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1. Introduction

Entropy is a fundamental concept which emerged along with other ideas during the
development of thermodynamics and statistical mechanics Landau and Lifshitz (1978);
Lieb and Yngvason (1999). Entropy has developed foremost out of phenomenological
thermodynamical considerations such as the second law of thermodynamics in which it plays
a prominent role Wehrl (1978). With the intense interest in the investigation of the physics of
matter at the atomic and subatomic quantum levels, it may well be asked whether this concept
can emerge out of the study of systems at a more fundamental level. In fact, it may be argued
that a correct definition is only possible in the framework of quantum mechanics, whereas
in classical mechanics, entropy can only be introduced in a rather limited and artificial way.
Entropy relates macroscopic and microscopic aspects of nature, and ultimately determines
the behavior of macroscopic systems. It is the intention here to present an introduction
to this subject in a readable manner from the quantum point of view. There are many
reasons for undertaking this. The intense interest in irreversible thermodynamics Grössing
(2008), the statistical mechanics of astrophysical objects Padmanabhan (1990); Pathria (1977),
quantum gravity and entropy of black holes Peres & al. (2004), testing quantum mechanics
Ballentine (1970) and applications to condensed matter and quantum optics Haroche & al.
(2006); Raimond & al. (2001) are just a few areas which are directly or indirectly touched on
here.
Let us begin by introducing the concept of entropy from the quantum mechanical perspective,
realizing that the purpose is to focus on quantum mechanics in particular. Quantum
mechanics makes a clear distinction between observables and states. Observables such as
position and momentum are mathematically described by self-adjoint operators in a Hilbert
space. States, which are generally mixed, can be described by a density matrix, which is
designated by ρ throughout. This operator ρ is Hermitean, has trace one and yields the
expectation value of an observable A in the state ρ through the definition

〈A〉 = Tr (ρA). (1.1)

Entropy is not an observable, so there does not exist an operator with the property that its
expectation value in some state would be the entropy. In fact, entropy is a function of state. If
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2 Will-be-set-by-IN-TECH

the given state is described by the density matrix ρ, its entropy is defined to be

S(ρ) = −kB Tr(ρ log(ρ)). (1.2)

This formula is due to von Neumann von Neumann (1955), and generalizes the classical
expression of Boltzmann and Gibbs to the quantum regime. Of course, kB is Boltzmann’s
constant, and the natural logarithm is used throughout. If kB is put equal to one, the entropy
becomes dimensionless. Thus, entropy is a well-defined quantity, no matter what size or type
of system is considered. It is always greater than or equal to zero, and equal to zero exactly
for pure states.
It will be useful to give some interpretation of von Neumann’s formula. The discovery for
which Boltzmann is remembered is his formula for entropy which appeared in 1877, namely,

S = kB log(W), (1.3)

This form for S was established by making a connection between a generalization S of
thermostatic entropy and the classical H-function. The identification of the constant on the
right of (1.3) as Boltzmann’s was proposed by Planck. Equation (1.3) taken in conjunction
with the H-theorem, interprets the second law, ∆S ≥ 0, simply as the tendency of an isolated
system to develop from less probable states to more probable states; that is, from small
W to large W. Thermostatic equilibrium corresponds to the state in which W attains its
maximum value. In fact, equation (1.3) has had far reaching consequences. It led Planck,
for example, to his quantum hypothesis, which is that the energy of radiation is quantized,
and then from there to the third law of thermodynamics. The H-theorem provided an
explanation in mechanical terms of the irreversible approach of macroscopic systems towards
equilibrium. By correlating entropy with the H-function and thermodynamic probability,
Boltzmann revealed the statistical character of the second law. Of course, Boltzmann was
restricted to a classical perspective. The question as to whether the number of microstates
makes literal sense classically has been discussed as an objection to his approach. As stated
by Pauli Pauli (2000), a microstate of a gas for example is defined as a set of numbers which
specify in which cell each atom is located, that is, a number labeling the atom, an index for
the cell in which atom s is located and a label for the microstate. The macrostate is uniquely
determined by the microstate, however the converse does not hold. For every macrostate
there are very many microstates, as will be discussed. Boltzmann’s fundamental hypothesis
is then: All microstates are equally probable.
However, as Planck anticipated, in quantum mechanics such a definition immediately makes
sense. There is no ambiguity at all, as there is a natural idea of microstate. The number of
microstates may be interpreted as the number of pure states with some prescribed expectation
values. Suppose there are W different pure states in a system, each occuring with the same
probability. Then the entropy is simply S = log(W). However, the density matrix of the
system is given by ρ = (1/W)P , where P is a W-dimensional projection operator. Thus, the
correspondence follows immediately, that is, log W = −Tr [ρ log ρ].
Each density matrix can be diagonalized Wehrl (1978),

ρ = ∑
k

pk |k〉〈k|, (1.4)
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Quantum Mechanics Entropy and a Quantum Version of the H-Theorem 3

where |k〉 is a normalized eigenvector corresponding to the eigenvalue pk and |k〉〈k| is
a projection operator onto |k〉 with pk ≥ 0 and ∑k pk = 1. Here the coefficients are
positive probabilities and not complex amplitudes as in a quantum mechanical superposition.
Substituting (1.4) into (1.2) finally yields,

S(ρ) = −∑
k

pk log(pk). (1.5)

There is a more combinatorial approach Wehrl (1978). This will come up again subsequently
when ensembles take the place of a density operator. If N measurements are performed, one
will obtain as a result that for large N, the system is found p1N times in |1〉, p2N times in state
|2〉 and so on, all having the same weight. By straightforward counting, there results

WN =
N!

(p1N)!(p2N)! · · · . (1.6)

When N → ∞, Stirling’s formula can be applied to the logarithm of (1.6) so the entropy is

log
N!

n1!n2! · · · = N log(N)− N − ∑
j

(nj log nj − nj) = −N ∑
j

pj log(pj). (1.7)

Dividing both sides of (1.7) by N, then as N → ∞ (1.5) is recovered. It should also be noted
that (1.5) is of exactly the same form as Shannon entropy, which can be thought of as a measure
of unavailable information.
Of course, another way to look at this is to consider N copies of the same Hilbert space, or
system, in which there are microstates |1〉 ⊗ |2〉 · · · such that |1〉 occurs p1N times, |2〉 occurs
p2N times, and so forth. Again (1.6) is the result, and according to Boltzmann’s equation, one
obtains log(WN) for the entropy as in (1.5). In (1.5), S is maximum when all the pj are equal
to 1/N.
By invoking the constraint ∑k pk = 1, (1.5) takes the form

S = −
N−1

∑
k=1

pk log(pk)− pN log(pN), (1.8)

where pN = 1 − ∑
N−1
k=1 pk, and all other pk are considered to be independent variables.

Differentiating S in (1.8), it is found that

∂S

∂pk
= − log(pk) + log(pN).

This vanishes of course when pk = pN = N−1 and this solution is the only extremum of S.
To summarize, entropy is a measure of the amount of chaos or lack of information about
a system. When one has complete information, that is, a pure state, the entropy is zero.
Otherwise, it is greater than zero, and it is bigger the more microstates exist and the smaller
their statistical weight.
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4 Will-be-set-by-IN-TECH

2. Basic properties of entropy

There are several very important properties of entropy function (1.5) which follow from
simple mathematical considerations and are worth introducing at this point Peres (1995).
The first point to make is that the function S(p) is a concave function of its arguments
p = (p1, · · · , pN). For any two probability distributions {pj} and {qj}, and any λ ∈ [0, 1],
S defined in (1.5) satisfies the following inequality

S(λp + (1 − λq)) ≥ λS(p) + (1 − λ)S(q), λ ∈ [0, 1]. (2.1)

This can be proved by differentiating S twice with respect to λ to obtain,

d2S(λp + (1 − λ)q)

dλ2
= −∑

j

(pj − qj)
2

λpj + (1 − λ)qj
≤ 0. (2.2)

This is a sufficient condition for a function to be concave. Equality holds only when pj = qj, for
all j. The physical meaning of inequality (2.1) is that mixing different probability distributions
can only increase uniformity.
If N is the maximum number of different outcomes obtainable in a test of a given quantum
system, then any test that has exactly N different outcomes is called a maximal test, called
T here. Suppose the probabilities pm for the outcomes of a maximal test T which can be
performed on that system are given. It can be shown that this entropy never decreases if it is
elected to perform a different maximal test. The other test may be performed either instead of
T, or after it, if test T is repeatable.
To prove this statement, suppose the probabilities for test T are {pm} and those for a
subsequent test are related to the {pm} by means of a doubly stochastic matrix Pμm. This
is a matrix which satisfies ∑μ Pμm = 1 and ∑m Pμm = 1. In this event,

qμ = ∑
m

Pμm pm

are the probabilities for the subsequent test. The new entropy is shown to satisfy the inequality
S(q) ≥ S(p). To prove this statement, form the difference of these entropies based on (1.5),

∑
m

pm log(pm)− ∑
μ

qμ log(qμ) = ∑
m

pm(log(pm)− ∑
μ

Pμm log(qμ))

= ∑
mμ

pm(Pμm log(pm)− Pμm log(qμ))

= ∑
mμ

pmPμm log(
pm

qμ
).

In the second line, ∑μ Pμm = 1 has been substituted to get this result. Using the inequality

log x ≥ 1 − x−1, where equality holds when x = 1, and the fact that S has a negative sign, it
follows that

S(q)− S(p) ≥ ∑
mμ

pmPμm(1 −
qμ

pm
) = ∑

mμ
(pmPμm − qμPμm) = ∑

μ
(qμ − qμ ∑

m
Pμm) = 0. (2.3)
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The equality sign holds if and only if Pμm is a permutation matrix, so the sets are identical.
After a given preparation whose result is represented by a density matrix ρ, different tests
correspond to different sets of probabilities, and therefore to different entropies. The entropy
of a preparation can be defined as the lowest value attained by (1.5) for any complete test
performed after that preparation. The optimal test which minimizes S is shown to be the one
that corresponds to the orthonormal basis vμ given by the eigenvectors of the density matrix
ρ

ρ vμ = wμvμ.

In this basis, ρ is diagonal and the eigenvalues wμ satisfy 0 ≤ wμ ≤ 1 and ∑μ wμ = 1.
A basic postulate of quantum mechanics asserts that the density matrix ρ completely specifies
the statistical properties of physical systems that were subjected to a given preparation. All the
statistical predictions that can be obtained from (1.1) for an operator are the same as if we had
an ordinary classical mixture, with a fraction wμ of the systems with certainty in the state vμ.
Therefore, if the maximal test corresponding to the basis vμ is designed to be repeatable, the
probabilities wμ remain unchanged and entropy S remains constant. The choice of any other
test can only increase the entropy, as in the preceding result. This proves that the optimal
test, which minimizes the entropy, is the one corresponding to the basis that diagonalizes the
density matrix.
The entropic properties of composite systems obey numerous inequalities as well. Let {vm}
and {eμ} be two orthonormal basis sets for the same physical system. Let ρ = ∑ wm|vm〉〈vm|
and σ = ∑ ωμ|eμ〉〈eμ| be two different density matrices. Their relative entropy S(σ|ρ) is
defined to be

S(σ|ρ) = Tr[ρ(log ρ − log σ)]. (2.4)

Let us evaluate S(σ|ρ) in (2.3) in the |vμ〉 basis where ρ is diagonal. The diagonal elements of
log σ are

(log σ)mm = 〈vm, ∑
μ

log ωμ|eμ〉〈eμ|vm〉 = ∑
μ

log ωμ|〈eμ, vm〉|2 = ∑
μ

log ωμ Pμm. (2.5)

The matrix Pμm is doubly stochastic, so as in (2.3) we have

S(σ|ρ) = ∑
m

wm(log wm − ∑
μ

Pμm log ωμ) = ∑
μm

wmPμm log(
wm

ωμ
) ≥ 0. (2.6)

Equality holds in (2.6) if and only if σ = ρ.
Inequality (2.6) can be used to prove a subadditivity inequality. Consider a composite system,
with density matrix ρ, then the reduced density matrices of the subsystems are called ρ1 and
ρ2. Then matrices ρ, ρ1 and ρ2 satisfy,

S(ρ) ≤ S(ρ1) + S(ρ2). (2.7)

This inequality implies that a pair of correlated systems involves more information than the
two systems separately.
To prove this, suppose that wm, ωμ and Wmμ = wmωμ are the eigenvalues of ρ1, ρ2 and ρ1 ⊗ ρ2,
respectively, then

∑
m

wm log wm + ∑
μ

ωμ log ωμ = ∑
mμ

Wmμ log Wmμ.
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This has the equivalent form,

S(ρ1) + S(ρ2) = S(ρ1 ⊗ ρ2).

Consider now the relative entropy

S(ρ1 ⊗ ρ2|ρ) = Tr[ρ(log ρ − log ρ1 ⊗ ρ2)] = Tr[ρ(log ρ − log ρ1 − log ρ2)].

It has just been shown that relative entropy is nonnegative, so it follows from this that

Tr(ρ log ρ) ≥ Tr(ρ log ρ1) + Tr(ρ log ρ2).

Since Tr(ρ log ρ1) = ∑mμnν ρmμ,nν(log ρ1)nmδνμ = Tr(ρ1 log ρ1), and similarly for Tr(ρ log ρ2),
it follows that

Tr(ρ log ρ) ≥ Tr(ρ1 log ρ1) + Tr(ρ2 log ρ2).

Now using (1.2), it follows that

−S(ρ) ≥ −S(ρ1)− S(ρ2).

Multiplying both sides by minus one, (2.7) follows.

3. Entanglement and entropy

The superposition principle applied to composite systems leads to the introduction of the
concept of entanglement Mintet & al. (2005); Raimond & al. (2001), and provides an important
application for the density matrix. A very simple composite object is a bipartite quantum
system S which is composed of two parts A and B. The states of A and B belong to two
separate Hilbert spaces called HA and HB which are spanned by the bases |iA〉 and |iB〉,
and may be discrete or continuous. If A and B are prepared independently of each other
and are not coupled together at some point, S is described by the tensor product |ψS〉 =
|ψA〉⊗ |ψB〉. Each subsystem is described by a well-defined wave function. Any manipulation
of one part leaves the measurement prediction for the other part unchanged. System S can also
be prepared by measuring joint observables, which act simultaneously on A and B. Even if S
has been prepared by measuring separate observables, A and B can become coupled by means
of an interaction Hamiltonian. In this instance, it is generally impossible to write the global
state |ψS〉 as a product of partial states associated to each component of S.
This is what the expression quantum entanglement means. The superposition principle is at
the heart of the most intriguing features of the microscopic world. A quantum system may
exist in a linear superposition of different eigenstates of an observable, suspended between
different classical realities, as when one says a particle can be at two positions at the same
time. It seems to be impossible to get a classical intuitive representation of superpositions.
When the superposition principle is applied to composite systems, it leads to the concept of
entanglement. Moreover, as Bell has shown, entanglement cannot be consistent with any local
theory containing hidden variables.
Even if the state S cannot be factorized according to the superposition principle, it can be
expressed as a sum of product states |iA〉 ⊗ |μB〉, which make up a basis of the global Hilbert
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Quantum Mechanics Entropy and a Quantum Version of the H-Theorem 7

space, HS. Consequently, an entangled state can be expressed as

|ψS〉 = ∑
i,μ

αiμ|iA〉 ⊗ |μB〉 	= |ψA〉 ⊗ |ψB〉, (3.1)

where the αiμ are complex amplitudes. The states |ψS〉 contain information not only about
the results of measurements on A and B separately, but also on correlations between these
measurements. In an entangled state, each part loses its quantum identity. The quantum
content of the global state is intricately interwoven between the parts. Often it is the case that
there is interest in carrying out measurements on one part without looking at another part. For
example, what is the probability of finding a result when measuring observable OA attached
to subsystem A, without worrying about B. The complete wave function |ψS〉 can be used to
predict the experimental outcomes of the measurement of OA ⊗ 1B. This can also be done by
introducing the density operator ρS of a system described by the quantum state |ψS〉, which
is just the projector

ρS = |ψS〉〈ψS|. (3.2)

It has the same information content as |ψS〉, and for all predictions on S, all quantum rules can
be expressed in such a fashion; for example, the expectation values of an observable OS of S is
found by (1.1). The probability of finding the system in |i〉 after a measurement corresponding
to the operator ρi = |i〉〈i| is given by |〈i|ψS〉|2 in the quantum description and Tr(ρiρS) in
terms of the density matrix.
The density operator approach is very advantageous for describing one subsystem, A, without
looking at B. A partial density operator ρA can be determined which has all the predictive
information about A alone, by tracing ρS over the subspace of B

ρA = TrB(ρS) = ∑
i,i′ ,μ

αiμα∗i′μ|iA〉〈iA|. (3.3)

Thus, the probability of finding A in state |jA〉 is found by computing the expectation value
of the projector ρj = |jA〉〈jA|, which is πj = Tr (ρAρj). Predictions on A can be done without
considering B. The information content of ρA is smaller than in ρS, since correlations between
A and B are omitted. To say that A and B are entangled is equivalent to saying that ρA and ρB

are not projectors on a quantum state. There is however a basis in HA in which ρA is diagonal.
Let us call it |jA〉, so that ρA is given by

ρA = ∑
j

λj|jA〉〈jA|. (3.4)

In (3.4), λj are positive or zero eigenvalues which sum to one. By neglecting B, there is
acquired only a statistical knowledge of state A, with a probability λj of finding it in |jA〉.
It is possible to express the state for S in a representation which displays the entanglement.
The superposition (3.1) claims nothing as to whether the state can be factored. To put this
property in evidence, choose a basis in HA, called |jA〉 in which ρA is diagonal. Then (3.1) is
written

|ψS〉 = ∑
j

|jA〉| j̃B〉, (3.5)

475Quantum Mechanics Entropy and a Quantum Version of the H-Theorem
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where state | j̃B〉 is given by
| j̃B〉 = ∑

μ
αjμ|μB〉. (3.6)

The | j̃B〉 are mirroring in HB the basis of orthonormal states in HA in which ρA is diagonal.
These mirror states are also orthogonal to each other as can be seen by expressing the fact that
ρ is diagonal

〈jA|ρA|j′A〉 = λjδjj′ = 〈 j̃B| j̃′B〉.
At this point, the mirror state can be normalized by means of the transformation | ĵB〉 =

|jB〉/
√

λj giving rise to the Schmidt expansion,

|ψS〉 = ∑
j

√

λj|jA〉| ĵB〉. (3.7)

The sum over a basis of product mirror states exhibits clearly the entanglement between A
and B. The symmetry of this expression shows that ρA and ρB have the same eigenvalues.
Any pure entangled state of a bipartite system can be expressed in this way.
Now a measure of the degree of entanglement can be defined using the density matrix. As
the λj become more spread out over many non-zero values, more information is lost by
concentrating on one system and disregarding correlations between A and B. This loss of
mutual information can be linked to the degree of entanglement. This information loss could
be measured by calculating the von Neumann entropy of A or B from (1.5)

SA = SB = −∑
j

λj log(λj) = −Tr(ρA log ρA) = −Tr(ρB log ρB). (3.8)

This is the entropy of entanglement Se = SA = SB, and it expresses quantitatively the degree
of disorder in our knowledge of the partial density matrices of the two parts of the entangled
system S.
If the system is separable, then one λj is non-zero and Se = 0, so maximum information on
the states of both parts obtains. As soon as two λj are non-zero, Se becomes strictly positive
and A and B are entangled. The maximum entropy, hence maximum entanglement obtains
when the λj are equally distributed among the A and B subspaces. It is maximal and equal to
log NA, when ρA is proportional to 1A, that is ρA = 1A/NA. In a maximally entangled state,
local measurements performed on one part of the system are not predictable at all. What can
be predicted are the correlations between the measurements performed on both parts. For
example, consider a bipartite system in which one part has dimension two. There are only
two λ-values in the Schmidt expansion, and satisfy λ1 + λ2 = 1. Then from (1.5), the entropy
when λ1 ∈ (0, 1) is,

Se = −λ1 log(λ1)− (1 − λ1) log(1 − λ1). (3.9)

The degree of entanglement is equal to zero when λ1 = 0 or 1 and passes through a maximum
at λ1 = 1/2 at which Se = 1. The degree of entanglement measured by the von Neumann
entropy is invariant under local unitary transformations acting on A or B separately, a direct
consequence of the invariance of the spectrum of the partial density operators.

476 Theoretical Concepts of Quantum Mechanics

www.intechopen.com



Quantum Mechanics Entropy and a Quantum Version of the H-Theorem 9

Consider the case of a two-level system with states |0〉 and |1〉, where the density matrix is a
two-by-two hermitean matrix given by

ρA =

(

ρ00 ρ01

ρ10 ρ11

)

. (3.10)

The entropy can be calculated for this system. Its positive diagonal terms are the probabilities
of finding the system in |0〉 or |1〉 and they sum to one. The nondiagonal terms satisfy ρ01 =
ρ∗10 and are zero for a statistical mixture of |0〉 and |1〉. Since ρA is a positive operator

|ρ10| = |ρ01| ≤
√

ρ00ρ11.

is satisfied, and the upper bound is reached for pure states.
The density matrix ρA can be expanded with real coefficients onto the operator basis made up
of the identity matrix I and the Pauli matrices σi

ρA =
1

2
(I + R ·σ), (3.11)

where R = (u, v, w) is three-dimensional and σ = (σx, σy, σz). The components of R are linked
to the elements of the density matrix as follows

u = ρ10 + ρ01, v = i(ρ01 − ρ10), w = ρ00 − ρ11.

The modulus R of R satisfies R ≤ 1, equality holding only for pure states. This follows from
Tr(ρ2

A) ≤ 1. If nonlinear functions of an observable A are defined as f (A) = ∑ f (ak)|ek〉〈ek|,
the von Neumann entropy of ρ is

S = −1 + R

2
log(

1 + R

2
)− 1 − R

2
log(

1 − R

2
). (3.12)

To each density matrix ρA, the end of the vector R can be located on the surface of a sphere.
The surface of the sphere R = 1 is the set of pure states with S = 0. The statistical mixtures
correspond to inside the sphere R < 1. The closer the point to the center, the larger the von
Neumann entropy. The center of the sphere corresponds to the totally unpolarized maximum
entropy state.
Any mixed state can be represented in an infinite number of ways as a statistical mixture of
two pure states, since any P with its end inside the sphere can be expressed as a vector sum of
a P1 and P2 whose ends are at the intersection of the sphere with an arbitrary line passing by
the extreme end of P, so one can write P = λP1 + (1− λ)P2 for 0 < λ < 1. The density matrix
which is a linear function of P is then a weighted sum of the projectors on the pure states |u1〉
and |u2〉 corresponding to P1 and P2,

ρA =
1

2
[I + λP1 ·σ + (1 − λ)P2 ·σ] = λ|u1〉〈u1|+ (1 − λ)|u2〉〈u2|. (3.13)

Thus, there exists an ambiguity of representation of the density operator which, if P 	= 0, can
be lifted by including the condition that |u1〉 and |u2〉 be orthogonal.
Before finishing, it is worth discussing the following application, which seems to have very
important ramifications. A violation of the second law arises if nonlinear modifications are
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10 Will-be-set-by-IN-TECH

introduced into Schrödinger’s equation Weinberg (1989). A nonlinear Schrödinger equation
does not violate the superposition principle in the following sense. The principle asserts that
the pure states of a physical system can be represented by rays in a complex linear space,
but does not demand that the time evolution obeys a linear equation. Nonlinear variants of
Schrödinger’s equation can be created with the property that if u(0) evolves to u(t) and v(0)
to v(t), the pure state represented by u(0) + v(0) does not evolve into u(t) + v(t), but into
some other pure state.
The idea here is to show that such a nonlinear evolution violates the second law of
thermodynamics. This is provided the other postulates of quantum mechanics remain as they
are, and that the equivalence of the von Neumann entropy to ordinary entropy is maintained.
Consider a mixture of quantum systems which are represented by a density matrix

ρ = λΠu + (1 − λ)Πv, (3.14)

where 0 < λ < 1 and Πu, Πv are projection operators on the pure states u and v. In matrix
form the density matrix is represented as

ρ =

(

λ λ〈v|u〉
(1 − λ)〈u|v〉 1 − λ

)

.

The eigenvalues are found by solving the polynomial det(ρ − w1) = 0 for the eigenvalues w.
Setting x = |〈u, v〉|2, they are given by

wj =
1

2
± [

1

4
− λ(λ − 1)(1 − x)]1/2, j = 1, 2. (3.15)

The entropy of this mixture is found by putting wj into (1.5)

S = −w1 log(w1)− w2 log(w2). (3.16)

The polynomial p(λ) = 4λ(1 − λ) has range (0, 1) when λ ∈ (0, 1), so it follows that s =
4λ(1 − λ)(1 − x) ∈ (0, 1) as well. Setting f = 1 − s, then when s ∈ (0, 1), the derivative of
(3.16) is given by

∂S

∂x
= − λ(1 − λ)

√

1 − 4λ(1 − λ)(1 − x)
log(

(1 +
√

f )2

4λ(1 − λ)(1 − x)
)

= −λ(1 − λ)√
1 − s

log(
(1 +

√
1 − s)2

s
) < 0.

Consequently, if pure quantum states evolve as u(0) → u(t) and v(0) → v(t), the entropy
of the mixture ρ shall not decrease provided that x(t) ≤ x(0), or in terms of the definition
of x, |〈u(t), v(t)〉|2 ≤ |〈u(0), v(0)〉|2. If say 〈u(0), v(0)〉 = 0, then also 〈u(t), v(t)〉 = 0, so
orthogonal states remain orthogonal. Consider now a complete orthogonal set uk. For every
v,

∑
k

|〈uk, v〉|2 = 1.

If there exists m such that |〈um(t), v(t)〉|2 < |〈um(0), v(0)〉|2, there must also exist some n
for which the reverse holds, |〈un(t), v(t)〉|2 > |〈un(0), v(0)〉|2. In this event, the entropy of a
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Quantum Mechanics Entropy and a Quantum Version of the H-Theorem 11

mixture of un and v will spontaneously decrease in a closed system, which is in violation of
the second law of thermodynamics. To retain the law, |〈u(t), v(t)〉|2 = |〈u(0), v(0)〉|2 must
hold for every u and v. From Wigner’s theorem, the mapping v(0) → v(t) is unitary, so
Schrödinger’s equation must be linear if the other postulates of quantum mechanics remain
fixed.

4. Ensemble methods in quantum mechanics

In classical mechanics, one relinquishes the idea of a description of the microscopic mechanical
states of trillions of microscopic interacting particles by instead computing averages over a
virtual ensemble of systems which replicate the real system. Quantum theory is faced with a
similar problem, and the remedy takes the form of the Gibbs ensemble. This last section will
take a slightly different track and discusses ensemble theory in quantum mechanics. Two of
the main results will be to produce a quantum version of the H-Theorem, and to show how
the quantum mechanical canonical ensemble can be formulated.
An astronomic number of states, or of microstates, is usually compatible with a given set of
macroscopic parameters defining a macrostate of a thermophysical system. Consequently, a
virtual quantum mechanical ensemble of systems is invoked, which is representative of the
real physical system. The logical connection between a physical system and ensemble is made
by requiring the time average of a mechanical property G of a system in thermodynamic
equilibrium equal its ensemble average calculated with respect to an ensemble made up of
N∗ → ∞ systems representing the actual system

Ḡ = 〈G〉. (4.1)

The ensemble average 〈G〉 is the ordinary mean of G over all the systems of the ensemble. If
N∗

r systems are in a state with eigenvalue Gr corresponding to G,

N∗〈G〉 = ∑
r

N∗
r Gr, (4.2)

where the sum is over all allowed states.
Adopt as a basic set the states ψjrm··· uniquely identifiable by the quantum numbers j, r, m, · · ·
referring to a set of compatible properties. A particular system of the ensemble will not
permanently be in one of these states ψjrm···, as there exists only a probability to find a system
in any one. Let us compress the basic states to read ψjr if we let r stand for the entire collection
of quantum numbers r, m, · · · . These cannot strictly be eigenstates of the total energy, since a
system occupying a particular eigenstate of its total Hamiltonian H at any one moment will
remain in this state forever. The state of the real system, which the ensemble is to represent,
is a superposition of eigenstates belonging to the same or different values of the energy. To
obtain an ensemble where the individual members are to change, we suppose the basic set ψjr

is made up of eigenstates of the unperturbed Hamiltonian H0. Assume it is possible to write

H = H0 + H1, (4.3)

such that H1 is a small perturbation added to the unperturbed Hamiltonian H0, and vary with
the physical system considered.
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Suppose E0
j are the eigenvalues of the unperturbed H0 and ψ0

jr the eigenstates corresponding

to them, where r again denotes a set of compatible quantum numbers. Introducing H1 now
changes the energy eigenvalues and energy eigenfunctions by an amount E1

jr and ψ1
jr, which

should be very small compared with the unperturbed values. It is precisely the eigenstates
ψ0

jr of H0 rather than H that are used as basic states for the construction of the ensemble.

Since these for the most part will appear in what follows, we continue to omit the superscript
for both the eigenfunctions ψjr and eigenvalues Ejr whenever the situation indicates that
unperturbed quantities are intended. A perturbed system finding itself initially in any one
of the unperturbed states ψjr does not remain indefinitely in this state, but will continually

undergo transitions to other unperturbed states ψks due to the action of the perturbation H1.
In analogy with a classical system, a quantum ensemble is described by the number of systems
N∗

jr in each state ψjr. The probability Pjr of finding a system, selected at random from the

ensemble, in the state ψjr is clearly

Pjr =
N∗

jr

N∗ . (4.4)

The quantities N∗
jr must sum up to N∗,

∑
jr

N∗
jr = N∗, ∑

jr

Pjr = 1. (4.5)

An ensemble can be representative of a physical system in thermodynamic equilibrium only
in this context if the occupation numbers N∗

jr are constants. A more general picture could

consider the occupation numbers as functions of time N∗
jr = N∗

jr(t). The ensemble corresponds

to a system removed from equilibrium. Let us ask then how do the N∗
jr vary with time.

Quantum mechanics claims the existence of A
jr
ks(t) which determine the probability of a

system in state ψjr at time zero to be in ψks at time t. The final state could correspond to
the initial state. Since N∗

jr(0) systems are in a state specified by quantum numbers jr at t = 0,

A
jr
ks(t)N∗

jr(0) systems will make the transition from jr to ks during (0, t) The number of systems

in ks at time t will be
N∗

ks(t) = ∑
j

∑
r

A
jr
ks(t) N∗

jr(0). (4.6)

The A
jr
ks(t) must satisfy the condition ∑j ∑r A

jr
ks(t) = 1. Multiplying this by N∗

ks(0) and
subtracting from (4.6) gives

N∗
ks(t)− N∗

ks(0) = ∑
j

∑
r

A
jr
ks(t)[N

∗
jr(0)− N∗

ks(0)]. (4.7)

This is the change in occupation number over (0, t). Dividing (4.7) by N∗ and using (4.4) gives

Pks(t)− Pks(0) = ∑
j

∑
r

A
jr
ks[Pjr(0)− Pks(0)]. (4.8)

A stationary ensemble or one in statistical equilibrium defined as N∗
ks(t) = N∗

ks(0) for all ks

holds when N∗
jr(0) = N∗

ks(0), at least when A
jr
ks(t) 	= 0. The contribution to the right side of

(4.8) comes from an extremely narrow interval ∆E = 2h̄/t centered at Ej = Ek, as indicated by
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perturbation theory. In this interval, it can be assumed Pjr(0) depends on the j-index weakly
enough that we can use Pks(0) in their place, so the term in brackets in (4.8) does not depend
on j. The energy spectrum is very nearly continuous for a thermophysical system, so the sum
over j can be approximated by an integral over E. This implies an approximation of the form

∑
j

A
jr
ks(t) = tW

(k)
sr . (4.9)

The quantities W
(k)
sr are time independent provided H1 is time independent. Consequently,

they are nonnegative and depend only on the displayed indices. Substituting (4.9) and
Pjr(0) = Pkr(0) into (4.8) gives

1

t
[Pks(t)− Pks(0)] = ∑

r
W

(k)
sr [Pkr(0)− Pks(0)]. (4.10)

In the limit when t becomes arbitrarily small, (4.10) can be approximated by expanding about
t = 0 on the left to give the final result for the time rate of change of the probability Pks,

Ṗks = ∑
r

W
(k)
sr [Pkr(0)− Pks(0)]. (4.11)

This equation was first derived by W. Pauli, and will lead to a quantum version of the
H-Theorem next. It signifies that of the N∗Pkr(0) systems occupying state kr at t = 0,

N∗Pkr(0)W
(k)
sr will, per unit time, go over to ks. Thus, the W

(k)
ks are interpreted as transition

probabilities per unit time that the system will go from state kr to ks. They must satisfy

W
(k)
sr ≥ 0 and the symmetry conditions W

(k)
rs = W

(k)
sr . This is also referred to as the principle

of microscopic reversibility.

4.1 A quantum H-theorem

The ensemble which represents a real physical system is determined by the thermodynamic
state and environment of the actual system. The virtual ensemble has constituents which
must duplicate both aspects. Of great practical interest and the one considered here is the
case of isolated systems. An isolated system is characterized not only by a fixed value of the
energy E, but also by a definite number of particles and volume V. Under these conditions,
a quantum H-theorem can be formulated Yourgrau et al. (1966). Classically the error with
which the energy of the real system can be specified can be theoretically reduced to zero.
However, quantum theory claims there is a residual error specified by the uncertainty relation.
All members of the ensemble cannot be said then to occupy eigenstates belonging to the same
energy. It must be assumed the systems are distributed over energy levels lying within a finite
range, ∆E. The following restrictions on the occupation numbers of the ensemble are imposed
for an isolated system

N∗
jr 	= 0, Ej ∈ I∆E = (E − 1

2
∆E, E +

1

2
∆E), N∗

jr = 0, Ej 	∈ I∆E. (4.12)

It will be shown that the ensemble specified by (4.12) exhibits a one-directional development
in time ending ultimately in equilibrium.
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Pauli’s equation can be used to obtain the rate of change of the quantum mechanical
H-function which is defined to be

H∗(t) = ∑
s

Ps log(Ps). (4.13)

The summation in (4.13) is extended over the group of states whose energies are
approximately E, that is in the interval I∆E for example. Now, differentiate (4.13) with respect
to t and use the fact that ∑s Ps = 1 to get

Ḣ∗ = ∑
s

Ṗs log(Ps) + ∑
s

Ṗs = ∑
s

Ṗs log(Ps). (4.14)

Now requiring that Ṗs be determined by (4.11), Ḣ∗ in (4.14) becomes

Ḣ∗(t) = ∑
s

∑
r

Wsr(Pr − Ps) log(Ps). (4.15)

Interchanging r and s and using the symmetry property Wrs = Wsr, this is

Ḣ∗(t) = ∑
r

∑
s

Wrs(Ps − Pr) log(Pr) = −∑
r

∑
s

Wsr(Pr − Ps) log(Pr). (4.16)

Adding (4.15) and (4.16) yields the following result,

Ḣ∗(t) = −1

2 ∑
r

∑
s

Wsr(Pr − Ps)(log(Pr)− log(Ps)). (4.17)

Recalling that Wsr ≥ 0 as well as the inequality (x − y)(log x − log y) ≥ 0 for each (r, s), it
follows that (Pr − Ps)(log(Pr)− log(Ps)) ≥ 0. Consequently, each term in the sum in (4.17) is
either zero or positive, hence H∗(t) decreases monotonically with time,

Ḣ∗(t) ≤ 0. (4.18)

Equality holds if and only if Ps = Pr for all pairs (r, s) such that Wsr 	= 0. Thus H∗ decreases
and statistical equilibrium is reached only when this condition is fulfilled. Originally
enunciated by Boltzmann in a classical context, (4.18) constitutes a quantum mechanical
version of the H-theorem.

4.2 Quantum mechanical canonical ensemble

Let us devise an ensemble which is representative of a closed isothermal system of given
volume, or characterized by definite values of the parameters T, V and N. This approach
brings us back to one of the ways entropy was formulated in the introduction, and need not
rely on the specification of a density matrix. Suppose there are N∗ members of the ensemble
each with the same values of V and N as the real system. However, they are not completely
isolated from each other, so each is surrounded by a surface that does not permit the flow
of particles but is permeable to heat. The collection of systems can be packed into the form
of a lattice and the entire construction immersed in a heat reservoir at temperature T until
equilibrium is attained. The systems are isothermal such that each is embedded in a heat
reservoir composed of the remaining N∗ − 1.
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Once the ensemble is defined, it can be asked which fraction of the N∗ systems occupies
any particular eigenstate of the unperturbed Hamiltonian of the experimental system. Let us
study the ensemble then which is regarded as a large thermophysical system having energy
E∗, volume V∗ = N∗V and made up of N∗N particles.The quantum states of this large
supersystem belonging to energy E∗ are to be enumerated. The thermal interaction energy
is assumed to be so small that a definite energy eigenstate can be assigned to each individual
system at any time. As energy can be exchanged between constituent systems, the eigenstates
accessible to them do not pertain to one value of energy. The energy eigenstates of a system
are written E1, E2, · · · , Ej, · · · with Ej+1 ≥ Ej. Only one system-state j belongs to energy
eigenvalue Ej. An energy eigenstate of the supersystem is completely defined once the energy
eigenstate occupied by each system is specified.
It is only needed to stipulate the number N∗

j of systems occupying every system state j. Any

set of values of the occupation numbers N∗
1 , N∗

2 , · · · define a quantum mechanical distribution.
Clearly the W∗ supersystem states calculated by

W(N∗
1 , N∗

2 , · · · ) = N∗!

N∗
1 !N∗

2 ! · · · (4.19)

are compatible with a given distribution N∗
1 , N∗

2 , · · · . Not all sets of N∗
j are admissible. The

physically relevant ones satisfy the two constraints

∑
j

N∗
j = N∗, ∑

j

N∗
j Ej = E∗. (4.20)

The supersystem then consists of a number N∗ of fixed but arbitrary systems with a constant
energy E∗.
The number of physically possible supersystem states is clearly given as

Ω∗(E∗, N∗) = ∑
C

W∗(N∗
1 , N∗

2 , · · · ), (4.21)

where the summation is to be extended over all N∗
j satisfying constraints (4.20). According

to the earlier postulate, all allowed quantum states of an isolated system are equiprobable.
Consequently, from this principle all states which satisfy (4.20) occur equally often. The
probability P∗ that a particular distribution N∗

1 , N∗
2 , · · · is actualized is the quotient of W∗

and Ω∗,

P∗(N∗
1 , N∗

2 , · · · ) = W∗(N∗
1 , N∗

2 , · · · )
Ω∗(E∗, N∗)

. (4.22)

With respect to P∗ in (4.22), the average value of the occupation number N∗
k is given quite

simply by
N̄∗

k = ∑
k

N∗
k P∗(N∗

1 , N∗
2 , · · · ). (4.23)

Substituting P∗ into (4.23), it can be written as

Ω∗(E∗, N∗)N̄∗
k = N∗ ∑

k

(N∗ − 1)!

N∗
1 !N∗

2 ! · · · (N∗
k − 1)! · · · . (4.24)
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To obtain a more useful expression for N̄∗
k , the right-hand side can be transformed to a set of

primed integers. To this end, define

N∗′ = N∗ − 1, N∗′
k = N∗

k − 1, N∗′
j = N∗

j , j 	= k.

Using these, constraints (4.20) get transformed into

∑ N∗′
j = N∗

1 + N∗
2 + · · ·+ (N∗

j − 1) + · · · = N∗ − 1,

∑ N∗′
j Ej = N∗

1 E1 + · · ·+ (N∗
k − 1)Ek + · · · = E∗ − Ek. (4.25)

Consequently,

Ω∗(E∗, N∗) = N∗ ∑
′ N∗′ !

N∗′
1 !N∗′

2 ! · · · , (4.26)

where the prime means the sum extends over all N∗′
k which satisfy constraints (4.25).

Comparing (4.26) with (4.20), the right-hand side of (4.26) is exactly N∗Ω∗(E∗ − Ek, N∗ − 1).
Thus dividing by Ω∗(E∗, N∗), we have

N̄∗
k =

N∗Ω∗(E∗ − Ek, N∗ − 1)

Ω∗(E∗, N∗)
.

Dividing this by N∗ and taking the logarithm of both sides results in the expression,

log
N̄∗

k

N∗ = log Ω∗ (E∗ − Ek, N∗ − 1)− log Ω∗(E∗, N∗). (4.27)

The result in (4.27) can be expanded in a Taylor series to first order if we take N∗
>> 1 and

E∗
>> Ek,

log
N̄∗

k

N∗ = − ∂ log Ω∗

∂E∗ E∗
k − ∂ log Ω∗

∂N∗ = −βE∗
k − α. (4.28)

From the constraint N∗ = ∑j N̄∗
j = N∗e−α ∑ e−βEj , eα can be obtained. Replacing this back in

(4.28) and exponentiating gives

N̄∗
k = N∗ e−βEk

∑k e−βEj
. (4.29)

The result in (4.29) gives what the average distribution of systems over system states will
be in a supersystem at equilibrium. The instantaneous distribution will fluctuate around
this distribution. The relative fluctuations of the occupation numbers for large enough N∗

are negligible, so to this accuracy, N̄∗
k /N∗ can be equated to Pk. Setting Z = ∑j e−βEj , the

instantaneous probability that an arbitrarily chosen system of this supersystem will be in
system state k can be summarized as follows

Pk = Z−1e−βEk . (4.30)

This distribution is the quantum version of the canonical distribution in phase space, and is
referred to as the quantum mechanical canonical ensemble. The function Z so defined is called
the partition function.
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In effect, this formalism has permitted the construction of a type of measuring device. Let
us show that the microscopic ideas which have led to these results immediately imply
consequences at the macroscopic level. To this end, it will be established what the exact form
of the connection between Z and the Helmholtz free energy F actually is. The starting point is
the second part of (4.20). Putting U = E∗/N∗, it implies

U = ∑
j

PjEj. (4.31)

Formula (4.31) is in agreement with the postulate maintaining that the energy U of the
physical system must be identified with the ensemble average 〈E〉 of the energy.
Begin by considering the change dU of the energy U when the experimental system remains
closed but undergoes an infinitesimal reversible process. Equation (4.31) implies that

dU = ∑
j

(Ej dPj + Pj dEj). (4.32)

Now (4.30) can be solved for Ej in the form Ej = −β−1(log Z + log Pj). Consequently, since

∑j Pj = 1, it is found that ∑j dPj = 0. Combining these it then follows that

− ∑
j

EjdPj = β−1 ∑
j

(log Z + log Pj) dPj = β−1 ∑
j

log Pj dPj = β−1d(∑
j

Pj log Pj). (4.33)

Further, with − 	 dW the work done on the system during the given process, we have that

∑
j

Pj dEj = − 	 dW, (4.34)

Combining (4.33) and (4.34), we get the result

dU = −β−1 d(∑
j

Pj log Pj)− 	 dW. (4.35)

Comparing (4.35) with the first law dU = 	 dQ− 	 dW, it is asserted that

β 	 dQ = −d(∑
j

Pj log Pj). (4.36)

Since the right-hand side of (4.36) is an exact differential, it is concluded that β is an integrating
factor for 	 dQ. By the second law of thermodynamics, β must be proportional to T−1 and the
proportionality constant must be the reciprocal of kB. With β of this form, when combined
with the second law 	 dQ = TdS, we have

dS = −kBd(∑
j

Pj log Pj). (4.37)

This can be easily integrated to give

S = −kB ∑
j

Pj log Pj + C, (4.38)
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where the integrating constant C is independent of both T and V. In fact the additive property
of entropy requires that C = 0.
This complicated procedure has returned us in some sense to where we began with (1.5), but
by a different route. To get a relation between Z and F, use (4.30), (4.31) and (4.38) to write

TS = −kBT ∑
j

Pj log Pj = kBT log Z + ∑
j

PjEj = kBT log Z + U. (4.39)

Consequently, since F = U − TS, (4.39) implies the following result

F = −kBT log Z. (4.40)

Through the construction of these ensembles at a fundamental quantum level, a formalism
has been obtained which will allow us to obtain concrete predictions for many equilibrium
thermodynamic properties of a system once the function Z = Z(T, V, N) is known. In fact, it
follows from the thermodynamic equation

dF = −S dT − pdV + μ dN, (4.41)

where μ is the chemical potential per molecule, that

S = −(
∂F

∂T
)V,N = kB log Z + kBT(

∂Z

∂T
)V,N , (4.42)

p = −(
∂F

∂V
)N,T = kBT(

∂Z

∂V
)N,T ,

μ = (
∂F

∂N
)T,V = −kBT(

∂ log Z

∂N
)T,V ,

U = F + TS = kBT2(
∂ log Z

∂T
)V,N . (4.43)

As an application of these results, consider the one-dimensional harmonic oscillator which
has quantum mechanical energy eigenvalues given by

ǫn = (n +
1

2
)h̄ω, n = 0, 1, 2, · · · . (4.44)

The single-oscillator partition function is given by

z(β) =
∞

∑
n=0

e−β(n+ 1
2 )h̄ω = (2 sinh(

1

2
βh̄ω))−1.

The N-oscillator partition function is then given by

ZN(β) = [z(β)]N = (2 sinh(
1

2
βh̄ω)]−N . (4.45)

The Helmholtz free energy follows from (4.40),

F = NkBT log(2 sinh(
1

2
βh̄ω)).
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By means of F, (4.42) and (4.43) imply that μ = F/N, p = 0 and the entropy and energy are

S = NkB[
βh̄ω

eβh̄ω − 1
− log(1 − e−βh̄ω)], U = N[

1

2
h̄ω +

h̄ω

eβh̄ω − 1
]. (4.46)

5. Conclusions

It has been seen that formulating the concept of entropy at the microscopic level can be closely
related to studying the foundations of quantum mechanics. Doing so provides a useful
formalism for exploring many complicated phenomena such as entanglement at this level.
Moreover, predictions can be established which bridge a gap between the microscopic and
the macroscopic realm. There are many other topics which branch out of this introduction to
the subject. For example there is a great deal of interest now in the study of the quantization of
nonintegrable systems Gutzwiller (1990), which has led to the field of quantum chaos. There
are many indications of links in this work between the areas of nonintegrability and the kind
of ergodicity assumed in statistical mechanics which should be pursued.
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