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1. Introduction

Supersymmetry (SUSY) is a symmetry between bosons and fermions. It leads to degeneracies
of mass spectra between bosons and fermions. Although such degeneracies have not been
observed yet, there is a possibility for SUSY being realized in nature as a spontaneously broken
symmetry. From a theoretical viewpoint, SUSY provides a unified framework describing
physics in high energy regime beyond the standard model (Sohnius, 1985). Spontaneous
breaking of SUSY is one of the most interesting phenomena in quantum field theory. Since
in general SUSY cannot be broken by radiative corrections at the perturbative level, its
spontaneous breaking requires understanding of nonperturbative aspects of quantum field
theory (Witten, 1981). In particular, recent developments in nonperturbative aspects of string
theory heavily rely on the presence of SUSY. Thus, in order to deduce predictions to the
real world from string theory, it is indispensable and definitely important to investigate a
mechanism of spontaneous SUSY breaking in a nonperturbative framework of strings. Since
one of the most promising approaches of nonperturbative formulations of string theory is
provided by large-N matrix models (Banks et al., 1997; Dijkgraaf et al., 1997; Ishibashi et al.,
1997), it will be desirable to understand how SUSY can be spontaneously broken in the large-N
limit of simple matrix models as a first step. Analysis of SUSY breaking in simple matrix
models would help us find a mechanism which is responsible for possible spontaneous SUSY
breaking in nonperturbative string theory.
For this purpose, it is desirable to treat systems in which spontaneous SUSY breaking takes
place in the path-integral formalism, because matrix models are usually defined by the path
integrals, namely integrals over matrix variables. In particular, IIB matrix model defined
in zero dimension can be formulated only by the path-integral formalism (Ishibashi et al.,
1997). Motivated by this, we discuss in the next section the path-integral formalism for
(discretized) SUSY quantum mechanics, which includes cases that SUSY is spontaneously
broken. Analogously to the situation of ordinary spontaneous symmetry breaking, we
introduce an external field to choose one of degenerate broken vacua to detect spontaneous
SUSY breaking. The external field plays the same role as a magnetic field in the Ising model
introduced to detect the spontaneous magnetization. For the supersymmetric system, we
deform the boundary condition for fermions from the periodic boundary condition (PBC) to a
twisted boundary condition (TBC) with twist α, which can be regarded as such an external
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field. If a supersymmetric system undergoes spontaneous SUSY breaking, the partition
function with the PBC for all the fields, ZPBC, which usually corresponds to the Witten index,
is expected to vanish (Witten, 1982). Then, the expectation values of observables, which are
normalized by ZPBC, would be ill-defined or indefinite. By introducing the twist, the partition
function is regularized and the expectation values become well-defined. It is an interesting
aspect of our external field for SUSY breaking, which is not seen in spontaneous breaking of
ordinary (bosonic) symmetry.
Notice that our argument can be applied to systems in less than one-dimension, for
example discretized SUSY quantum mechanics with a finite number of discretized time steps.
Spontaneous SUSY breaking is observed even in such simple systems with lower degrees
of freedom. Also, we give some argument that an analog of the Mermin-Wagner-Coleman
theorem (Coleman, 1973; Mermin & Wagner, 1966) does not hold for SUSY. Thus, cooperative
phenomena are not essential to cause spontaneous SUSY breaking, which makes a difference
from spontaneous breaking of the ordinary (bosonic) symmetry.
In this setup, we compute an order parameter of SUSY breaking such as the expectation
value of an auxiliary field in the presence of the external field. If it remains nonvanishing
after turning off the external field, it shows that SUSY is spontaneously broken because it
implies that the effect of the infinitesimal external field we have introduced at the beginning
remains. Here, it should be noticed that, if we are interested in the large-N behavior of SUSY
matrix models, we have to take the large-N limit before turning off the external field, which
is reminiscent of the thermodynamic limit of the Ising model taken before turning off the
magnetic field in detecting the spontaneous Z2 breaking.
In view of this, it is quite important to calculate the partition function in the presence
of the external field in the path integral for systems which spontaneously break SUSY.
Especially it would be better to calculate it in matrix models at finite N in order to observe
breaking/restoration of SUSY in the large-N limit. We address this problem by utilizing two
methods: localization and Nicolai mapping (Nicolai, 1979) in sections 3 and 4, respectively.
As for the localization, in section 3 we make change of integration variables in the path
integral, which is always possible whether or not the SUSY is explicitly broken (the external
field is on or off). It is investigated in detail how the integrand of the partition function with
respect to the integral over the auxiliary field behaves as the auxiliary field approaches to zero.
It plays a crucial role to understand the localization from the change of variables. For SUSY
matrix models with Q-SUSY preserved, the path integral receives contributions only from the
fixed points of Q-transformation, which are nothing but the critical points of superpotential,
i.e. zeros of the first derivative of superpotential. However, in terms of eigenvalues of matrix
variables, an interesting phenomenon arises. Localization attracts the eigenvalues to the
critical points of superpotential, while the square of the Vandermonde determinant arising
from the measure factor prevents the eigenvalues from collapsing. The dynamics of the
eigenvalues is governed by balance of attractive force from the localization and repulsive force
from the Vandermonde determinant. Without the external field, contribution to the partition
function from each eigenvalue distributed around some critical point is derived for a general
superpotential.
In the case that the external field is turned on, computation is still possible, but in section 4
we find that a method by the Nicolai mapping is more effective. Interestingly, the Nicolai
mapping works for SUSY matrix models even in the presence of the external field which
explicitly breaks SUSY. It enables us to calculate the partition function at least in the leading
nontrivial order of an expansion with respect to the small external field for finite N. We can
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Spontaneous Supersymmetry Breaking, Localization and Nicolai Mapping in Matrix Models 3

take the large-N limit of our result before turning off the external field and detect whether
SUSY is spontaneously broken or not in the large-N limit. For illustration, we obtain large-N
solutions for a SUSY matrix model with double-well potential.
Section 5 is devoted to summarize the results and discuss future directions.
This chapter is mainly based on the two papers (Kuroki & Sugino, 2010; 2011).

2. Preliminaries on SUSY quantum mechanics

As a preparation to discuss large-N SUSY matrix models, in this section we present some
preliminary results on SUSY quantum mechanics.
Let us start with a system defined by the Euclidean (Wick-rotated) action:

SQM =
∫ β

0
dt

[
1

2
B2 + iB

(
φ̇ + W ′(φ)

)
+ ψ̄

(
ψ̇ + W ′′(φ)ψ

)]
, (1)

where φ is a real scalar field, ψ, ψ̄ are fermions, and B is an auxiliary field. The dot means the
derivative with respect to the Euclidean time t ∈ [0, β]. For a while, all the fields are supposed
to obey the PBC. W(φ) is a real function of φ called superpotential, and the prime (′) represents
the φ-derivative.
SQM is invariant under one-dimensional N = 2 SUSY transformations generated by Q and Q̄.
They act on the fields as

Qφ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (2)

and
Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB + 2φ̇, Q̄B = 2i ˙̄ψ, (3)

with satisfying the algebra

Q2 = Q̄2 = 0, {Q, Q̄} = 2∂t. (4)

Note that SQM can be written as the Q- or QQ̄-exact form:

SQM = Q
∫

dt ψ̄

{
i

2
B −

(
φ̇ + W ′(φ)

)}
(5)

= QQ̄
∫

dt

(
1

2
ψ̄ψ + W(φ)

)
. (6)

For demonstration, let us consider the case of the derivative of the superpotential

W ′(φ) = g(φ2 − μ2) with g, μ2 ∈ R. (7)

For μ2 < 0, the classical minimum is given by the static configuration φ = 0, with its energy
E0 = 1

2 g2μ4 > 0 implying spontaneous SUSY breaking. Then, B = igμ2 �= 0 from the equation
of motion, leading to Qψ̄, Q̄ψ �= 0, which also means the SUSY breaking.

For μ2 > 0, the classical minima φ = ±
√

μ2 are zero-energy configurations. It is known
that the quantum tunneling (instantons) between the minima resolves the degeneracy giving
positive energy to the ground state. SUSY is broken also in this case.
Next, let us consider quantum aspects of the SUSY breaking in this model. For later
discussions on matrix models, it is desirable to observe SUSY breaking via the path-integral
formalism, that is, by seeing the expectation value of some field. We take 〈B〉 (or 〈Bn〉
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(n = 1, 2, · · · )) as such an order parameter. Whichever μ2 is positive or negative, the SUSY
is broken, so the ground state energy E0 is positive. Then, for each of the energy levels En

(0 < E0 < E1 < E2 < · · · ), the SUSY algebra1

{Q, Q̄} = 2En, Q2 = Q̄2 = 0 (8)

leads to the SUSY multiplet formed by bosonic and fermionic states

|bn〉 =
1√
2En

Q̄| fn〉, | fn〉 =
1√
2En

Q|bn〉. (9)

As a convention, we assume that |bn〉 and | fn〉 have the fermion number charges F = 0 and 1,
respectively. Since the Q-transformation for B in (2) is expressed as [Q, B] = 0 in the operator
formalism, we can see that

〈bn|B|bn〉 = 〈 fn|B| fn〉 (10)

holds for each n. Then, it turns out that the unnormalized expectation value of B vanishes2:

〈B〉′ ≡
∫

PBC
d(fields) B e−SQM

= Tr
[

B(−1)Fe−βH
]

=
∞

∑
n=0

(〈bn|B|bn〉 − 〈 fn|B| fn〉) e−βEn = 0. (11)

This observation shows that, in order to judge SUSY breaking from the expectation value of B,
we should choose either of the SUSY broken ground states (|b0〉 or | f0〉) and see the expectation
value with respect to the chosen ground state. The situation is somewhat analogous to the case
of spontaneous breaking of ordinary (bosonic) symmetry.
However, differently from the ordinary case, when SUSY is broken, the supersymmetric
partition function vanishes:

ZQM
PBC =

∫

PBC
d(fields) e−SQM

= Tr
[
(−1)Fe−βH

]
(12)

=
∞

∑
n=0

(〈bn|bn〉 − 〈 fn| fn〉) e−βEn = 0, (13)

where the normalization 〈bn|bn〉 = 〈 fn| fn〉 = 1 was used. So, the expectation values

normalized by ZQM
PBC could be ill-defined (Kanamori et al., 2008a;b).

2.1 Twisted boundary condition

To detect spontaneous breaking of ordinary symmetry, some external field is introduced so
that the ground state degeneracy is resolved to specify a single broken ground state. The
external field is turned off after taking the thermodynamic limit, then we can judge whether
spontaneous symmetry breaking takes place or not, seeing the value of the corresponding
order parameter. (For example, to detect the spontaneous magnetization in the Ising model,
the external field is a magnetic field, and the corresponding order parameter is the expectation
value of the spin operator.)

1 In the operator formalism, Q̄, ψ̄ are regarded as hermitian conjugate to Q, ψ, respectively.
2 Furthermore, 〈Bn〉′ = 0 (n = 1, 2, · · · ) can be shown.
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Spontaneous Supersymmetry Breaking, Localization and Nicolai Mapping in Matrix Models 5

We will do a similar thing also for the case of spontaneous SUSY breaking. For this purpose,
let us change the boundary condition for the fermions to the TBC:

ψ(t + β) = eiαψ(t), ψ̄(t + β) = e−iαψ̄(t), (14)

then the twist α can be regarded as an external field. Other fields remain intact. As seen
shortly in section 2.1.1, the partition function with the TBC corresponds to the expression (12)
with (−1)F replaced by (−e−iα)F:

ZQM
α ≡ −e−iα

∫

TBC
d(fields) e−SQM

= Tr
[
(−e−iα)Fe−βH

]
(15)

=
∞

∑
n=0

(
〈bn|bn〉 − e−iα〈 fn| fn〉

)
e−βEn =

(
1 − e−iα

) ∞

∑
n=0

e−βEn . (16)

Then, the normalized expectation value of B under the TBC becomes

〈B〉α ≡ 1

ZQM
α

Tr
[

B(−e−iα)Fe−βH
]

=
1

ZQM
α

∞

∑
n=0

(
〈bn|B|bn〉 − e−iα〈 fn|B| fn〉

)
e−βEn

=
∑

∞
n=0〈bn|B|bn〉e−βEn

∑
∞
n=0 e−βEn

=
∑

∞
n=0〈 fn|B| fn〉e−βEn

∑
∞
n=0 e−βEn

. (17)

Note that the factors
(

1 − e−iα
)

in the numerator and the denominator cancel each other,

and thus 〈B〉α does not depend on α even for finite β. As a result, 〈B〉α is equivalent to the
expectation value taken over one of the ground states and its excitations {|bn〉} (or {| fn〉}).
The normalized expectation value of B under the PBC was of the indefinite form 0/0, which
is now regularized by introducing the parameter α. The expression (17) is well-defined.
On the other hand, from the Q-transformation ψ = [Q, φ], we have

〈bn|φ|bn〉 = 〈 fn|φ| fn〉+
1√
2En

〈 fn|ψ|bn〉. (18)

The second term is a transition between bosonic and fermionic states via the fermionic
operator ψ, which does not vanish in general. Thus, differently from 〈B〉α, the expectation
value of φ becomes

〈φ〉α =
1

ZQM
α

Tr
[
φ(−e−iα)Fe−βH

]

=
1

ZQM
α

∞

∑
n=0

(
〈bn|φ|bn〉 − e−iα〈 fn|φ| fn〉

)
e−βEn

=
∑

∞
n=0〈 fn|φ| fn〉e−βEn

∑
∞
n=0 e−βEn

+
1

1 − e−iα

∑
∞
n=0〈 fn|ψ|bn〉 1√

2En
e−βEn

∑
∞
n=0 e−βEn

. (19)

When 〈 fn|ψ|bn〉 �= 0 for some n, the second term is α-dependent and diverges as α → 0.
The divergence comes from the transition between |bn〉 and | fn〉. Since the two states are
transformed to each other by the (broken) SUSY transformation, we can say that they should
belong to the separate superselection sectors, in analogy to spontaneous breaking of ordinary
(bosonic) symmetry. Thus, the divergence of 〈φ〉α as α → 0 implies that the superselection
rule does not hold in the system.
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2.1.1 Partition function with the twist α
We here show that the partition function with the TBC for the fermions (14) can be expressed
in the form (15).
Let b̂, b̂† be annihilation and creation operators of the fermions:

b̂2 = (b̂†)2 = 0, {b̂, b̂†} = 1, (20)

and they are represented on the Fock space {|0〉, |1〉} as

b̂|0〉 = 0, b̂†|0〉 = |1〉. (21)

We assume that |0〉, |1〉 have the fermion numbers F = 0, 1, respectively.
The coherent states |ψ〉, 〈ψ̄| satisfying

b̂|ψ〉 = ψ|ψ〉, 〈ψ̄|b̂† = 〈ψ̄|ψ̄ (22)

(ψ, ψ̄ are Grassmann numbers, and anticommute with b̂, b̂†.) are explicitly constructed as

|ψ〉 = |0〉 − ψ|1〉 = e−ψb̂† |0〉, 〈ψ̄| = 〈0| − 〈1|ψ̄ = 〈0|e−b̂ψ̄. (23)

Also,

|0〉 =
∫

dψ ψ|ψ〉, 〈0| =
∫

dψ̄ 〈ψ̄|ψ̄, |1〉 = −
∫

dψ |ψ〉, 〈1| =
∫

dψ̄ 〈ψ̄|. (24)

Thus, we can obtain

Tr
[
(−e−iα)Fe−βH

]
= 〈0|e−βH |0〉 − e−iα〈1|e−βH |1〉

=
∫

dψ̄dψ (e−iα + ψψ̄)〈ψ̄|e−βH |ψ〉

= e−iα
∫

dψ̄dψ exp
(

eiαψψ̄
)
〈ψ̄|e−βH |ψ〉. (25)

Since the bosonic part of H is obvious, below we focus on the fermionic part HF = b̂†W ′′ b̂.
Dividing the interval β into M short segments of length ε: β = Mε in (25) and applying the
relations

〈ψ̄|ψ〉 = eψ̄ψ, 1 =
∫

dψ̄dψ |ψ〉eψψ̄〈ψ̄| (26)

to each segment, we have the following expression:

Tr
[
(−e−iα)Fe−βHF

]
= −e−iα

∫
⎛
⎝

M

∏
j=1

dψjdψ̄j

⎞
⎠ exp

⎡
⎣−ε

M

∑
j=1

ψ̄j

(
ψj+1 − ψj

ε
+ W ′′ψj

)⎤
⎦ (27)

with
ψM+1 = eiαψ1, (28)

or

Tr
[
(−e−iα)Fe−βHF

]
= −e−iα

∫
⎛
⎝

M

∏
j=1

dψjdψ̄j

⎞
⎠ exp

⎡
⎣−ε

M

∑
j=1

(
−

ψ̄j − ψ̄j−1

ε
+ ψ̄jW

′′
)

ψj

⎤
⎦ (29)

with
ψ̄0 = eiαψ̄M. (30)

Since (28) and (30) correspond to (14) in the continuum limit ε → 0, M → ∞ with β = Mε
fixed, we find that the formula (15) holds.
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2.2 Discretized SUSY quantum mechanics

In this subsection, we consider a discretized system of (1), namely the Euclidean time is
discretized as t = 1, · · · , T. The action is written as

SdQM = Q
T

∑
t=1

ψ̄(t)

{
i

2
B(t)−

(
φ(t + 1)− φ(t) + W ′(φ(t))

)}
(31)

=
T

∑
t=1

[
1

2
B(t)2 + iB(t)

{
φ(t + 1)− φ(t) + W ′(φ(t))

}

+ ψ̄(t)
{

ψ(t + 1)− ψ(t) + W ′′(φ(t))ψ(t)
}]

, (32)

where the Q-SUSY is of the same form as in (2). As is seen by the Q-exact form (31), the action
is Q-invariant and the Q-SUSY is preserved upon the discretization (Catterall, 2003). On the
other hand, the Q̄-SUSY can not be preserved by the discretization in the case of T ≥ 2.
When T is finite, the partition function or various correlators are expressed as a finite number
of integrals with respect to field variables. So, at first sight, one might expect that spontaneous
breaking of the SUSY could not take place, because of a small number of the degrees of
freedom. In what follows, we will demonstrate that the expectation is not correct, and that
the SUSY can be broken even in such a finite system.

Expressing as SdQM
α the action (32) under the TBC

φ(T + 1) = φ(1), ψ(T + 1) = eiαψ(1), (33)

the partition function

ZdQM
α ≡

(−1

2π

)T ∫ T

∏
t=1

(dB(t) dφ(t) dψ(t) dψ̄(t)) e−SdQM
α (34)

is computed to be

ZdQM
α = (−1)T

(
1 − eiα

)
CT , (35)

CT ≡
∫ (

T

∏
t=1

dφ(t)√
2π

)
exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2

]
. (36)

Here we used

∫ (
T

∏
t=1

dφ(t)√
2π

)[
T

∏
t=1

(
−1 + W ′′(φ(t))

)
− (−1)T

]

× exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2

]
= 0 (37)

for the superpotential (7), which is derived from the Nicolai mapping (Nicolai, 1979). (Note

the factor
[
∏

T
t=1 (−1 + W ′′(φ(t)))− (−1)T

]
is equal to the fermion determinant under the

PBC.) Also, CT is positive definite.
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Similarly, for the normalized expectation value

〈B(t)〉α ≡ 1

ZdQM
α

(−1

2π

)T ∫ T

∏
t=1

(dB(t) dφ(t) dψ(t) dψ̄(t)) B(t) e−SdQM
α , (38)

we use the Nicolai mapping to have

〈B(t)〉α =
1

ZdQM
α

(−1)T
(

1 − eiα
) ∫ (

T

∏
t=1

dφ(t)√
2π

)
(−i)

(
φ(t + 1)− φ(t) + W ′(φ(t))

)

× exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2

]

=
1

CT

∫ (
T

∏
t=1

dφ(t)√
2π

)
(−i)

(
φ(t + 1)− φ(t) + W ′(φ(t))

)

× exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2

]
. (39)

The factor (−1)T
(

1 − eiα
)

was canceled, and 〈B(t)〉α does not depend on α, again. The

result (39) is finite and well-defined. By using the Nicolai mapping, it is straightforward to
generalize this result to the case of W ′ being a general polynomial

W ′(φ) = gpφp + gp−1φp−1 + · · ·+ g0. (40)

We find that (39) holds and it is finite and well-defined for even p, and that limα→0 〈B(t)〉α = 0
for odd p.

2.2.1 No analog of Mermin-Wagner-Coleman theorem for SUSY

As claimed in the Mermin-Wagner-Coleman theorem (Coleman, 1973; Mermin & Wagner,
1966), continuous bosonic symmetry cannot be spontaneously broken at the quantum level
in the dimensions of two or lower. In dimensions D ≤ 2, although the symmetry might
be broken at the classical level, in computing quantum corrections to a classical (nonzero)
value of a corresponding order parameter, one encounters infrared (IR) divergences from
loops of a massless boson. It indicates that the conclusion of the symmetry breaking from
the classical value is not reliable at the quantum level any more. It is a manifestation of the
Mermin-Wagner-Coleman theorem.
Here, we consider whether an analog of the Mermin-Wagner-Coleman theorem for SUSY
holds or not. Naively, since loops of a massless fermion (“would-be Nambu-Goldstone
fermion”) would be dangerous in the dimension one or lower, we might be tempted to expect
that SUSY could not be spontaneously broken at the quantum level in the dimension of one or
lower. However, this expectation is not correct. Because the twist α in our setting can also be
regarded as an IR cutoff for the massless fermion, the finiteness of (39) shows that 〈B(t)〉α is
free from IR divergences and well-defined at the quantum level for less than one-dimension.
(For one-dimensional case, (17) has no α-dependence, thus no IR divergences.)
We can see it more explicitly in perturbative calculations. Let us consider the
superpotential (7) with μ2 < 0, where the classical configuration φ(t) = 0 gives B(t) = igμ2.
If the theorem held, quantum corrections should modify this classical value to zero, and
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Spontaneous Supersymmetry Breaking, Localization and Nicolai Mapping in Matrix Models 9

there we should come across IR divergences owing to a massless fermion. Although we
have obtained the finite result (39), the following perturbative analysis would clarify a role
played by the massless fermion. We evaluate quantum corrections to the classical value of
B(t) perturbatively. Under the mode expansions

φ(t) =
1√
T

(T−1)/2

∑
n=−(T−1)/2

φ̃n ei2πnt/T with φ̃∗
n = φ̃−n,

ψ(t) =
1√
T

(T−1)/2

∑
n=−(T−1)/2

ψ̃n ei(2πn+α)t/T ,

ψ̄(t) =
1√
T

(T−1)/2

∑
n=−(T−1)/2

ψ̃n e−i(2πn+α)t/T , (41)

free propagators are

〈
φ̃−nφ̃m

〉
free =

δnm

4 sin2
(

πn
T

)
+ M2

,

〈
ψ̃nψ̃m

〉
free

=
δnm

ei(2πn+α)/T − 1
(42)

with M2 ≡ −2g2μ2. Here we consider the case of odd T for simplicity of the mode expansion.
Note that the boson is massive while the fermion is nearly massless regulated by α. Also, there

are three kinds of interactions in SdQM
α (after B is integrated out):

V4 =
T

∑
t=1

1

2
g2φ(t)4,

V3B =
T

∑
t=1

gφ(t)2 (φ(t + 1)− φ(t)) ,

V3F =
T

∑
t=1

2gφ(t)ψ̄(t)ψ(t). (43)

We perturbatively compute the second term of

〈B(t)〉α = igμ2 − i
〈

gφ(t)2 + φ(t + 1)− φ(t)
〉

α
(44)

up to the two-loop order, and directly see that the nearly massless fermion (“would-be
Nambu-Goldstone fermion”) does not contribute and gives no IR singularity. It is easy
to see that the tadpole 〈φ(t + 1)− φ(t)〉α vanishes from the momentum conservation. For
−i

〈
gφ(t)2

〉
α, the one-loop contribution comes from the diagram (1B) in Figure 1, which

consists only of a boson line independent of α. Also, the two-loop diagrams (2BBa), (2BBb),
(2BBc) and (2BBd) do not contain fermion lines. The relevant diagrams for the IR divergence
at the two-loop order are the last four (2FFa), (2FFb), (2BFa) and (2BFb), which are evaluated
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(1B) (2BBa) (2BBb)

(2BBc) (2BBd)

(2BFa) (2BFb)

(2FFb)
(2FFa)

Fig. 1. One- and two-loop diagrams. The crosses represent the insertion of the operator
−igφ(t)2. The solid lines with (without) arrows mean the fermion (boson) propagators. (1B)
is the one-loop diagram, and the other eight are the two-loop diagrams. The diagrams with
the name “FF” (“BB”) are constructed by using the interaction vertices V3F twice (V4 once or
V3B twice), and those with “BF” are by using each of V3B and V3F once.

as

(2FFa) = i
4g3

T2

(T−1)/2

∑
m,k=−(T−1)/2

(
1

4 sin2
(

πm
T

)
+ M2

)2
1

ei(2πk+α)/T − 1

1

ei(2π(m+k)+α)/T − 1
,

(2FFb) = −i
4g3

T2

1

M4

⎛
⎝

(T−1)/2

∑
m=−(T−1)/2

1

ei(2πm+α)/T − 1

⎞
⎠

2

,

(2BFa) = −i
4g3

T2

1

M2

(T−1)/2

∑
m=−(T−1)/2

(
1 − M2

4 sin2
(

πm
T

)
+ M2

)
1

4 sin2
(

πm
T

)
+ M2

×
(T−1)/2

∑
k=−(T−1)/2

1

ei(2πk+α)/T − 1
,

(2BFb) = −i
4g3

T2

1

M4

(T−1)/2

∑
m=−(T−1)/2

(
1 − M2

4 sin2
(

πm
T

)
+ M2

)
(T−1)/2

∑
k=−(T−1)/2

1

ei(2πk+α)/T − 1
.

(45)
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Each diagram is singular as α → 0 due to the fermion zero-mode, however it is remarkable
that the sum of them vanishes:

(2FFa) + (2FFb) + (2BFa) + (2BFb)

= −i
4g3

T2

1

M4

T−1

∑
m=1

⎡
⎣1 −

(
M2

4 sin2
(

πm
T

)
+ M2

)2
⎤
⎦ F(m) (46)

with

F(m) ≡
T

∑
k=1

(
1 +

1

ei(2π(m+k)+α)/T − 1

)
1

ei(2πk+α)/T − 1

=
T

∑
k=1

1

ei(2πk+α)/T − 1

[
1 − e−i(2πk+α)/T

1 − ei2πm/T
− e−i(2πk+α)/T

1 − e−i2πm/T

]

=
T

∑
k=1

e−i(2πk+α)/T = 0. (47)

Thus, the two-loop contribution turns out to have no α-dependence, and the quantum
corrections come only from the boson loops which are IR finite, that is consistent with (39).

Since the classical value igμ2 = −i M2

2g is regarded as O(g−1), and ℓ-loop contributions are

of the order O(g2ℓ−1), the quantum corrections can not be comparable to the classical value
in the perturbation theory. Thus, the conclusion of the SUSY breaking based on the classical
value continues to be correct even at the quantum level.

3. Change of variables and localization in SUSY matrix models

As argued in the previous section, in order to discuss spontaneous SUSY breaking in the
path-integral formalism of (discretized) SUSY quantum mechanics, we introduce an external
field to twist the boundary condition of fermions in the Euclidean time direction and observe
whether an order parameter of SUSY breaking remains nonzero after turning off the external
field. This motivates us to calculate the partition function in the presence of the external field.
In the following, we consider a matrix-model analog of (32)

SM = Q
T

∑
t=1

N tr ψ̄(t)

{
i

2
B(t)−

(
φ(t + 1)− φ(t) + W ′(φ(t))

)}

=
T

∑
t=1

N tr

[
1

2
B(t)2 + iB(t)

{
φ(t + 1)− φ(t) + W ′(φ(t))

}

+ ψ̄(t)
{

ψ(t + 1)− ψ(t) + QW ′(φ(t))
}]

, (48)

where all variables are N × N Hermitian matrices. Under the PBC, this action is manifestly
invariant under Q-transformation defined in (2). When N = 1, it reduces to the discretized
SUSY quantum mechanics in section 2.2. We will focus on the simplest case T = 1 below.
Under the twisted boundary condition (33) with T = 1, the action is

SM
α = N tr

[
1

2
B2 + iBW ′(φ) + ψ̄

(
eiα − 1

)
ψ + ψ̄QW ′(φ)

]
, (49)
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and the partition function is defined by

ZM
α ≡ (−1)N2

∫
dN2

B dN2
φ

(
dN2

ψ dN2
ψ̄
)

e−SM
α , (50)

where we fix the normalization of the measure as
∫

dN2
φ e−Ntr ( 1

2 φ2) =
∫

dN2
B e−Ntr ( 1

2 B2) = 1, (−1)N2
∫ (

dN2
ψ dN2

ψ̄
)

e−Ntr (ψ̄ψ) = 1.

(51)
Explicitly, when W ′(φ) is a general polynomial (40), (49) becomes

SM
α = N tr

[
1

2
B2 + iBW ′(φ) + ψ̄

(
eiα − 1

)
ψ +

p

∑
k=1

gk

k−1

∑
ℓ=0

ψ̄ φℓ ψ φk−ℓ−1

]
. (52)

Notice the ordering of the matrices in the last term. We see that the effect of the external field
remains even after the reduction to zero dimension (T = 1). When α = 0, SM

α=0 is invariant
under Q and Q̄:

Qφ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (53)

and
Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (54)

both of which become broken explicitly in SM
α by introducing the external field α.

Now let us discuss localization of the integration in ZM
α . Some aspects are analogous to the

discretized SUSY quantum mechanics with T ≥ 2 under the identification N2 = T from the
viewpoint of systems possessing multi-degrees of freedom, while there are also interesting
new phenomena specific to matrix models 3. We make a change of variables

φ = φ̃ + ǭψ, ψ̄ = ˜̄ψ − iǭB, (55)

where in the second equation, ˜̄ψ satisfies

N tr(B ˜̄ψ) = 0, (56)

namely, ˜̄ψ is orthogonal to B with respect to the inner product (A1, A2) ≡ N tr(A†
1 A2). Let us

take a basis of N × N Hermitian matrices {ta} (a = 1, · · · , N2) to be orthonormal with respect
to the inner product: N tr(tatb) = δab. More explicitly, we take

ǭ ≡ i
tr(Bψ̄)

trB2
=

i

N 2
B

N tr(Bψ̄) (57)

with NB ≡ ||B|| =
√

N tr(B2) the norm of the matrix B. Notice that for general N ψ̄ is an
N × N matrix and that ǭ does not have enough degrees of freedom to parametrize the whole
space of ψ̄. In fact, ǭ is used to parametrize a single component of ψ̄ parallel to B.
If we write (50) as

ZM
α =

∫
dN2

B Ξα(B), Ξα(B) ≡ (−1)N2
∫

dN2
φ

(
dN2

ψ dN2
ψ̄
)

e−SM
α , (58)

3 Localization in the discretized SUSY quantum mechanics is discussed in appendix A in ref. (Kuroki &
Sugino, 2011).
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and consider the change of the variables in Ξα(B), B may be regarded as an external variable.

The measure dN2
ψ̄ can be expressed by the measures associated with ˜̄ψ and ǭ as

dN2
ψ̄ =

i

NB
dǭ dN2−1 ˜̄ψ, (59)

where dN2−1 ˜̄ψ is explicitly given by introducing the constraint (56) as a delta-function:

dN2−1 ˜̄ψ ≡ (−1)N2−1dN2 ˜̄ψ δ

(
1

NB
N tr(B ˜̄ψ)

)

= (−1)N2−1

(
N2

∏
a=1

d ˜̄ψa

)
1

NB

N2

∑
a=1

Ba ˜̄ψa. (60)

˜̄ψa and Ba are coefficients in the expansion of ˜̄ψ and B by the basis {ta}:

ψ̃ =
N2

∑
a=1

˜̄ψata, B =
N2

∑
a=1

Bata. (61)

Notice that the measure on the RHS of (59) depends on B. When B �= 0, we can safely change
the variables as in (55) and in terms of them the action becomes

SM
α = N tr

[
1

2
B2 + iBW ′(φ̃) + ˜̄ψ

(
(eiα − 1)ψ + QW ′(φ̃)

)
− (eiα − 1)iǭBψ

]
(62)

with Qφ̃ = ψ.

3.1 α = 0 case

Let us first consider the case of the PBC (α = 0). SM
α=0 does not depend on ǭ as a consequence

of its SUSY invariance, because (55) reads

φ = φ̃ + ǫQφ̃, ψ̄ = ˜̄ψ + ǭQ ˜̄ψ. (63)

Therefore, the contribution to the partition function from B �= 0

Z̃α=0 =
∫

||B||≥ε
dN2

B Ξα=0(B) (0 < ε ≪ 1) (64)

vanishes due to the integration over ǭ according to (59). Namely, when α = 0, the path integral
of the partition function (50) is localized to B = 0.
For the contribution to the partition function from the vicinity of B = 0

Z
(0)
α=0 =

∫

||B||<ε
dN2

B Ξα=0(B), (65)

when W ′(φ) is given by (40) of degree p ≥ 2, rescaling as

φ̃ = N− 1
p

B φ′, ˜̄ψ = N
p−1

p

B ψ̄′, (66)
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we obtain

Z
(0)
α=0 = i

( −1√
2π

)N2
⎛
⎝

∫ ε

0
dNB

1

N 1+ 1
p

B

e−
1
2 N 2

B

⎞
⎠

∫
dΩB

∫
dN2

φ′ e−iN tr(ΩB gpφ′p)

×
∫

dN2
ψ
∫

dǭ dN2−1ψ̄′ e
−N tr

[
ψ̄′gp ∑

p−1
ℓ=0 φ′ℓψφ′p−ℓ−1

] [
1 +O(ε1/p)

]
, (67)

where the measure of the B-integral was expressed in terms of polar coordinates in R
N2

as

dN2
B =

N2

∏
a=1

dBa

√
2π

=

(
1

2π

) N2

2

N N2−1
B dNB dΩB, (68)

and ΩB ≡ 1
NB

B represents a unit vector in R
N2

. Since the ǭ-integral vanishes while the

integration of NB becomes singular at the origin, Z
(0)
α=0 takes an indefinite form (∞ × 0). When

W ′(φ) is linear (p = 1), the φ̃-integrals in (65) yield

Z
(0)
α=0 = i

( −1

|g1|

)N2 ∫

||B||<ε

(
N2

∏
a=1

dBa

)
1

NB
e−

1
2 N 2

B

N2

∏
a=1

δ(Ba)

×
∫

dN2
ψ

∫
dǭ dN2−1 ˜̄ψ e−N tr( ˜̄ψg1ψ), (69)

which is also of indefinite form – the B-integrals diverge while
∫

dǭ trivially vanishes. The

indefinite form reflects that Z
(0)
α=0 possibly takes a nonzero value if it is evaluated in a

well-defined manner.

3.1.1 Unnormalized expectation values

Next, let us consider the unnormalized expectation values of 1
N tr Bn (n ≥ 1):

〈
1

N
tr Bn

〉′
≡

∫
dN2

B

(
1

N
tr Bn

)
Ξα=0(B). (70)

Since contribution from the region ||B|| ≥ ε is shown to be zero by the change of variables
(55), we focus on the B-integration around the origin (||B|| < ε).
When W ′(φ) is a polynomial (40) of degree p ≥ 2, after the rescaling (66) we obtain

〈
1

N
tr Bn

〉′
= i

(∫ ε

0
dNB N n−1− 1

p

B e−
1
2 N 2

B

)
YN

[
1 +O(ε1/p)

]
,

YN ≡
( −1√

2π

)N2 ∫
dΩB

1

N
tr (Ωn

B)
∫

dN2
φ′ e−iN tr(ΩB gpφ′p)

×
∫

dN2
ψ

∫
dǭ dN2−1ψ̄′ e

−N tr
[
ψ̄′gp ∑

p−1
ℓ=0 φ′ℓψφ′p−ℓ−1

]

. (71)

The NB-integral is finite, and it is seen that YN definitely vanishes. Thus, the change of

variables (55) is possible for any B in evaluating
〈

1
N tr Bn

〉′
to give the result

〈
1

N
tr Bn

〉′
= 0 (n ≥ 1). (72)
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When W ′(φ) is linear,
〈

1
N tr Bn

〉′
has the same expression as the RHS of (69) except the

integrand multiplied by 1
N tr Bn. It leads to a finite result of the B-integration for n ≥ 1,

and (72) is also obtained.
Furthermore, it can be similarly shown that the unnormalized expectation values of

multi-trace operators ∏
k
i=1

1
N tr Bni (n1, · · · , nk ≥ 1) vanish:

〈
k

∏
i=1

1

N
tr Bni

〉′
= 0. (73)

3.1.2 Localization to W ′(φ) = 0, and localization versus Vandermonde

Since (73) means

〈
e−N tr( u−1

2 B2)
〉′

=
∞

∑
n=0

1

n!

(
−N2 u − 1

2

)n 〈(
1

N
tr B2

)n〉′
= 〈1〉′ = ZM

α=0 (74)

for an arbitrary parameter u, we may compute
〈

e−N tr( u−1
2 B2)

〉′
to evaluate the partition

function ZM
α=0. It is independent of the value of u, so u can be chosen to a convenient value to

make the evaluation easier.
Taking u > 0 and integrating B first, we obtain

ZM
α=0 = (−1)N2

∫
dN2

φ

(
1

u

) N2

2

e−N tr[ 1
2u W ′(φ)2]

∫ (
dN2

ψ dN2
ψ̄
)

e−N tr[ψ̄QW ′(φ)]. (75)

Then, let us consider the u → 0 limit. Localization to W ′(φ) = 0 takes place because

lim
u→0

(
1

u

) N2

2

e−N tr[ 1
2u W ′(φ)2] = (2π)

N2

2

N2

∏
a=1

δ(W ′(φ)a). (76)

It is important to recognize that W ′(φ)a = 0 for all a implies localization to a continuous space.
Namely, if this condition is met, W ′(U†φU)a = 0 for ∀U ∈ SU(N). Thus the original SU(N)
gauge symmetry in the matrix model makes the localization continuous in nature. This is
characteristic of SUSY matrix models.
The observation above suggests that in order to localize the path integral to discrete points,
we should switch to a description in terms of gauge invariant quantities. This motivates us to
change the expression of φ to its eigenvalues and SU(N) angles as

φ = U

⎛
⎜⎝

λ1

. . .

λN

⎞
⎟⎠U†, U ∈ SU(N). (77)

This leads to an interesting situation, which is peculiar to SUSY matrix models and is not seen
in the (discretized) SUSY quantum mechanics. For a polynomial W ′(φ) given by (40), the
partition function (75) becomes

ZM
α=0 =

(
1

u

) N2

2
∫

dN2
φ e−N tr[ 1

2u W ′(φ)2] det

[
p

∑
k=1

gk

k−1

∑
ℓ=0

φℓ ⊗ φk−ℓ−1

]
, (78)

397Spontaneous Supersymmetry Breaking, Localization and Nicolai Mapping in Matrix Models

www.intechopen.com



16 Will-be-set-by-IN-TECH

after the Grassmann integrals. Note that the N2 × N2 matrix ∑
p
k=1 gk ∑

k−1
ℓ=0 φℓ ⊗ φk−ℓ−1 has

the eigenvalues ∑
p
k=1 gk ∑

k−1
ℓ=0 λℓ

i λk−ℓ−1
j (i, j = 1, · · · , N). Thus, the fermion determinant can

be expressed as

det

[
p

∑
k=1

gk

k−1

∑
ℓ=0

φℓ ⊗ φk−ℓ−1

]
=

N

∏
i,j=1

[
p

∑
k=1

gk

k−1

∑
ℓ=0

λℓ
i λk−ℓ−1

j

]

=

(
N

∏
i=1

W ′′(λi)

)

∏
i>j

(
W ′(λi)− W ′(λj)

λi − λj

)2

. (79)

The measure dN2
φ given in (51) can be also recast to

dN2
φ = C̃N

( N

∏
i=1

dλi

)
△(λ)2 dU, (80)

where △(λ) = ∏i>j(λi − λj) is the Vandermonde determinant, and dU is the SU(N) Haar

measure normalized by
∫

dU = 1. C̃N is a numerical factor depending only on N determined
by

1

C̃N
=

∫ ( N

∏
i=1

dλi

)
△(λ)2 e−N ∑

N
i=1

1
2 λ2

i . (81)

Plugging these into (78), we obtain

ZM
α=0 = C̃N

∫ ( N

∏
i=1

dλi

) (
N

∏
i=1

W ′′(λi)

) ⎧
⎨
⎩∏

i>j

1

u

(
W ′(λi)− W ′(λj)

)2

⎫
⎬
⎭

×
(

1

u

) N
2

e−N ∑
N
i=1

1
2u W ′(λi)

2
. (82)

In this expression, the factor in the second line forces eigenvalues to be localized at the
critical points of the superpotential as u → 0, while the last factor in the first line, which is
proportional to the square of the Vandermonde determinant of W ′(λi), gives repulsive force
among eigenvalues which prevents them from collapsing to the critical points. The dynamics
of eigenvalues is thus determined by balance of the attractive force to the critical points
originating from the localization and the repulsive force from the Vandermonde determinant.
This kind of dynamics is not seen in the (discretized) SUSY quantum mechanics.
To proceed with the analysis, let us consider the situation of each eigenvalue λi fluctuating
around the critical point φc,i:

λi = φc,i +
√

u λ̃i (i = 1, · · · , N), (83)

where λ̃i is a fluctuation, and φc,1, · · · , φc,N are allowed to coincide with each other. Then, the
partition function (82) takes the form

ZM
α=0 = C̃N ∑

φc,i

∫ ( N

∏
i=1

dλ̃i

) N

∏
i=1

W ′′(φc,i) ∏
i>j

(
W ′′(φc,i)λ̃i − W ′′(φc,j)λ̃j

)2

×e−N ∑
N
i=1

1
2 W ′′(φc,i)

2λ̃2
i +O(

√
u). (84)
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Although only the Gaussian factors become relevant as u → 0, there remain N(N − 1)-point
vertices originating from the Vandermonde determinant of W ′(λi) which yield a specific effect
of SUSY matrix models.
In the case of W ′(φ) = g1φ, where the corresponding scalar potential 1

2 W ′(φ)2 is Gaussian,
the critical point is only the origin: φc,1 = · · · = φc,N = 0. Then, (84) is reduced to

ZM
α=0 = C̃N

∫ ( N

∏
i=1

dλ̃i

)
gN2

1 ∏
i>j

(
λ̃i − λ̃j

)2
e−N ∑

N
i=1

1
2 g2

1 λ̃2
i , (85)

where no O(
√

u) term appears since W ′(φ) is linear. By using (81) we obtain

ZM
α=0 = (sgn(g1))

N2
= (sgn(g1))

N . (86)

For a general superpotential, we change the integration variables as

λ̃i =
1

W ′′(φc,i)
yi, (87)

then the integration of λ̃i becomes
∫ ∞

−∞
dλ̃i · · · = 1

|W ′′(φc,i)|
∫ ∞

−∞
dyi · · · . In the limit u → 0, (84)

is computed to be

ZM
α=0 = ∑

φc,i

N

∏
i=1

W ′′(φc,i)

|W ′′(φc,i)|

{
C̃N

∫ ∞

−∞

( N

∏
i=1

dyi

)
△(y)2 e−N ∑

N
i=1

1
2 y2

i

}

= ∑
φc,i

N

∏
i=1

sgn
(
W ′′(φc,i)

)

=

⎡
⎣ ∑

φc : W ′(φc)=0

sgn
(
W ′′(φc)

)
⎤
⎦

N

. (88)

Note that the last factor in the first line of (88) is nothing but the partition function of the
Gaussian case with g1 = 1. The last line of (88) tells that the total partition function is given
by the N-th power of the degree of the map φ → W ′(φ).
Furthermore, we consider a case that the superpotential W(φ) has K nondegenerate critical
points a1, · · · , aK . Namely, W ′(aI) = 0 and W ′′(aI) �= 0 for each I = 1, · · · , K. The scalar
potential 1

2 W ′(φ)2 has K minima at φ = a1, · · · , aK . When N eigenvalues are fluctuating
around the minima, we focus on the situation that
the first ν1N eigenvalues λi (i = 1, · · · , ν1N) are around φ = a1,
the next ν2N eigenvalues λν1 N+i ( i = 1, · · · , ν2N) are around φ = a2,
· · · ,
and the last νK N eigenvalues λν1 N+···+νK−1 N+i (i = 1, · · · , νK N) are around φ = aK ,

where ν1, · · · , νK are filling fractions satisfying ∑
K
I=1 νI = 1. Let Z(ν1,··· ,νK) be a contribution to

the total partition function ZM
α=0 from the above configuration. Then,

ZM
α=0 =

N

∑
ν1 N,··· ,νK N=0

N!

(ν1N)! · · · (νK N)!
Z(ν1,··· ,νK). (89)
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(The sum is taken under the constraint ∑
K
I=1 νI = 1.) Since Z(ν1,··· ,νK) is equal to the second

line of (88) with φc,i fixed as

φc,1 = · · · = φc,ν1 N = a1,

φc,ν1 N+1 = · · · = φc,ν1 N+ν2 N = a2,

· · ·
φc,ν1 N+···+νK−1 N+1 = · · · = φc,N = aK , (90)

we obtain

Z(ν1,··· ,νK) =
K

∏
I=1

ZG,νI
, ZG,νI

=
(
sgn

(
W ′′(aI)

))νI N
. (91)

ZG,νI
can be interpreted as the partition function of the Gaussian SUSY matrix model with the

matrix size νI N × νI N describing contributions from Gaussian fluctuations around φ = aI .

3.2 α �= 0 case

In the presence of the external field α, let us consider Ξα(B) in (58) with the action (62) obtained
after the change of variables (55). Using the explicit form of the measure (59) and (60), we
obtain

Ξα(B) = (eiα − 1)
(−1)N2−1

N 2
B

∫
dN2

φ̃
(

dN2
ψ dN2 ˜̄ψ

)
e−N tr[ 1

2 B2+iBW ′(φ̃)+ ˜̄ψQW ′(φ̃)]

×N tr(B ˜̄ψ) N tr(Bψ) e−(eiα−1) N tr( ˜̄ψψ), (92)

which is valid for B �= 0. It does not vanish in general by the effect of the twist eiα − 1.
This suggests that the localization is incomplete by the twist. Although we can proceed the
computation further, it is more convenient to invoke another method based on the Nicolai
mapping we will present in the next section.

4. (eiα − 1)-expansion and Nicolai mapping

In the previous section, we have seen that the change of variables is useful to localize the
path integral, but in the α �= 0 case the external field makes the localization incomplete and
the explicit computation somewhat cumbersome. In this section, we instead compute ZM

α in
an expansion with respect to (eiα − 1). For the purpose of examining the spontaneous SUSY
breaking, we are interested in behavior of ZM

α in the α → 0 limit. Thus it is expected that it
will be often sufficient to compute ZM

α in the leading order of the (eiα − 1)-expansion for our
purpose.

4.1 Finite N
Performing the integration over fermions and the auxiliary field B in (50) with W ′(φ) in (40),
we have

ZM
α =

∫
dN2

φ det

(
(eiα − 1)1 ⊗ 1 +

p

∑
k=1

gk

k−1

∑
ℓ=0

φℓ ⊗ φp−ℓ−1

)
e−N tr 1

2 W ′(φ)2
. (93)

Hereafter, let us expand this with respect to (eiα − 1) as

ZM
α =

N2

∑
k=0

(eiα − 1)k Zα,k, (94)
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and derive a formula in the leading order of this expansion. The change of variable φ as (77)
recasts (93) to

ZM
α = C̃N

∫ ( N

∏
i=1

dλi

)
△(λ)2

N

∏
i,j=1

(
eiα − 1 +

p

∑
k=1

gk

k−1

∑
ℓ=0

λℓ
i λ

p−ℓ−1
j

)
e−N ∑

N
i=1

1
2 W ′(λi)

2
, (95)

after the SU(N) angles are integrated out. Crucial observation is that we can apply the Nicolai
mapping (Nicolai, 1979) for each i even in the presence of the external field

Λi = (eiα − 1)λi + W ′(λi), (96)

in terms of which the partition function is basically expressed as an unnormalized expectation
value of the Gaussian matrix model

ZM
α = C̃N

∫ ( N

∏
i=1

dΛi

)
∏
i>j

(Λi − Λj)
2e−N ∑i

1
2 Λ2

i e−N ∑i(−AΛiλi+
1
2 A2λ2

i ), (97)

where A = eiα − 1. However, there is an important difference from the Gaussian matrix
model, which originates from the fact that the Nicolai mapping (96) is not one to one. As
a consequence, λi has several branches as a function of Λi and it has a different expression
according to each of the branches. Therefore, since the last factor of (97) contains λi(Λi),
we have to take account of the branches and divide the integration region of Λi accordingly.
Nevertheless, we can derive a rather simple formula at least in the leading order of the
expansion in terms of A owing to the Nicolai mapping (96). In the following, let us concentrate
on the cases where

Λi → ∞ as λi → ±∞, or Λi → −∞ as λi → ±∞, (98)

i.e. the leading order of W ′(φ) is even. In such cases, we can expect spontaneous SUSY
breaking, in which the leading nontrivial expansion coefficient is relevant since the zeroth
order partition function vanishes: ZM

α=0 = Zα,0 = 0. Namely, in the expansion of the last
factor in (97)

e−N ∑
N
i=1(−AΛiλi+

1
2 A2λ2

i ) = 1 − N
N

∑
i=1

(
−AΛiλi +

1

2
A2λ2

i

)
+ · · · , (99)

the first term “1” does not contribute to ZM
α . It can be understood from the fact that it does

not depend on the branches and thus the Nicolai mapping becomes trivial, i.e. The mapping
degree is zero. Notice that the second term also gives a vanishing effect. For each i, we have

the unnormalized expectation value of N
(

AΛiλi − 1
2 A2λ2

i

)
, where the Λj-integrals (j �= i)

are independent of the branches leading to the trivial Nicolai mapping. Thus, in order to get
a nonvanishing result, we need a branch-dependent piece in the integrand for any Λi. This
immediately shows that in the expansion (94), Zα,k = 0 for k = 0, . · · · , N − 1 and that the first

possibly nonvanishing contribution starts from O(AN) as

Zα,N = C̃N NN
∫ ( N

∏
i=1

dΛi

)
∏
i>j

(Λi − Λj)
2 e−N ∑

N
i=1

1
2 Λ2

i

N

∏
i=1

(Λiλi)

∣∣∣∣∣∣
A=0

. (100)
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Note that the A(= eiα − 1)-dependence of the integrand comes also from λi as a function of Λi

through (96). Although the integration over Λi above should be divided into the branches, if
we change the integration variables so that we will recover the original λi with A = 0 (which
we call xi) by

Λi = W ′(xi), (101)

then by construction the integration of xi is standard and runs from −∞ to ∞. Therefore, we
arrive at

Zα,N = C̃N NN
∫ ∞

−∞

( N

∏
i=1

dxi

) N

∏
i=1

(
W ′′(xi)W

′(xi)xi

)
∏
i>j

(W ′(xi)− W ′(xj))
2

×e−N ∑
N
i=1

1
2 W ′(xi)

2
, (102)

which does not vanish in general. For example, taking W ′(φ) = g(φ2 − μ2) we have for N = 2

Zα,2 = 10g2C̃2 I2
0

[
I4

I0
− 9

5

(
I2

I0

)2
]

, (103)

where

In ≡
∫ ∞

−∞
dλ λn e−g2(λ2−μ2)2

(n = 0, 2, 4, · · · ). (104)

In fact, when g = 1, μ2 = 1 (double-well scalar potential case) we find

I0 = 1.97373,
I4

I0
− 9

5

(
I2

I0

)2

= −0.165492 �= 0, (105)

hence Zα,2 actually does not vanish. In the case of the discretized SUSY quantum mechanics,

we have seen in (35) that the expansion of ZM
α with respect to (eiα − 1) terminates at the linear

order for any T. Thus, the nontrivial O(AN) contribution of higher order can be regarded as
a specific feature of SUSY matrix models.
We stress here that, although we have expanded the partition function in terms of (eiα − 1)
and (102) is the leading order one, it is an exact result of the partition function for any finite
N and any polynomial W ′(φ) of even degree in the presence of the external field. Thus, it
provides a firm ground for discussion of spontaneous SUSY breaking in various settings.

4.2 Large-N
As an application of (102), let us discuss SUSY breaking/restoration in the large-N limit of our
SUSY matrix models. From (102), introducing the eigenvalue density

ρ(x) =
1

N

N

∑
i=1

δ(x − xi) (106)

rewrites the leading O(AN) part of ZM
α as

Zα,N = NN
∫ ( N

∏
i=1

dxi

)
exp(−N2F), (107)

F ≡ −
∫

dx dy ρ(x)ρ(y) log
∣∣W ′(x)− W ′(y)

∣∣+
∫

dx ρ(x)
1

2
W ′(x)2 − 1

N2
log C̃N

− 1

N

∫
dx ρ(x) log(W ′′(x)W ′(x)x). (108)
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In the large-N limit, ρ(x) is given as a solution to the saddle point equation obtained from
O(N0) part of F as

0 = −
∫

dyρ(y)
W ′′(x)

|W ′(x)− W ′(y)| −
1

2
W ′(x)W ′′(x). (109)

Plugging a solution ρ0(x) into F in (108), we get ZM
α in the large-N limit in the leading order

of (eiα − 1)-expansion as

Zα,N → NN exp(−N2F0),

F0 = −
∫

dx dy ρ0(x)ρ0(y) log
∣∣W ′(x)− W ′(y)

∣∣+
∫

dx ρ0(x)
1

2
W ′(x)2

− 1

N2
log CN , (110)

where CN is a factor dependent only on N which arises in replacing the integration over φ
by the saddle point of its eigenvalue density, thus including C̃N . From consideration of the
Gaussian matrix model (85), CN is calculated in appendix B in ref. (Kuroki & Sugino, 2010) as

CN = exp

[
3

4
N2 +O(N0)

]
. (111)

In (110) we notice that, if we include O(1/N) part of F (the last term in (108)) in deriving
the saddle point equation, the solution will receive an O(1/N) correction as ρ(x) = ρ0(x) +
1
N ρ1(x). However, when we substitute this into (108), ρ1(x) will contribute to F only by the

order O(1/N2), because O(1/N) corrections to F0 under ρ0(x) → ρ0(x) + 1
N ρ1(x) vanish as

a result of the saddle point equation at the leading order (109) satisfied by ρ0(x).

4.3 Example: SUSY matrix model with double-well potential

For illustration of results in the previous subsection, let us consider the SUSY matrix model
with W ′(φ) = φ2 − μ2. The saddle point equation (109) becomes

−
∫

dy
ρ(y)

x − y
+−

∫
dy

ρ(y)

x + y
= x3 − μ2x. (112)

Let us consider the case μ2 > 0, where the shape of the scalar potential is a double-well
1
2

(
x2 − μ2

)2
.

4.3.1 Asymmetric one-cut solution

First, we find a solution corresponding to all the eigenvalues located around one of the minima

λ = +
√

μ2. Assuming the support of ρ(x) as x ∈ [a, b] with 0 < a < b, the equation (112) is
valid for x ∈ [a, b].
Following the method in ref. (Brezin et al., 1978), we introduce a holomorphic function

F(z) ≡
∫ b

a
dy

ρ(y)

z − y
, (113)

which satisfies the following properties:

1. F(z) is analytic in z ∈ C except the cut [a, b] .
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2. F(z) is real on z ∈ R outside the cut.

3. For z ∼ ∞,

F(z) = 1
z +O

(
1
z2

)
.

4. For x ∈ [a, b],
F(x ± i0) = F(−x) + x3 − μ2x ∓ iπρ(x).

Note that, if we consider the combination (Eynard & Kristjansen, 1995)

F−(z) ≡
1

2
(F(z)− F(−z)) , (114)

then the properties of F−(z) are

1. F−(z) is analytic in z ∈ C except the two cuts [a, b] and [−b,−a].

2. F−(z) is odd (F−(−z) = −F−(z)), and real on z ∈ R outside the cuts.

3. For z ∼ ∞,

F−(z) = 1
z +O

(
1
z3

)
.

4. For x ∈ [a, b],
F−(x ± i0) = 1

2

(
x3 − μ2x

)
∓ i π

2 ρ(x).

These properties are sufficient to fix the form of F−(z) as

F−(z) =
1

2

(
z3 − μ2z

)
− 1

2
z
√
(z2 − a2)(z2 − b2) (115)

with
a2 = −2 + μ2, b2 = 2 + μ2. (116)

Since a2 should be positive, the solution is valid for μ2 > 2. The eigenvalue distribution is
obtained as

ρ0(x) =
x

π

√
(x2 − a2)(b2 − x2). (117)

From (117), we see that

lim
α→0

(
lim

N→∞

〈
1

N
tr φ

〉

α

)
=

∫ b

a
dx xρ0(x) (118)

is finite and nonsingular, differently from the situation in (19). It can be understood that the
tunneling between separate broken vacua is suppressed by taking the large-N limit, and thus
the superselection rule works. Note that the large-N limit in the matrix models is analogous
to the infinite volume limit or the thermodynamic limit of statistical systems. In fact, this will
play an essential role for restoration of SUSY in the large-N limit of the matrix model with a
double-well potential.
Using (117), we compute the expectation value of 1

N tr B as

lim
α→0

(
lim

N→∞

〈
1

N
tr B

〉

α

)
=

∫ b

a
dx (x2 − μ2)ρ0(x) = 0. (119)

Furthermore, all the expectation values of 1
N tr Bn are proven to vanish:

lim
α→0

(
lim

N→∞

〈
1

N
tr Bn

〉

α

)
= 0 (n = 1, 2, · · · ). (120)

(For a proof, see appendix C in ref. (Kuroki & Sugino, 2010).) Also, the large-N free energy
(110) vanishes. These evidences convince us that the SUSY is restored at infinite N.
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4.3.2 Two-cut solutions

Let us consider configurations that ν+N eigenvalues are located around one minimum λ =

+
√

μ2 of the double-well, and the remaining ν−N(= N − ν+N) eigenvalues are around the

other minimum λ = −
√

μ2.
First, we focus on the Z2-symmetric two-cut solution with ν+ = ν− = 1

2 , where the eigenvalue
distribution is supposed to have a Z2-symmetric support Ω = [−b,−a] ∪ [a, b], and ρ(−x) =
ρ(x). The equation (112) is valid for x ∈ Ω. Due to the Z2 symmetry, the holomorphic function

F(z) ≡
∫

Ω
dy

ρ(y)
z−y has the same properties as F−(z) in section 4.3.1 except the property 4,

which is now changed to

F(x ± i0) =
1

2

(
x3 − μ2x

)
∓ iπρ(x) for x ∈ Ω. (121)

The solution is given by

F(z) =
1

2

(
z3 − μ2z

)
− 1

2
z
√
(z2 − a2)(z2 − b2), (122)

ρ0(x) =
1

2π
|x|

√
(x2 − a2)(b2 − x2), (123)

where a, b coincide with the values of the one-cut solution (116). It is easy to see that,
concerning Z2-symmetric observables, the expectation values are the same as the expectation
values evaluated under the one-cut solution. In particular, we have the same conclusion for
the expectation values of 1

N tr Bn and the large-N free energy vanishing.
It is somewhat surprising that the end points of the cut a, b and the large-N free energy
coincide with those for the one-cut solution, which is recognized as a new interesting feature
of the supersymmetric models and can be never seen in the case of bosonic double-well matrix
models. In bosonic double-well matrix models, the free energy of the Z2-symmetric two-cut
solution is lower than that of the one-cut solution, and the endpoints of the cuts are different
between the two solutions (Cicuta et al., 1986; Nishimura et al., 2003).
Next, let us consider general Z2-asymmetric two-cut solutions (i.e., general ν±). We can check
that the following solution gives a large-N saddle point:
The eigenvalue distribution ρ0(x) has the cut Ω = [−b,−a] ∪ [a, b] with a, b given by (116):

ρ0(x) =

{ ν+
π x

√
(x2 − a2)(b2 − x2) (a < x < b)

ν−
π |x|

√
(x2 − a2)(b2 − x2) (−b < x < −a).

(124)

This is a general supersymmetric solution including the one-cut and Z2-symmetric two-cut
solutions. The expectation values of Z2-even observables under this saddle point coincide
with those under the one-cut solution, and the expectation values of 1

N tr Bn and the large-N
free energy vanish, again. Thus, we can conclude that the SUSY matrix model with
the double-well potential has an infinitely many degenerate supersymmetric saddle points
parametrized by (ν+, ν−) at large N for the case μ2 > 2.

4.3.3 Symmetric one-cut solution

Here we obtain a one-cut solution with a symmetric support [−c, c]. As before, let us consider
a complex function

G(z) ≡
∫ c

−c
dy

ρ(y)

z − y
, (125)
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and further define

G−(z) ≡
1

2
(G(z)− G(−z)). (126)

Then G−(z) has following properties:

1. G−(z) is odd, analytic in z ∈ C except the cut [−c, c].

2. G−(x) ∈ R for x ∈ R and x /∈ [−c, c].

3. G−(z) → 1
z +O( 1

z3 ) as z → ∞.

4. G−(x ± i0) = 1
2 (x2 − μ2)x ∓ iπρ(x) for x ∈ [−c, c].

They lead us to deduce

G−(z) =
1

2
(z2 − μ2)z − 1

2

(
z2 − μ2 +

c2

2

)√
z2 − c2 (127)

with

c2 =
2

3

(
μ2 +

√
μ4 + 12

)
, (128)

from which we find that

ρ0(x) =
1

2π

(
x2 − μ2 +

c2

2

)√
c2 − x2, x ∈ [−c, c]. (129)

The condition ρ0(x) ≥ 0 tells us that this solution is valid for μ2 ≤ 2, which is indeed the
complement of the region of μ2 where both the two-cut solution and the asymmetric one-cut
solution exist. (129) is valid also for μ2 < 0. Given ρ0(x), it is straightforward to calculate the
large-N free energy as

F0 =
1

3
μ4 − 1

216
μ8 − 1

216
(μ6 + 30μ2)

√
μ4 + 12 − log(μ2 +

√
μ4 + 12) + log 6, (130)

which is positive for μ2 < 2. Also, the expectation value of 1
N tr B is computed to be

〈
1

N
tr B

〉
= −i

[
c4

16
(c2 − μ2)− μ2

]
�= 0 for μ2

< 2. (131)

These are strong evidence suggesting the spontaneous SUSY breaking. Also, the
μ2-derivatives of the free energy,

lim
μ2→2−0

F0 = lim
μ2→2−0

dF0

d(μ2)
= lim

μ2→2−0

d2F0

d(μ2)2
= 0, lim

μ2→2−0

d3F0

d(μ2)3
= −1

2
, (132)

show that the transition between the SUSY phase (μ2 ≥ 2) and the SUSY broken phase (μ2 <

2) is of the third order.
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5. Summary and discussion

In this chapter, firstly we discussed spontaneous SUSY breaking in the (discretized) quantum
mechanics. The twist α, playing a role of the external field, was introduced to detect the
SUSY breaking, as well as to regularize the supersymmetric partition function (essentially
equivalent to the Witten index) which becomes zero when the SUSY is broken. Differently
from spontaneous breaking of ordinary (bosonic) symmetry, SUSY breaking does not require
cooperative phenomena and can take place even in the discretized quantum mechanics
with a finite number of discretized time steps. There is such a possibility, when the
supersymmetric partition function vanishes. In general, some non-analytic behavior is
necessary for spontaneous symmetry breaking to take place. For SUSY breaking in the finite
system, it can be understood that the non-analyticity comes from the vanishing partition
function.
Secondly we discussed localization in SUSY matrix models without the external field. The
formula of the partition function was obtained, which is given by the N-th power of the
localization formula in the N = 1 case (N is the rank of matrix variables). It can be
regarded as a matrix-model generalization of the ordinary localization formula. In terms of
eigenvalues, localization attracts them to the critical points of superpotential, while the square
of the Vandermonde determinant originating from the measure factor gives repulsive force
among them. Thus, the dynamics of the eigenvalues is governed by balance of the attractive
force from the localization and the repulsive force from the Vandermonde determinant.
It is a new feature specific to SUSY matrix models, not seen in the (discretized) SUSY
quantum mechanics. For a general superpotential which has K critical points, contribution
to the partition function from νI N eigenvalues fluctuating around the I-th critical point
(I = 1, · · · , K), denoted by Z(ν1,··· ,νK), was shown to be equal to the products of the partition
functions of the Gaussian SUSY matrix models ZG,ν1

· · · ZG,νK
. Here, ZG,νI

is the partition
function of the Gaussian SUSY matrix model with the rank of matrix variables being νI N,
which describes Gaussian fluctuations around the I-th critical point. It is interesting to
investigate whether such a factorization occurs also for various expectation values.
Thirdly, the argument of the change of variables leading to localization can be applied to
α �= 0 case. Then, we found that α-dependent terms in the action explicitly break SUSY and
makes localization incomplete. Instead of it, the Nicolai mapping, which is also applicable
to the α �= 0 case, is more convenient for actual calculation in SUSY matrix models. In the
case that the supersymmetric partition function (the partition function with α = 0) vanishes,
we obtained an exact result of a leading nontrivial contribution to the partition function with
α �= 0 in the expansion of (eiα − 1) for finite N. It will play a crucial role to compute various
correlators when SUSY is spontaneously broken. Large-N solutions for the double-well case
W ′(φ) = φ2 − μ2 were derived, and it was found that there is a phase transition between the
SUSY phase corresponding to μ2 ≥ 2 and the SUSY broken phase to μ2 < 2. It was shown to
be of the third order.
For future directions, this kind of argument can be expected to be useful to investigate
localization in various lattice models for supersymmetric field theories which realize some
SUSYs on the lattice. Also, it will be interesting to investigate localization in models
constructed in ref. (Kuroki & Sugino, 2008), which couple a supersymmetric quantum field
theory to a certain large-N matrix model and cause spontaneous SUSY breaking at large N.
Finally, we hope that similar analysis for super Yang-Mills matrix models (Banks et al., 1997;
Dijkgraaf et al., 1997; Ishibashi et al., 1997), which have been proposed as nonperturbative
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definitions of superstring/M theories, will shed light on new aspects of spontaneous SUSY
breaking in superstring/M theories.

6. Acknowledgements

The author would like to thank Tsunehide Kuroki for collaboration which gives a basis for
main contribution to this chapter.

7. References

Banks, T.; Fischler, W.; Shenker, S. H. & Susskind, L. (1996). M theory as a matrix model: A
conjecture, Physical Review D 55: 5112-5128.

Brezin, E.; Itzykson, C.; Parisi, G. & Zuber, J. B. (1978). Planar Diagrams, Communications in
Mathematical Physics 59 : 35-51.

Catterall, S. (2003). Lattice supersymmetry and topological field theory, Journal of High Energy
Physics 0305: 038.

Cicuta, G. M.; Molinari, L. & Montaldi, E. (1986). Large N Phase Transitions In Low
Dimensions, Modern Physics Letters A 1: 125-129.

Coleman, S. R. (1973). There are no Goldstone bosons in two-dimensions, Communications in
Mathematical Physics 31: 259-264.

Dijkgraaf, R.; Verlinde, E. P. & Verlinde, H. L. (1997). Matrix string theory, Nuclear Physics B
500: 43-61.

Eynard, B. & Kristjansen, C. (1995). Exact Solution of the O(n) Model on a Random Lattice,
Nuclear Physics B 455: 577-618.

Ishibashi, N.; Kawai, H.; Kitazawa, Y. & Tsuchiya, A. (1996). A large-N reduced model as
superstring, Nuclear Physics B 498: 467-491.

Kanamori, I.; Suzuki, H. & Sugino, F. (2008). Euclidean lattice simulation for the dynamical
supersymmetry breaking, Physical Review D 77: 091502.

Kanamori, I.; Suzuki, H. & Sugino, F. (2008). Observing dynamical supersymmetry breaking
with euclidean lattice simulations, Progress of Theoretical Physics 119: 797-827.

Kuroki, T. & Sugino, F. (2008). Spontaneous Supersymmetry Breaking by Large-N Matrices,
Nuclear Physics B 796: 471-499.

Kuroki, T. & Sugino, F. (2010). Spontaneous supersymmetry breaking in large-N matrix
models with slowly varying potential, Nuclear Physics B 830: 434-473.

Kuroki, T. & Sugino, F. (2011). Spontaneous supersymmetry breaking in matrix models from
the viewpoints of localization and Nicolai mapping,” Nuclear Physics B 844: 409-449.

Mermin, N. D. & Wagner, H. (1966). Absence of ferromagnetism or antiferromagnetism in
one-dimensional or two-dimensional isotropic Heisenberg models, Physical Review
Letters 17: 1133-1136.

Nicolai, H. (1979). On A New Characterization Of Scalar Supersymmetric Theories, Physics
Letters B 89: 341-346.

Nishimura, J.; Okubo, T. & Sugino, F. (2003). Testing the Gaussian expansion method in exactly
solvable matrix models, Journal of High Energy Physics 0310: 057.

Sohnius, M. F. (1985). Introducing Supersymmetry, Physics Reports 128: 39-204.
Witten, E. (1981). Dynamical Breaking Of Supersymmetry, Nuclear Physics B 188: 513-554.
Witten, E. (1982). Constraints On Supersymmetry Breaking, Nuclear Physics B 202: 253-316.

408 Theoretical Concepts of Quantum Mechanics

www.intechopen.com



Theoretical Concepts of Quantum Mechanics

Edited by Prof. Mohammad Reza Pahlavani

ISBN 978-953-51-0088-1

Hard cover, 598 pages

Publisher InTech

Published online 24, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Quantum theory as a scientific revolution profoundly influenced human thought about the universe and

governed forces of nature. Perhaps the historical development of quantum mechanics mimics the history of

human scientific struggles from their beginning. This book, which brought together an international community

of invited authors, represents a rich account of foundation, scientific history of quantum mechanics, relativistic

quantum mechanics and field theory, and different methods to solve the Schrodinger equation. We wish for

this collected volume to become an important reference for students and researchers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Fumihiko Sugino (2012). Spontaneous Supersymmetry Breaking, Localization and Nicolai Mapping in Matrix

Models, Theoretical Concepts of Quantum Mechanics, Prof. Mohammad Reza Pahlavani (Ed.), ISBN: 978-

953-51-0088-1, InTech, Available from: http://www.intechopen.com/books/theoretical-concepts-of-quantum-

mechanics/spontaneous-supersymmetry-breaking-localization-and-nicolai-mapping-in-matrix-models



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


