, to characterize proteasome interaction partners in three different cell cycle 
phases (G1, S and M) (Kaake et al., 2010). For each cell cycle phase, a double labeling SILAC 
strategy was performed, which included an internal negative control and Rpn11 specific 
pull-down, therefore allowing for the discrimination between putative contaminants and 
specific interaction partners. However, the comparison of interaction partners between the 
three cell cycle phases relied upon independent experiments and, therefore, separate MS 
runs. As a result, subtle variations in protein interaction intensities may not be observed in 
this study.  
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The SILAC workflow that is described in this chapter merges advantages from these 
different strategies. It is based on a triple labeling SILAC pull-down approach, which 
compares, within a single MS run, an internal negative control, for the identification of 
putative non-specific contaminants, and two IPs of interest performed in two different 
conditions, for the direct comparison of protein interaction intensities between the two 
conditions tested (Figures 1A and 1B). This protocol has proven to be efficient in the 
characterization of both specific and dynamic interactions and is easily accessible to all 
laboratories. In brief as summarized in Figure 1A, in the case of a GFP-IP, parental cells 
are grown in light (R0K0) medium, whereas GFP-protein expressing cells are grown in 
medium (R6K4) and heavy (R10K8) media. The light condition is used for the control IP, 
the medium condition for the IP of interest in control conditions (untreated cells) and the 
heavy condition for the IP of interest in treated cells (chemical inhibitors, stress, etc). 
Medium and heavy conditions can also be used to compare changes in protein complexes 
between cell cycle phases, cell types, etc. After cell lysis, extracts from each cell line are 
precleared before GFP-protein is affinity-purified using GFP_TRAP ® affinity matrix 
(Chromotek) (Rothbauer et al., 2008). Eluates from each condition are then combined and 
digested using trypsin. Resulting peptides are analyzed by LC-MS/MS and can be 
quantified by the MaxQuant software, which has been developed by the Mann group 
(Cox and Mann, 2008; Cox et al., 2009). As seen in Figure 1C, each peptide identified in 
the triple labeling SILAC IP experiment shows a typical MS spectrum with three main 
peaks that correspond to its light (L), medium (M) and heavy (H) isotopic forms, 
respectively. The relative abundance of each distinct peak area is determined by 
MaxQuant, which provides M/L, H/L and H/M ratios for each peptide. Protein ratios 
can then be extrapolated from the median ratio value of all peptides identified for that 
specific protein.  

3.2 Triple labeling SILAC pull-down data analysis 

In triple labeling SILAC IP experiments, baits and genuine interaction partners are 
expected to show high M/L and/or H/L ratios, as opposed to experimental 
contaminants, e.g. proteins that bind non-specifically to the affinity matrix, which are 
expected to have M/L and H/L ratios close to 1. Proteins that show M/L and H/L ratios 
close to zero are likely to be environmental contaminants, such as keratins (Figures 1B and 
1C). In contrast, H/M SILAC ratios indicate changes in protein interaction intensities. For 
example, proteins showing a SILAC H/M ratio<1 are expected to have a decreased 
interaction with the bait in treated  cells  versus  untreated  cells  whereas proteins  
showing a  SILAC H/M  ratio>1  are expected to have an increased interaction with the 
bait upon treatment. Of note, it can be very powerful to perform several SILAC IP 
experiments in parallel to study the dynamics of protein complexes in more than two 
conditions. In this case, the first experiment can be carried out as described above whereas 
the other ones can exclude the negative control and directly compare protein interactions 
in three different conditions (Boulon et al., 2010b). Putative contaminants are thus 
deduced from the first experiment and many different conditions can be compared in a 
reliable manner. 
Figure 2 shows a method of visualizing triple SILAC IP data, by plotting log2(H/M) (y axis) 
versus log2(M/L) (x axis) SILAC ratio values for all proteins identified in the experiment. 
Interestingly, on this type of graph, most proteins usually cluster around the origin, with 
M/L and H/M ratios close to 1, and therefore log2 ratios close to 0 (Figure 2). These proteins  
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(A) Overview showing the workflow of a representative triple SILAC IP analyzing the changes in 
specific interaction partners of GFP-tagged bait stably expressed in U2OS cells in response to a drug 
treatment. References to R0K0, R6K4 and R10K8 culture conditions can be found in the body text. (B) 
Diagram illustrating the SILAC principle of differential labeling. The bait and its specific interaction 
partners should only be retrieved in medium and heavy conditions, thereby showing high M/L and/or 
H/L SILAC ratios, whereas non-specific contaminants are present in all three conditions, thereby 
showing M/L and H/M close to 1. (C) Typical MS spectra obtained for representative peptides of a 
specific interaction partner (top), an experimental contaminant binding non-specifically to the affinity 
matrix (middle) and an external environmental contaminant (bottom). IP: immunoprecipitation; L: light; 
M: medium; H: heavy; GFP-Trap_A®: GFP binding protein coupled to a monovalent matrix 
(Chromotek).  

Fig. 1. Overview of triple labeling SILAC analysis of protein interaction partners.  

are likely to be contaminants, as described above, which often represent more than 50% of 
all proteins identified in AP-MS experiments. In contrast, putative genuine interaction 
partners of the bait typically localize to the right side of the graph, with M/L SILAC ratios 
over a certain threshold, which may vary between experiments. Of note, not a single  
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All protein groups identified and quantified by MaxQuant are represented on the graph. The experimental 
design is similar to Figure 1, with endogenous Rpb1 being used as bait. Cellular extracts from the light 
condition are incubated with a control antibody (control IP) while cellular extracts from the medium and 
heavy conditions are incubated with an antibody against endogenous Rpb1. Cells cultured in the heavy 
condition are treated with -amanitin and Leptomycin B (LMB) for 15 hours. On the x-axis, log2(M/L) ratio 
correlates with the enrichment of Rpb1 IP versus control IP. Proteins with high log2(M/L) ratios are 
expected to be specific interaction partners. However, not a single threshold can unambiguously separate 
contaminants from genuine interaction partners. On the y-axis, log2(H/M) correlates with the enrichment 
in -amanitin+LMB treated cells versus untreated cells. Putative experimental contaminants cluster 
around the origin. The bait, Rpb1, is spotted in red. The dotted red line shows an alternative x-axis defined 
by the bait, which separates the proteins whose interaction with the bait is increased after the treatment 
(above) or decreased (below). Proteins within red oval are proteins whose interaction with the bait is 
decreased by two-fold or more. Proteins that show a log2(M/L) ratio>2 are spotted in orange, RNA 
polymerase II subunits in purple and R2TP/prefoldin-like complex in green.  

Fig. 2. Visualization of the triple SILAC Rpb1 dataset plotted as log2(M/L) versus log2(H/M) 
SILAC ratios.  

threshold can unambiguously separate contaminants from genuine interaction partners 
(discussed below).  
To analyze protein interaction dynamics, one should focus on those putative specific 
interaction partners. To start with, the bait itself should display high M/L and H/L SILAC 
ratios. This indicates that it was efficiently immuno-purified. Otherwise, the IP protocol 
might need to be optimized. If the efficiency of the IP is the same between the two 
conditions tested, the log2(H/M) ratio of the bait protein should be 0. In practice, this is 
often not the case, due to changes in expression levels and/or accessibility of the bait 
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induced by the treatment. A way to get around this problem is to draw a second x-axis 
using the bait protein as a reference. Proteins that locate below this new x-axis reveal a 
decreased interaction with the bait in treated cells whereas proteins that locate above reveal 
an increased interaction (Figure 2). This extremely easy to apply visualization method 
provides in a glimpse an objective conclusion regarding the dynamics of protein complexes. 

3.3 Application to the analysis of RNA polymerase II complex dynamics 

This triple SILAC IP method has been efficiently applied to the analysis of RNA polymerase 
II complex dynamics (Boulon et al., 2010b). The RNA polymerase II (RNAPII) complex is an 
essential multi-protein complex that is involved in the transcription of all mRNAs and 
capped non-coding RNAs. The structure and subunit composition of this enzyme have been 
characterized in detail. RNAPII complex is formed by 12 subunits, Rpb1 to Rpb12. Rpb1 and 
Rpb2, the two largest subunits, form the catalytic core of the enzyme. However, relatively 
little is known about assembly mechanisms. Recently, a set of RNAPII interacting partners 
with unknown function was identified by AP-MS (Cloutier et al., 2009; Jeronimo et al., 2007). 
In collaboration with the Bertrand group, we explored the dynamics of RNAPII complex 
using the triple SILAC IP strategy described above to capture the function of these different 
factors. Interestingly, we could show that some of these interaction partners, which are part 
of the R2TP-prefoldin-like complex, in fact participate to the assembly of the RNAPII 
holoenzyme in the cytoplasm (Boulon et al., 2010b).  
In this work, we took advantage of -amanitin transcription inhibitor, which is known to 
induce the degradation of Rpb1, RNAPII largest subunit, and the disassembly of the 
remaining subunits, which are exported to the cytoplasm (Boulon et al., 2010b; Nguyen et 
al., 1996). In addition, -amanitin combined to leptomycin B (LMB) treatment leads to the 
accumulation of newly synthesized Rpb1 in the cytoplasm, which cannot be imported into 
the nucleus (Boulon et al., 2010b). Four triple SILAC IP experiments were thus performed in 
parallel, using endogenous Rpb1, GFP-Rpb3 and GFP-hSpagh as baits. In this chapter, 
endogenous Rpb1 IPs are described as examples. In brief, in the first experiment, the light 
condition was used for control IP, whereas medium and heavy conditions were used for 
endogenous Rpb1 IP in untreated cells (“assembled” Rpb1) versus -amanitin+LMB treated 
cells (“unassembled” Rpb1). Eluted Rpb1 and associated partners were digested using 
trypsin, analyzed by LC-MS/MS and relative SILAC ratios were calculated by MaxQuant. 
Figure 2 shows Rpb1 IP dataset plotted as log2(H/M) against log2(M/L) ratios. The 
identification of specific interaction partners of Rpb1 (log2(M/L) >2) revealed the presence 
of all RNAPII subunits and a set of additional factors, some of which belong to the 
R2TP/prefoldin-like complex that was previously described by other AP-MS approaches 
(Cloutier et al., 2009; Jeronimo et al., 2007). RNAPII subunits are marked in purple, whereas 
R2TP/prefoldin-like complex factors are marked in green. Interestingly, using H/M ratios, 
we could observe drastic changes in Rpb1 interaction partners between the two conditions 
tested. We showed (i) that the association between Rpb1 and the other RNAPII subunits is 
lost upon -amanitin+LMB treatment (interactions were arbitrarily considered as 
significantly decreased when a two-fold or greater change was observed upon treatment, as 
compared to the bait H/M reference ratio) and (ii) that the interaction of Rpb1 with the 
R2TP/prefoldin-like complex is not affected by the treatment. This indicated both that the 
holoenzyme is disassembled upon treatment and that R2TP/prefoldin-like factors bind to 
“unassembled” Rpb1, suggesting that these factors of unknown function might therefore be 
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involved in the stabilization and the assembly of RNAPII subunits, which was later 
confirmed by other approaches (Boulon et al., 2010b). 
A second triple SILAC IP experiment was performed in parallel, using again endogenous 
Rpb1 as bait, to directly compare three different conditions, i.e. untreated cells versus cells 
treated with either -amanitin+LMB or actinomycin D. Actinomycin D is another 
transcription inhibitor, which induces stalling of the whole RNAPII complex onto DNA 
within the nucleus. Therefore, actinomycin D is not expected to induce the disassembly of 
the complex. By comparing untreated versus actinomycin D-treated cells, we could indeed 
observe that actinomycin D has no effect on Rpb1 association to the other RNA polymerase 
II subunits. In addition, when directly comparing -amanitin+LMB versus actinomycin D 
treatments, it was clear that the association between Rpb1 and the R2TP/prefoldin-like 
complex is much stronger in cells treated with -amanitin+LMB. This confirmed that 
unassembled Rpb1 is specifically associated with the R2TP/prefoldin-like complex and that 
it is not an indirect consequence of transcription inhibition.  
This example shows that the triple SILAC IP strategy can be efficiently applied to the high 
confidence identification of specific interactions and analysis of protein complex dynamics 
between several conditions (three different conditions were compared in this study). Here, 
data mining is enhanced by the integration of several major criteria, including reliable 
quantitative SILAC ratios. In addition, the quality of MS data highly depends on the number 
of peptides identified and quantified for each protein and the total sequence coverage. These 
parameters should therefore also be taken into account to evaluate the reliability of MS 
results. Interestingly, this SILAC IP strategy can be combined with complementary 
approaches, including Y2-H, to characterize binary interactions within protein complexes, 
and fluorescence microscopy, to uncover subcellular localization of protein interactions 
(Boulon et al., 2010b).  

4. Optimization of experimental procedures 

As discussed previously, one major challenge of AP-MS experiments is the reliable 
discrimination between genuine protein interaction partners and non-specific contaminants. 
This will be facilitated both (i) by the optimization of the experimental procedure, to 
increase the IP efficiency (high specific signal) and to reduce the background of 
contaminants (low non-specific noise), therefore tending to a high signal/noise ratio 
(Boulon et al., 2010a; Trinkle-Mulcahy et al., 2008) and (ii) by an efficient data analysis 
pathway that allows the reliable “identification” of the putative contaminants. I will first 
discuss the different important points that need to be taken into account to optimize a triple 
SILAC IP workflow. 
The triple SILAC IP protocol described in Figure 1 is shown for the IP of GFP-tagged baits 
and the identification of their specific interaction partners in two different conditions, i.e. 
untreated versus treated cells. However, the triple SILAC co-IP procedure is far from being 
restricted to the chosen example and can be applied to many different types of 
investigations, but one has to keep in mind that both the reliability and the sensitivity of the 
resulting datasets will be extremely dependent on the experimental parameters chosen. It is 
therefore necessary to think about possible pitfalls and design an “optimal” protocol that 
will be correlated both to the question asked and to the tools available (ten Have et al., 2011). 
Important features include the choice of the tag/antibody, the conjugation of antibodies to 
affinity matrices and the IP protocol. 
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4.1 Choice of the tag/antibody 

Both tag-based and endogenous pull-down experiments have advantages and drawbacks. 
Whenever possible, the use of antibodies targeted against the endogenous baits should be 
favored. Indeed, endogenous proteins avoid several problems usually associated with the 
use of tags, i.e. endogenous proteins are naturally expressed in their native cellular 
environment, with correct expression regulation, PTMs and above all proper interaction 
partners. However, this strategy relies on the availability of a specific and high affinity 
antibody that isolates the endogenous bait protein efficiently, which is often not available. In 
any case, antibody affinity and specificity should always be checked carefully. Noteworthy, 
a Swedish project (The Swedish Human Protein Atlas project), funded by the Knut and 
Alice Wallenberg Foundation, has been initiated to generate, in a high-throughput manner, 
high quality affinity-purified human antibodies to allow for a systematic exploration of the 
human proteome using Antibody-Based Proteomics (Uhlen et al., 2010). In May 2011, 11,300 
Prestige Antibodies covering more than 50% of the human proteome had been developed 
(http://www.proteinatlas.org). But not all of them have been tested for IP efficiency, and 
there might still be a long way before all human proteins can be immunoprecipitated using 
this antibody library.  
In contrast, tagged baits provide a scalable and general method to identify specific protein 
interaction partners. Different types of tags are commonly used in affinity-purification 
experiments, such as fluorescent tags (e.g. GFP), His-tag and Flag tag. In addition, a TAP-tag 
(Tandem Affinity Purification) methodology can be used, rather than a one step procedure 
(Rigaut et al., 1999). Although this two-step method reduces the amount of contaminants 
recovered in the IP eluate, it also decreases the general yield of proteins recovered and risks 
losing biologically relevant low affinity and/or low abundance interaction partners. 
Alternatively, the GFP tag has proven to be an effective tag for affinity purification 
procedures, due (i) to its low background of non-specific interactions and (ii) to the efficient 
recovery possible using recently developed GFP_TRAP ® (Chromotek) affinity matrices 
(Rothbauer et al., 2008; Trinkle-Mulcahy et al., 2008). In addition, the GFP tag can be used in 
a dual strategy combining both fluorescence microscopy and affinity-purification (Trinkle-
Mulcahy et al., 2008). All tags, however, can potentially affect protein structure, localization 
and turnover, resulting in alteration of both protein function and association with specific 
partners. This problem may be countered by trying different locations for the tag, for 
example C and N terminal positions. The fact that recombinant proteins are usually 
overexpressed in mammalian cells represents another important perturbation of the system. 
Interestingly, the BAC TransgeneOmics strategy, developed by the Hyman lab, allows for 
the expression of GFP-tagged proteins under endogenous promoters and can be used in 
high throughput approaches for the identification of specific interaction partners, such as 
QUBIC (QUantitative BAC-green fluorescent protein InteraCtomics) (Hubner et al., 2010; 
Poser et al., 2008). In all cases, the generation of stable cell lines expressing recombinant 
proteins, rather than transient transfections, avoids problems linked to the heterogeneity of 
gene integration and expression levels between cells. 

4.2 Conjugation of antibodies to affinity matrices 

Antibodies are conjugated, covalently or not, to bead matrices (e.g. sepharose, agarose and 
magnetic beads). When combined with MS, it is highly recommended to covalently 
conjugate the antibody to the beads, otherwise a large amount of antibody can be eluted 
from the beads along with the specific protein complexes and compete with other proteins 
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for further MS identification. The type of beads used for each pull-down experiment is an 
issue that is worth considering as well, as the efficiency and cleanliness of different types of 
beads may vary according to the cell type and the type of extract used. In our experience, 
Dynabeads (Invitrogen) work well for nuclear extracts, whereas Sepharose and Agarose 
beads (GE-Healthcare) can give lower backgrounds when used with cytoplasmic extracts 
and whole cell extracts (Trinkle-Mulcahy et al., 2008).  

4.3 Cell extraction and immunoprecipitation protocol 

Cell lysis and protein extraction may be a challenging part of the procedure, according to 
the protein complexes of interest. In particular, membrane proteins and proteins attached to 
macromolecular entities, including chromatin and subnuclear compartments, represent a 
real challenge to release and are therefore often under-represented in protein interaction 
studies using “normal” extraction procedures. Specific purification protocols may thus be 
envisaged, such as the modified chromatin immunopurification (mChIP) method (Lambert 
et al., 2009). 
To reduce the amount of non-specific binding in a co-IP experiment, several options may be 
considered, including a pre-clearing step (pre-incubation of cellular extracts with bead 
matrices alone), incubation times kept to their minimum (1h max) and high stringency 
buffers (for example adequate buffers according to detergent and salt concentrations). 
Similarly to the TAP-tag strategy, increasing the buffer stringency may reduce the number 
of false positives identified but also increase the number of false negatives, by losing 
precious transient protein interaction partners, which are certainly the most difficult, but 
also the most interesting, proteins to identify.  
Therefore, to preserve all genuine protein interaction partners, both stable and transient, 
medium or low stringency buffers may be favored. As a result, however, many 
contaminants remain in the analysis, which need to be reliably identified and distinguished 
from the specific interaction partners. 

5. An additional criterion to identify putative contaminants: The Protein Frequency 
Library 

Even though SILAC IP strategies may have proven themselves successful in the 
identification of stable interaction partners, relying upon isotope labeling ratios alone does 
not entirely solve the contaminant problem. Indeed, not a single ratio threshold can 
unambiguously isolate non-specific binders from genuine interaction partners (Figure 2). 
There is usually no doubt concerning interaction partners identified with high SILAC ratios, 
which often are genuine stable interaction partners, but in all SILAC IP experiments there 
are also low abundance and/or low affinity genuine interaction partners (transient 
interactions) that show low SILAC ratios (between 1 and 1.5 – 2) and are therefore 
embedded in the background of contaminants. Defaulting to using a high threshold filter 
eliminates both contaminants and transient interaction partners whereas an overly cautious 
low threshold will result in keeping both. Hence, it is not possible to rely on SILAC ratios 
alone to consistently and unambiguously separate contaminants and specific interaction 
partners. 
To address this issue, a new methodology was developed, called the Protein Frequency 
Library (PFL), which provides an additional objective criterion to the data analysis (Boulon 
et al., 2010a). The principle of the PFL is based on the knowledge that proteins frequently 
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found in pull-down experiments are likely to be contaminants binding non-specifically to 
the affinity matrix. Therefore, the PFL has been generated to annotate all proteins identified 
at least once in a set of independent MS co-IP experiments with their frequency of detection 
in these experiments. Hence, the PFL provides a probability estimate for each protein of its 
likelihood of being a contaminant, which is independent of the information given by the 
SILAC ratio and therefore can be applied to analyze both SILAC and label-free data. To 
generate the PFL, a data environment called PepTracker was created by Yasmeen Ahmad 
(www.peptracker.com). This data environment stores and manages all MS-based 
proteomics data generated in the Lamond laboratory and quantitated by MaxQuant, 
currently including more than one hundred SILAC and label-free pull-down experiments. 
Interestingly, consistent and reliable metadata descriptors are recorded along with datasets. 
Recorded experimental parameters include organism, cell type, extract type, affinity matrix, 
protein bait, tag, mass spectrometer, date, user, etc. Due to the high complexity of the 
analysis and large volumes of data involved, the database was built using a 
multidimensional data model, which relies upon computational methods drawn from the 
business intelligence (BI) field designed for rapid interactive responses (Kohn et al., 2005). 
In practice, the PFL can be represented as a graph (Figure 3), plotting the frequency of 
detection (y axis) for each protein identified in any of the pull-down experiments recorded  
 

 
(A) Query interface for the Protein Frequency Library, found at 
http://www.peptracker.com/datavisual/. The PFL can be filtered on any individual IP experimental 
parameters recorded in PepTracker, e.g. cell type, cell extract, cell cycle stage, organism, bead type etc. 
to generate a customized PFL (top). The protein search allows users to specify a gene symbol, protein 
description or protein ID to be identified in the PFL. (B) Result of “keratin” search in the unfiltered PFL, 
which currently contains 185 IP experiments. The graph illustrates the frequency of detection (y axis) of 
all proteins present in the PFL (currently more than 30,000 protein identifiers) (x axis). PFL proteins are 
ranked from highest to lowest detection frequency (left to right). Most keratins (red bars) show high 
frequencies of detection and can therefore be considered as putative IP non-specific contaminants.  

Fig. 3. Web-based search for putative contaminants in IP experiments using the Protein 
Frequency Library (PFL).  
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in the data repository (x axis). When proteins are sorted from the highest to the lowest 
percentage (Figure 3B), the proteins appearing nearest the origin of the graph have the 
highest probability of being contaminants. The PFL can be applied to analyze data from any 
MS pull-down experiment, as an additional criterion to evaluate the probability of each 
protein identified to be a false positive, binding non-specifically to the affinity matrix. When 
applied to SILAC data, it is possible to superimpose the results given by the PFL and the 2D 
graph, plotting M/L on the x axis and H/M on the y axis, by highlighting on the graph 
proteins that have a frequency of detection above a threshold value that has to be chosen. 
The choice of an optimal threshold has to be determined depending on the number of 
experiments used to generate the PFL and will certainly become lower and lower as new 
data are added to the repository (Boulon et al., 2010a).  
The use of a multidimensional structure, which includes all datasets and associated 
metadata, allows for possible filtering of the PFL to obtain protein frequencies of detection 
relevant to each specific set of experimental parameters. Considering all experiments 
recorded in the database, only those that were performed with the chosen set of 
experimental parameters are used to generate the PFL, which leads to the generation of a 
“customized” PFL (Figure 3A). This is of great importance, given that the nature of IP 
contaminants is highly correlated to the experimental parameters used. For example, 
contaminants are greatly different according to the bead type chosen, e.g. magnetic or 
sepharose beads. We have indeed shown that cytoskeleton proteins “stick” to dynamic 
beads whereas positively charged nuclear proteins are more prone to bind non-specifically 
to sepharose beads (Trinkle-Mulcahy et al., 2008). Therefore, the PFL can be considered as a 
dynamic list of “contaminants”, which can be filtered for each specific set of experimental 
parameters. This avoids the need to have a large set of control experiments that exhaustively 
cover every possible combination of experimental parameters analyzed. The PFL is thus 
equally applicable to low and high throughput IP experiments.  
The use of the PFL is not restricted to the Lamond laboratory. The PFL is now freely 
accessible online (http://www.peptracker.com/datavisual/) after registration. Figure 3A 
shows an interface of the PFL that can be used to specify experimental parameters on 
which the library can be filtered, e.g. organism, cell extract, bead type, etc. All users can 
therefore select their own experimental parameters and obtain a list of putative 
contaminants in this specific set of conditions. However, a minimum of 15 independent IP 
experiments in the experimental count (number of experiments that are taken into account 
to generate the new customized PFL) might be necessary to provide reliable results. Of 
note, the PFL is a dynamic tool that is updatable, i.e. the PFL is automatically updated as 
data from new experiments are added to the data repository, thereby increasing in 
accuracy. The current PFL is necessarily limited to the experiments performed in the 
Lamond laboratory. However, it is foreseen that in the future external users will have the 
ability to upload their own data, and therefore increase the spectrum of experimental 
parameters available, thereby having a broader impact on the scientific community. From 
my experience, the PFL is especially helpful in identifying “outsiders”, i.e. genuine 
interaction partners that are of low abundance and/or low affinity, which are otherwise 
lost among the large, nonspecific background of contaminants and therefore often 
overlooked in AP-MS studies.  
Interestingly, this tool is an example of meta-analysis. Indeed, the PFL is generated through 
the integration of data from many independent MS IP experiments, performed by 
independent researchers using various experimental parameters. This process therefore 
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allows for better data mining. One essential point to note is that any analysis relies upon 
recorded associated metadata, which provide a crucial support to an improved data 
analysis.  

6. Standardization of data analysis and storage 

The SILAC IP strategy presented in this chapter can be used in low throughput studies but it 
can also be scaled up to support large scale surveys of protein interactome dynamics. In any 
case, the assembly of great interactome maps will require the integration of both low and 
high throughput protein interaction studies. In fact, small-scale datasets are of great value to 
protein interaction databases, assuming that they are supported by enough metadata 
(organism, bait, cell type, treatment etc.), as they often report high resolution analyses that 
provide details missing in large-scale datasets, such as binding sites and dynamic 
information, thereby increasing local coverage of large interactome networks (Orchard and 
Hermjakob, 2011; Sanderson, 2009). The main challenge encountered by the scientific 
community is not the generation of an increased amount of protein interaction data 
produced by either low or high throughput studies. In fact, the amount of interaction 
studies increases in an exponential manner as new technologies emerge, which become 
increasingly accessible to most international research groups. Instead, major issues reside 
both in the quality and in the homogeneity of the interaction data generated. Poor quality 
data that cannot be interpreted or exploited are of low interest for the scientific community. 
Data that are generated in different groups, using different machines and therefore different 
file formats and analysis pathways, cannot be accurately compared between each other, 
thereby leading to the accumulation of independent datasets that cannot be integrated. 
As all published data are inherently of variable quality, there is a need to increase the 
overall reliability of interaction datasets and develop data standards. This will rely on a 
strict quality control of all data that are uploaded in public repositories. As proposed by 
Olsen and Mann, the selection of high quality data could result from “social-network like 
mechanisms”, which would calculate confidence scores for each specific result (e.g. each 
protein-protein interaction) based on the number of times it would be retrieved in various 
independent studies using different techniques (Olsen and Mann, 2011). This would help 
eliminate results that are of poor reliability and thereby enhance confidence of protein 
interaction databases.  
Data standardization can probably be considered as one of the main challenges in the field. 
Currently, interaction data can be found in many different types of format, depending on 
the vendor and on the analysis pathway. Therefore, creating a common standard data 
format that could be used by the scientific community would facilitate exchange, 
comparison and integration of datasets, which is absolutely essential and requires an intense 
international coordination. Since 2004, a consortium of databases, including BIND, DIP, 
IntAct, MINT and MIPS, agreed to develop a community standard data model for the 
representation and exchange of protein interaction data (Hermjakob et al, 2004). These 
databases were grouped into IMEX (International Molecular interaction EXchange) 
(Orchard et al., 2007). The standard format called PSI-MI (XML format) was developed by 
members of the Molecular Interaction (MI) group of the Proteomics Standards Initiative 
(PSI), which belongs to the Human Proteome Organization (HUPO). Of note, the PSI-MI 
format cannot handle quantitative MS data yet. In terms of storage of MS data, the PRIDE 
(PRoteomics IDEntifications) database, hosted at the EBI (European Bioinformatics 
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Institute), is a centralized, standards compliant, public data repository for  
MS-based proteomics data that compiles protein and peptide identifications 
(http://www.ebi.ac.uk/pride).  
Along with the standardization of protein interaction data formats, the efficient and reliable 
recording of metadata is absolutely crucial to better analyze and exploit datasets. Indeed, 
metadata represent useful information that is required for data mining, comparison and 
retrospective studies, as it has been shown in the case of the PFL. To address this issue, a 
HUPO project has led to the development of MIMIx (Minimum Information required for 
reporting a Molecular Interaction experiment) (Orchard et al., 2007). As described by 
Orchard et al, MIMIx represents a “compromise” between the vast amount of information 
that would be necessary to precisely describe and reproduce an interaction experiment, 
which should be present in any original publication, and the constant load placed on 
scientists who upload their data into databases. As guidelines, the MIMIx checklist contains 
several experimental parameters that need to be accurately specified, including the host 
organism, correct molecule identifiers generated by major databases (Uniprot and RefSeq), 
detection method etc. In addition, a proper controlled vocabulary should be used (for 
example, bait/prey), as well as confidence values attributed to the interaction whenever 
possible (Orchard et al., 2007). These guidelines may (i) help increase the usefulness and the 
clarity of publications reporting interaction data and (ii) improve systematic recording of 
protein interaction data in public resources, thereby increasing their access to a wider 
community.  
Finally, efficient protein interaction data analysis relies upon powerful visualization 
techniques that enable the representation of large and dynamic protein interactome network 
maps. There is definitely a large demand for this type of tool that will need to be covered by 
the development of new cutting edge visualization software. Many different tools have been 
generated already, including the Cytoscape project that has integrated plugins to allow 
Cytoscape to interact with relational databases, Osprey, which is associated to the BIOGRID 
database, Genego Metacore and Ingenuity. These tools provide good graphical interfaces to 
visualize protein interactome networks, although downstream data analysis may also rely 
on lab oriented tools, such as the PFL.  

7. Conclusion 

The scientific community has been developing immense efforts to map the human protein 
interactome network. However the characterization of a static interactome only provides a 
list of possible interactions, without questioning when these interactions occur, and how 
they are regulated. It is therefore necessary to focus on a more functional analysis by 
studying the dynamics of protein interactions. The combination of SILAC-based 
quantitative proteomics with affinity purification techniques currently provides a reliable 
strategy to both identify specific protein interaction partners and analyze subtle changes in 
protein interactions between different conditions. One can envision that the development of 
new techniques and analysis tools will certainly also favor the use of label-free approaches 
in the future. However, despite an escalating number of outstanding studies reported in the 
literature and the increasing performance of technologies, many challenges remain to be 
faced before a dynamic map of the human interactome can be assembled. In particular, an 
international coordinated effort to standardize data formats and develop powerful software 
for data analysis and visualization  may allow to efficiently exploit, compare and integrate 
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datasets generated all over the world, thereby resulting in higher reliability and usefulness 
of protein interaction data. New insights into the human protein interactome dynamics 
would undoubtedly benefit both basic and clinical sciences, by providing essential 
information about the function of individual proteins, connections between them and the 
functional organization of the cell as a whole system. This may rely upon the identification 
of key protein “hubs”, i.e. proteins that are highly connected in interactome networks and 
may have crucial roles in specific disease pathways. Interestingly, significant correlations 
have been found between protein interactome maps and disease-associated gene networks, 
suggesting a potential predictive use of protein interactomes for the identification of non-
intuitive disease-related genes and putative drug targets.  
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