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1. Introduction 

The banning of methyl bromide (MeBr) as a pre-plant soil fumigant due to its implication as 
an ozone depleting substance, has led to increased interest in finding alternative soil 
fumigants to replace MeBr (United States Environmental Protection Agency [USEPA], 2009). 
One of the promising alternatives for certain crops is methyl isothiocyanate (MITC). Several 
MITC generating compounds, such as metam sodium®, metam potassium®, and dazomet® 
are being used to control a wide variety of fungal pathogens, weeds, and nematodes in soils. 
The physiochemical characteristics of MITC are significantly different than that of MeBr, 
such as that its effectiveness in regards to dissipation and movement in the soil is altered by 
multiple factors, such as soil type, texture, and soil moisture content. The largest challenge 
to soil fumigation is the prevention of fumigant loss to the atmosphere and especially to the 
nearby communities and homes adjacent to farm land. Rapid off-gassing or non-target 
release of the fumigant to the atmosphere can lead to poor pesticide performance and 
ineffective pest control. To combat this problem that is common to all soil fumigants 
currently on the market, various methods have been employed to reduce chemical off-
gassing. A few of these methods are tarping the soil surface immediately following chemical 
application with high density polyethylene plastic, incorporation of organic matter to the 
soil surface to absorb the fumigant, or altering chemical formulations. Another method of 
reducing fumigant loss can be applying a surface water application as a means of sealing the 
soil surface to prevent chemical volatilization. On-farm field scale studies have been 
performed to evaluate all of these methods to better evaluate the potential for reducing 
fumigant loss to the atmosphere. However, field-scale studies are expensive to perform, 
and experimental error is challenging to control and replicate due to diurnal temperature 
fluctuations, varying soil physical properties, and air current differences. Thus, the 
volatilization loss in one study will not represent the typical fumigant loss from site to 
site. A more controlled laboratory environment is needed to more adequately predict 
fumigant loss under specific conditions. Laboratory-scale columns can be used to study 
soil fumigant release from soils under a wide array of conditions and under controlled 
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circumstances. The aim of this study was to evaluate the amount of water applied to the 
surface of a specific soil type to reduce MITC volatilization in soil columns. Furthermore, 
evaluating the impact of various soil physical properties have on MITC loss is important, 
such as varied soil type, soil bulk density, organic matter additions and various MITC 
generating compound formulas have on MITC loss and mitigation. In short, the results of 
these studies will summarize the effectiveness of the use of soil columns to adequately 
assess MITC loss at the laboratory scale as a tool to predict chemical fate prior to the 
expense of large-scale on-farm studies. 

1.1 History of fumigants 

Soil fumigants are commonly used in high-value horticultural crop production to control 

soil originating pests such as plant-parasitic nematodes, soil-borne pathogens, insects and 

weeds. The intrinsic volatility of a fumigant is essential for a chemical to disperse laterally 

and vertically throughout the soil profile in order to control soil-borne diseases. Fumigants 

are typically applied via shank/chisel injection directly into the soil. After being applied, the 

fumigants quickly change into a gaseous phase whereby it is dispersed within the soil and 

results in pest control. Many compounds are classified as soil fumigants, with various rates 

of efficacy, with MeBr considered the most effective broad-spectrum pest control fumigant 

due to its high efficacy level. MeBr was one of the most widely used soil fumigants until, 

under the Montreal Protocol; it was officially phased out in 2005 as an ozone depleting 

compound (USEPA, 2009). MeBr is still used in developing countries, but must be phased 

out by 2015 (United States Government Printing Office [USGPO], 2005).  

In effort to meet the challenge to find a suitable replacement for MeBr that has similar 
efficacy capabilities for crop protection a concentrated effort of research and funding has 
occurred. Although these studies on alternative fumigants to MeBr have been occurring for 
approximately two decades, there is still no fumigant replacement as effective in almost all 
soil types like MeBr. Currently there are still several instances where MeBr can be used; such 
as critical use exemptions (CUE), quarantine and pre-shipment (QPS), and emergency 
exemption (EE). However, these uses are highly restricted and subjected to strict regulation. 
In recent years, there has been a movement to find alternatives to MeBr that are as effective 
but less harmful to the atmosphere and environment. While this has proved a formidable 
challenge to scientists, there are several fumigants used in agriculture today that are 
effective under specific soil and cropping conditions. Table 1 shows the five most used soil 
fumigants in the United States. 

1.2 Methyl bromide 

MeBr has been the most effective soil fumigant for most soil borne pathogens and pests 
since it was introduced as a pesticide in 1932. Due to its harmful effects on the atmosphere 
as an ozone depletor, MeBr production has been phased out in most developed and 
developing countries in accordance with the Montreal Protocol (USEPA, 2009). MeBr can 
still be used under critical use and emergency exemptions but its use is strictly regulated by 
state and governmental agencies.  

MeBr is a volatile gas at room temperature and 1 atm pressure and can be produced 

commercially or by plants and algae (National Pesticide Information Center [NPIC], 2000). 
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MeBr is a odorless, gaseous chemical above 4ºC that is highly toxic to humans and 

vertebrate animals that can result in death under acute exposure. Thus, commercial 

formulations of MeBr include a certain percent of chloropicrin (tear-gas) added to act as a 

warning agent to indicate presence of MeBr to prevent overexposure.  MeBr is applied 

under pressure as a liquid using shank injection into the soil, usually in conjunction with 

covering the soil with plastic tarps to suppress and prevent volatilization loss of the gas to 

the atmosphere (Papiernik et al., 2001; Wang et al., 1997).  The gas then diffuses through soil 

pores and cracks and allows for control of soil borne pests and pathogens. 

 

Rank Fumigant Formulations Application Amount Used per Year 

1 
Metam sodium/ 
Metam potassium 

Liquid, soluble 
concentrate 

Shank injection, 
chemigation 

51-55 million lbs/ 1-2 
million lbs (2002) 

2 Methyl bromide Pressurized gas 
Shank injection, 
hot gas 

14.76 million lbs (2007)* 

3 Chloropicrin 

Liquid, 
pressurized gas, 
pressurized 
liquid, 
emulsifiable 
concentrate 

Shank injection, 
drip irrigation 

10 million lbs (2007) 

4 1,3- Dichloropropene Liquid 
Soil injection, 
deep drip 
irrigation 

40,420 lbs (1998 estimate)  

5 Dazomet 
Granule, pellet, 
liquid, water 
soluble solids 

Spreader 15,000 lbs (2003) 

*Critical use exemption and emergency exemption usage 
(USEPA, 2009). 

Table 1. Top five most commonly used soil fumigants in the United States. 

1.3 Methyl bromide alternatives 

While no fumigant has proven as effective as MeBr for the control of soil-borne pests and 

pathogens, the reasons why the four most widely used fumigant alternatives are currently 

in use today are discussed below. 

1.3.1 Metam sodium and metam potassium 

Metam sodium (MS) is among the most widely used soil fumigant available for use (USEPA, 

2008b; Sullivan et al., 2004). MS and metam potassium (MK) are broad-spectrum soil 

fumigants and are also used in sewers, drains, and ponds to control weeds and roots 

(USEPA, 2008b). MS is a sodium salt formulation of methyldithiocarbamate which breaks 

down into the active ingredient methyl isothiocyanate (MITC) when injected into the soil.  

MK is a potassium salt of N-methyldithiocarbamate and breaks down into MITC similarly 
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to MS. MITC is a volatile gas used for soil borne pest control, it is mobile and water soluble. 

While it has minimal effects on impacting ozone, it does have potential as a groundwater 

contaminant (El Hadiri et al., 2003). Because of its relative ease in water solubility it can be 

used in chemigation applications and it leaves no residue on food crops (Noling and Becker, 

1994). MS and MK are applied via shank injection and chemigation into the soil as a liquid. 

1.3.2 Chloropicrin 

Chloropicrin (trichloronitromethane) is a common fumigant used to control fungi, insects 

and nematodes. It is used as a pre-plant soil fumigant, warning agent and in wood 

treatment (USEPA, 2008a). It is a volatile gas that does not have a significant impact on 

ozone depletion. However it does have the potential to be a groundwater contaminant.  

Chloropicrin is also commonly mixed with another fumigant to increase the fumigants 

effectiveness (Shaw & Larson, 1999). It is shank injected into the soil or can be applied via 

chemigation. 

1.3.3 1,3–Dichloropropene 

1,3-dichloropropene (1,3-D) is a volatile gas used for the control of nematodes, fungi, insects 

and weeds (USEPA, 1998). 1,3-D is commonly applied as a pre-plant soil fumigant for many 

crops. It is considered by many to be one of the more important soil fumigant replacements 

for MeBr (Noling & Becker, 1994). It is typically shank injected into the soil, after which a 

soil sealing method is required to prevent off-gassing. 1,3-D is mobile and persistent and has 

the potential for groundwater contamination (USEPA, 1998). It has been estimated that 1,3-

D emission loss to the atmosphere can range from 30 to 60% of the total amount applied to 

the soil (Gan et al., 1998a, 1998b; Gan et al., 2000b) 

1.3.4 Dazomet 

Dazomet is another MITC generating compound used in pathogen control. It is a broad 

spectrum soil fumigant used in controlling weeds, nematodes and fungi. It also has 

applications as a material preservative, as a biocide, and in wood treatment. It is most 

commonly sold and is applied in a granular form through spreaders.  

1.4 Preventing emmissions of soil fumigants 

Common methods used to reduce fumigant emission loss (off-gassing) to the atmosphere 

include using polyethylene (PE) tarps, other improved plastic barrier films, use of clear PE 

films for soil solarization (Chase et al., 1998; Gamliel et al., 1997; Nelson et al., 2000), soil 

amendment additions, drip application (Ajwa et al., 2002; Schneider et al., 1995), and surface 

water sealing. The on-farm fumigant emission reduction practice most readily used is the 

covering of the soil with PE plastic films. Emission of MeBr can still be extensive regardless 

of PE film use, therefore, improved formulations of high density polyethylene (HDFE) films 

or ‘virtually impermeable films (VIF) that have lower permeability to MeBr have been 

investigated and used at the farm level (Wang et al., 1997). Many of these films are of high 

cost and limit their use in commercial production for crops that do not supply a high 

economic return to the grower. Various chemical additions have also been used in film 
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formulations that may further suppress the volatilization loss of fumigants through PE, 

HDFE and VIFs.  

Clear PE films have been used in locations such as Florida to suppress noxious weeds, such as 

purple and yellow nutsedge, and nematode populations. This practice of using clear plastic 

films can create a natural greenhouse effect and heating the upper soil rooting depth to 

temperatures that kill soil-borne pests, nematodes, or burns the foliage of weeds, but the pest 

control efficacy of this practice is limited and unpredictable making it an unreliable cultural 

practice for most growers (Chase et al., 1998). Incorporation of organic matter or fertilizer 

amendments into the soil surface in concert with PE film use have also been employed to 

lower fumigant emissions. Enhanced degradation of the fumigant 1,3-D have been observed 

after soil incorporation of organic matter (Dungan et al., 2001) and ammonium thiosulfate by 

chemical reactions with 1,3-D (Wang et al., 2001; Gan et al., 2000a). 

Drip fumigation integrates the use of soil fumigant chemical application within drip 

irrigation lines. To achieve success, drip fumigation requires that the fumigant is diluted in 

water below its solubility or carried in conjunction with an emulsifier and dispersed 

throughout the rooting depth of crops by water through the dripline. In crops and soils 

where drip irrigation lines are utilized, drip fumigation has the potential to use lower 

fumigant rates than shank injection (Ajwa et al., 2002; Gan et al., 1998b), while reducing the 

amount of labor needed to apply the fumigant where drip lines are pre-installed (Schneider 

et al., 1995). 

Another form of soil surface sealing is the application of water to act as a barrier to soil 

fumigants volatilization from the soil surface (Gan et al., 1998a, 1998b). Soil surface sealing 

with water application is used to change the chemical exposure within the soil being 

fumigated. Additional water can prolong the amount of time that MITC remains exposed to 

soil-borne pathogens, extending the efficacy of the chemical. There have been many studies 

that have shown reduced fumigant volatilization from the soil surface after irrigation water 

has been applied immediately following fumigant application. Results have been promising 

for lowering fumigant off-gassing whether the water was applied in a single event or in an 

intermittent method following soil fumigant application. The use of water seals is 

impractical for many of the highly volatile, low water soluble fumigants, such as MeBr and 

chloropicrin. These compounds will typically escape too quickly from the soil surface as 

they rapidly convert from the liquid to gaseous phase after application. Water seals are 

generally applied via overhead sprinkler systems, which do not apply water fast enough to 

prevent the gaseous fumigant’s release into the atmosphere. Therefore, surface water seals 

typically work best for soil fumigants that have greater water solubility and will stay in 

solution longer before transformation into its volatile form, like MS and other MITC 

generating compounds (Simpson et al., 2010). 

2. Field and laboratory methods 

When dealing with volatile chemicals such as soil fumigants, both laboratory and field 
scale experiments are needed to estimate and measure off-gassing in a wide variety of 
conditions and situations. While field scale studies are of the utmost importance, they are 
labor intensive, and require more time and expense in order to test experimental 
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variations. Laboratory, bench-scale experiments can be an inexpensive, fast way to test 
theories and experimental methods before performing larger scale field studies (Gan et al., 
2000b).  

2.1 Field methods 

Most fumigants are used in conjunction with tarps to seal the surface of the soil and prevent 
off-gassing of the chemical, thus allowing more time for the pest control properties of the 
fumigant to occur. For on-farm field scale water seal investigations it typically requires 
shank injection of soil fumigants into the soil followed by irrigation of the soil surface to 
create the surface water seal. A challenge for growers to implement this into practice is the 
fact that they must set out standing pipe in the field equipped with sprinkler heads and 
risers prior to soil fumigation. The conversion of the chemical into a gaseous phase generally 
occurs too quickly not to have this done in advance, furthermore human fumigant exposure 
becomes a high risk if working in the field after application. Irrigation lines in the field can 
restrict blanket soil fumigant applications throughout the entire site, as pipe may limit 
where tractors can drive. Despite these challenges, surface water seals have been 
accomplished at the on-farm level with promising results for fumigant suppression 
(Sullivan et al., 2004). A limiting factor that makes field-scale studies challenging, is that 
they are typically good for that site only, and seldom reflect the potential fumigant loss for 
other locations that have different soil types and physical characteristics. Soils are highly 
variable systems, and small changes in organic matter content, soil water content, 
temperature, bulk density, and the fraction of sand, silt and clay will alter fumigant 
behavior (Dungan et al., 2001). 

2.2 Laboratory methods 

The use of stationary, bench-scale soil columns has been shown to a reliable means of 
estimating the emission potential of soil fumigants under many different soil conditions and 
soil types (Gan et al., 2000b). Artificial soil profile conditions under a controlled 
environment can be created and manipulated to more quickly assess fumigant behavior 
under restricted conditions. In many ways, these conditions can provide data that is less 
costly and cumbersome than field-scale conditions, and yet give appropriate estimates of 
fumigant loss comparable to that observed from field trials.  

The following describes the experimental conditionals and results of one such soil column 
study aimed at determining the proper amount of water needed to best suppress MITC 
release from a sandy loam soil after MS application.  

2.2.1 Experimental setup 

To simulate a soil profile in laboratory scale studies, stainless steel soil columns were 
constructed. The soil columns constructed were 60 cm high with a 10 cm I.D. as shown in 
Fig.1a. Gas sampling ports were installed and spaced 10 cm apart located at soil depths of 
15, 25, 35, 45, and 55 cm down the length of the soil columns. All gas sampling ports were 
sealed with Swagelock® fittings and septa to create an air tight environment to prevent gas 
leaking. A sandy clay loam soil (fine-loamy, mixed, hyperthermic Typic Ochraqualfs), used 
to pack the soil columns, and was collected from an area not previously exposed to soil 
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fumigants. Soil was air dried and sieved to 2.0 mm, then brought to 8% moisture with 
distilled water. Each column was packed to a bulk density of 1.5 g cm-3. A headspace 
sampling chamber was attached to the top of the soil column in order to collect gas samples 
and to apply a uniform water seal through a microjet spray sprinkler attached to the inside 
of the chamber. The upper chamber was sealed to the lower column using aluminum air-
conditioning duct construction tape to preserve an airtight chamber. To promote airflow 
through the chamber, two holes were drilled on opposite sides of the headspace chamber, 
one with access to outside airflow and the other attached to a vacuum source. Charcoal 
tubes were connected to the ends of each port to act as filters to collect any volatile MITC 
that was released during the study. The vacuum airflow rate was maintained at 150 +/- 10 
mL min-1 from the 1mmHg vacuum source.  

    

Fig. 1a. Soil columns with charcoal filters.     Fig. 1b. MS injection at 15 cm soil depth. 

MS was applied to the soil columns via simulated soil drip fumigation by injecting the 

fumigant in the center of the soil through a side port located 10 cm below the soil surface (Fig. 

1b). The MS was applied at a rate of 420 g L-1 EC (Vapam® 42; Amvac Chemical Corp., Los 

Angeles, CA) with 112 mL of distilled water, thus MS was diluted in water sufficient to 

simulate a 1.3 cm chemigation event. The equivalent amount of MITC applied to each column 

was 121.2 mg. Additional water application through the microjet spray sprinkler located inside 

the top of the soil column cap to simulate water seals of 0, 1.3, 2.5 and 3.8 cm applied to the soil 

surface and this was performed immediately following the injection of MS in order to prevent 

chemical off-gassing. Each treatment was replicated in triplicate for statistical analysis. 

2.2.2 Chemical analysis 

Analysis of MITC can be done in many ways. Gas chromatography (GC) with flame 

ionization detector (FID) was used in this research, but other detectors such as electron 

capture detectors and nitrogen phosphorus detectors can be used in MITC analysis for 

greater sensitivity.  

After MS was applied to each column, air samples were taken at predetermined times from 
the side ports along each column. MITC concentrations within the soil air space were 
determined by filling a gas-tight syringe with 250 µL of air and injecting it into the GC-FID. 
The charcoal filters attached to the columns were sealed and replaced every 4 to 8 hours 
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(Fig. 2a) to ensure that no MITC was escaping undetected. These filters were then frozen 
until analyzed. To determine the amount of MITC volatilized from the soil surface, each 
glass charcoal filter tube was broken and the charcoal dispensed into 10-mL headspace 
sampling vials (Fig. 2b).  
 

 

   

Fig. 2a. Charcoal filters replaced periodically.   Fig. 2b. Charcoal filter extracted into vials. 

Afterwards, 5 mL of organic solvent (methanol) was used to extract the MITC off the 

charcoal, the vials were immediately cap sealed, then shaken (Fig. 3a) overnight in the 

dark, as it was determined in a preliminary trial that 12 h was sufficient time to extract 

over 99% of all MITC from the charcoal. Charcoal was placed on the counter for 2 h to 

allow it settle to the bottom of the vial. 1-mL of the solvent supernatant was then 

extracted and transferred to 2-mL GC vials (Fig. 3b), and a GC syringe was used to extract 

the solvent from small GC vials (Fig. 3c) followed by injection into the GC for MITC 

analysis by FID (Fig. 3d).   

 

 

    

Fig. 3a. Vials shaken to extract MITC.     Fig. 3b. Transfer of solvent to small GC vial. 
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Fig. 3c. Syringe extraction of solvent.                 Fig. 3d. Injection of solvent into GC for analysis. 

3. Results of water seal column study 

The movement of MS within soil systems can be described in regards to its partitioning from 
the liquid phase into the gaseous phase after transformation to MITC. For analytical 
simplicity, only MITC was within the gaseous phase was analyzed during this study, 
although MITC does partition in water as well. The amount of MITC volatilized was 
monitored over time after MS chemical injection in two parts: 1) the soil-air movement of 
MITC within the soil column profile, and 2) the flux of MITC evolved from the soil surface. 

3.1 Soil air movement of MITC 

The distribution of MITC within the soil-air space within the soil profile was measured at 

periodic times, but only data from 0.3, 1, 2, 3 and 5 days after treatment (DAT) are displayed 

here for simplicity (Fig. 4a-d). As expected, the soil columns that did not receive additional 

water to the soil surface (0-cm water seal) had rapid release of the fumigant after application 

(Fig. 4a) because of a lack of a barrier film of water to restrict MITC volatilization. This is 

evident by the bulk of MITC located at the 20 cm soil depth within hours after application 

(0.3 DAT). Although the MS was applied at the 10-cm injection port, the bulk of the chemical 

moved down the soil profile as apparent by the bulk MITC concentration located at the 20 

cm soil depth 0.3 DAT. This was due to the total initial amount of water applied with the 

diluted MS solution and a lower fumigant amount near the 10 cm soil depth of the column. 

The highest level of MITC was observed 1.0 DAT at the 10 cm soil depth, indicating that the 

majority of the fumigant was moving upward throughout the soil column. Thereafter the 

amount of MITC within the soil-air phase progressively decreased each DAT (Fig. 4a). 

Similar to the 0-cm water seal treatment, the 1.3-cm water seal treatment had MITC 
distributed in a like manner, with the highest amount of MITC observed at the 10 cm 
sampling depth 1.0 DAT (Fig. 4b). However, the concentration level of MITC observed 
within the soil profile was higher than that of the 0-cm water seal treatment at sampling 
times after chemical application. This indicates that although the water seal amount was low 
(1.3 cm) it is sufficient to restrict and delay the volatilization loss of MITC. This is apparent 
by MITC levels 2 to 3 times greater within the soil-air phase 2.0 and 3.0 DAT at the upper 30 
cm soil sampling depths when compared to the no water seal treatment (Fig. 4b). 
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Fig. 4a.      Fig. 4b. 
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Fig. 4c.     Fig. 4d. 

Fig. 4. MITC distribution in soil airspace throughout the soil profile of columns over time 
(DAT=days after treatment, or after injection of metam sodium at 10-cm column depth); 
data shown represent the mean of three replications for each water seal treatment [0-cm (4a), 
1.3-cm (4b), 2.5-cm (4c), and 3.8-cm (4d) water seal application depth]. 

The real impact of the water seal treatment at suppressing MITC volatilization was observed 

in the 2.5-cm water seal treatment (Fig. 4c). This is especially apparent when looking at the 

level of MITC over time at the 10 cm soil depth. The concentration of MITC at the 10 cm soil 

depth was lower 1.0 DAT for the 2.5-cm than the 0-cm and 1.3-cm water seal treatments 

(Fig. 4a-c), suggesting a restriction in the volatilization loss of MITC through the soil surface. 

Furthermore, the bulk amount of MITC resided at the 20 cm soil depth for a longer period of 

time after chemical application when compared to the lower water seal treatments, allowing 
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the MITC to distribute vertically throughout the soil column with MITC concentrations 

observed at the 50 cm by 5.0 DAT (Fig. 4c). 

Application of a 3.8-cm water seal resulted in the longest retention of MITC within the soil 

profile, along with the greatest suppression of MITC from the soil surface as evident by low 

MITC soil-air phase levels at the 10 cm soil depth up to 5.0 DAT (Fig. 4d). The extra water 

applied to the soil surface in the 3.8-cm treatment moved the MS further down the soil 

profile resulting in high MITC concentrations at both the 20 and 30 cm soil depths 1.0 to 5.0 

DAT. The higher water amount within the soil profile was confirmed at the end of the study 

as soil moisture levels were higher at the 25 cm soil depth of the 3.8-cm than the 2.5-cm 

water seal treatments (data not shown). 

3.2 Soil surface flux of MITC 

The highest amount of MITC volatilized through the soil surface was observed from soil 

columns with no (0-cm) water seal applied after MS application (Fig. 5). The greatest MITC 

flux was observed within the initial 36 h after chemical application and decreased over time 

thereafter. A similar trend was observed for the 1.3-cm water seal treatment, but the amount 

of MITC evolved was substantially less than that from the 0-cm treatment. The lowest 

amount of MITC flux observed occurred from both the 2.5-cm and 3.8-cm water seal 

treatments, with the 2.5-cm treatment releasing slightly more MITC by 120 h after MS 

application.  
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Fig. 5. The mount of MITC volatilized and captured on charcoal filters over time. Data 
represents mean of three replicates per water seal treatment. 
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In order to determine to total amount of MITC volatilized from the surface of the soil columns, 
cumulative MITC levels were calculated and plotted (Fig. 6).  In this respect it is easily 
apparent that the highest MITC emissions occurred from soil columns without a water seal 
treatment.  But more importantly, for soil columns that received additional surface water 
irrigation, total MITC volatilization decreased with increasing water seal depth (Fig. 6a).  The 
total mean MITC volatilization loss from the 0-, 1.3-, 2.5- and 3.8-cm water seal treatments was 
respectively 24, 14, 9 and 6% of the total initial MITC applied (Fig. 6b).  The highest variability 
in MITC loss was observed in the low to no water seal treatments, suggesting that neither of 
these treatments would be acceptable for suppressing MITC fumigant loss from soils.  
Whereas a low amount of variability (small error bars) was observed for the higher water seal 
treatments, with no statistical difference in total MITC loss (Fig. 6b). 
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Fig. 6a. Mean MITC emitted from soil columns. Fig. 6b. MITC release ± std error mean. 

Fig. 6. Total cumulative MITC evolved from soil columns as captured on charcoal filters. 

4. Conclusion 

These findings illustrate how effective bench-scale soil column studies are at assessing the 
volatilization potential of MS after varying surface water seal treatments. Keeping in mind 
that this study represents specific and restricted conditions, it does provide a good estimate 
of the proper water seal depth needed for a sandy clay loam soil type. Although a 3.8-cm 
water seal led to the least amount of fumigant loss, it is recommended that a 2.5 -cm water 
seal be applied in the field for similar soil types. This is suggested due to the fact that 
applying large amounts of water can significantly alter chemical behavior by further 
diluting the MS to a level below the critical threshold for MITC to be effective for pest 
control. Furthermore, in areas where water tables are high, adding too much water via 
supplemental overhead irrigation may lead to groundwater contamination and result in 
other environmental concerns. The 2.5-cm water seal application suppressed MITC 
volatilization to level statistically equivalent to that of the 3.8-cm treatments and therefore, it 
is a good practice to reduce fumigant emissions to the atmosphere while minimizing 
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excessive chemical movement beyond the crop rooting depth. On-farm field investigations 
will be needed to back up these laboratory scale findings to provide confirmation that the 
suppressive loss of MITC is ultimately achievable. 
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