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1. Introduction

In order to understand what really happens in the formation of the Universe, many people
came to the point of view that a quantum consideration of this process is necessary. After the
publication of the first paper on the quantum description of Universe formation (DeWitt, 1967;
Wheeler, 1968), a lot of other papers appeared in this topic (for example, see Refs. (Atkatz &
Pagels, 1984; Hartle & Hawking, 1983; Linde, 1984; Rubakov, 1984; Vilenkin, 1982; 1984; 1986;
Zel’dovich & Starobinsky, 1984) and some discussions in Refs. (Rubakov, 1999; Vilenkin, 1994)
with references therein).
Today, among all variety of models one can select two approaches which are the prevailing
ones: these are the Feynman formalism of path integrals in multidimensional spacetime,
developed by the Cambridge group and other researchers, called the “Hartle–Hawking method”
(for example, see Ref. (Hartle & Hawking, 1983)), and a method based on direct consideration
of tunneling in 4-dimensional Euclidian spacetime, called the “Vilenkin method” (for example,
see Refs. (Vilenkin, 1982; 1984; 1986; 1994)). Here, in the quantum approach we have the
following picture of the Universe creation: a closed Universe with a small size is formed from
“nothing” (vacuum), where by the word “nothing” one refers to a quantum state without
classical space and time. A wave function is used for a probabilistic description of the creation
of the Universe and such a process is connected with transition of a wave through an effective
barrier. Determination of penetrability of this barrier is a key point in the estimation of
duration of the formation of the Universe, and the dynamics of its expansion in the first stage.
However, in the majority of these models, with the exception of some exactly solvable models,
tunneling is mainly studied in details in the semiclassical approximation (see Refs. (Rubakov,
1999; Vilenkin, 1994)). An attractive side of such an approach is its simplicity in the
construction of decreasing and increasing partial solutions for the wave function in the
tunneling region, the outgoing wave function in the external region, and the possibility to
define and to estimate in an enough simply way the penetrability of the barrier, which can be
used to obtain the duration of the nucleation of the Universe. The tunneling boundary condition

  

A Fully Quantum Model of Big Bang 

S. P. Maydanyuk1, A. Del Popolo2,3, V. S. Olkhovsky1 and E. Recami4,5,6 

1Institute for Nuclear Research, National Academy of Sciences of Ukraine 
2Istituto di Astronomia dell’ Università di Catania, Catania 

3Dipartimento di Matematica, Università Statale di Bergamo, Bergamo 
4INFN-Sezione di Milano, Milan 

5Facoltà di Ingegneria, Università statale di Bergamo, Bergamo 
6DMO/FEEC, UNICAMP, Campinas, SP, Brazil 

1Ukraine 
2,3,4Italy 

16

www.intechopen.com



2 Will-be-set-by-IN-TECH

(Vilenkin, 1994) could seem to be the most natural and clear description, where the wave
function should represent an outgoing wave only in the enough large value of the scale factor
a. However, is really such a wave free in the asymptotic region? In order to draw attention
on the increase of the modulus of the potential with increasing value of the scale factor a
and increasing magnitude of the gradient of such a potential, acting on this wave “through
the barrier”, then one come to a serious contradiction: the influence of the potential on this wave
increases strongly with a! Now a new question has appeared: what should the wave represent in
general in the cosmological problem? This problem connects with another and more general
one in quantum physics — the real importance to define a “free” wave inside strong fields. To
this aim we need a mathematical stable tool to study it. It is unclear whether a connection
between exact solutions for the wave function at turning point and “free” wave defined in the
asymptotic region is correct.
Note that the semiclassical formula of the penetrability of the barrier is constructed on the
basis of wave which is defined concerning zero potential at infinity, i.e. this wave should be
free outgoing in the asymptotic region. But in the cosmological problem we have opposite
case, when the force acting on the wave increases up to infinity in the asymptotic region.
At the same time, deformations of the shape of the potential outside the barrier cannot
change the penetrability calculated in the framework of the semiclassical approach (up to
the second order). An answer to such problem can be found in non-locality of definition of
the penetrability in quantum mechanics, which is reduced to minimum in the semiclassical
approach (i. e. this is so called “error” of the cosmological semiclassical approach).
The problem of the correct definition of the wave in cosmology is reinforced else more, if
one wants to calculate the incident and reflected waves in the internal region. Even with the
known exact solution for the wave function there is uncertainty in determination of these waves! But,
namely, the standard definition of the coefficients of penetrability and reflection is based on
them. In particular, we have not found papers where the coefficient of reflection is defined
and estimated in this problem (which differs essentially from unity at the energy of radiation
close to the height of the barrier and, therefore, such a characteristics could be interesting from
a physical point of view). Note that the semiclassical approximation put serious limits to the
possibility of its definition at all (Landau & Lifshitz, 1989).
Thus, in order to estimate probability of the formation of the Universe as accurately as
possible, we need a fully quantum definition of the wave. Note that the non-semiclassical
penetrability of the barrier in the cosmological problems has not been studied in detail and,
therefore, a development of fully quantum methods for its estimation is a perspective task.
Researches in this direction exist (Acacio de Barros et al., 2007), and in these papers was
estimated the penetrability on the basis of tunneling of wave packet through the barrier.
However, a stationary boundary condition has uncertainty that could lead to different results
in calculations of the penetrability. The stationary approach could allow to clarify this issue.
It is able to give stable solutions for the wave function (and results in Ref. (Maydanyuk,
2008) have confirmed this at zero energy of radiation), using the standard definition of the
coefficients of the penetrability and reflection, is more accurate to their estimation.
Aims of this Chapter are: (1) to define the wave in the quantum cosmological problem; (2) to
construct the fully quantum (non-semiclassical) methods of determination of the coefficients
of penetrability of the barriers and reflection from them on the basis of such a definition
of the wave; (3) to estimate how much the semiclassical approach differs in the estimation
of the penetrability from the fully quantum one. In order to achieve this goal, we need to
construct tools for calculation of partial solutions of the wave function. In order to resolve
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A Fully Quantum Model of Big Bang 3

the questions pointed out above, we shall restrict ourselves to a simple cosmological model,
where the potential has a barrier and internal above-barrier region.

2. Cosmological model in the Friedmann–Robertson–Walker metric with radiation

2.1 Dynamics of Universe in the Friedmann–Robertson–Walker metric

Let us consider a simple model of the homogeneous and isotropic Universe in
Friedmann–Robertson–Walker (FRW) metric (see Ref. (Weinberg, 1975), p. 438; also see
Refs. (Brandenberger, 1999; Linde, 2005; Rubakov, 2005; Trodden & and Carroll, 2003)):

ds2 = −dt2 + a2(t) ·
(

dr2

h(r)
+ r2(dθ2 + sin2 θ dφ2)

)

, h(r) = 1 − kr2, (1)

where t and r, θ, φ are time and space spherical coordinates, the signature of the metric is
(−,+,+,+) as in Ref. (Trodden & and Carroll, 2003) (see p. 4), a(t) is an unknown function
of time and k is a constant, the value of which equals +1, 0 or −1, with appropriate choice
of units for r. Further, we shall use the following system of units: h̄ = c = 1. For k = −1, 0
the space is infinite (Universe of open type), and for k = +1 the space is finite (Universe of
closed type). For k = 1 one can describe the space as a sphere with radius a(t) embedded in
a 4-dimensional Euclidian space. The function a(t) is referred to as the “radius of the Universe”
and is called the cosmic scale factor. This function contains information of the dynamics of the
expansion of the Universe, and therefore its determination is an actual task.
One can find the function a(t) using the Einstein equations taking into account the
cosmological constant Λ in this metric (we use the signs according to the chosen signature,
as in Ref. (Trodden & and Carroll, 2003) p. 8; the Greek symbols µ and ν denote any of the
four coordinates t, r, θ and φ):

Rµν −
1

2
gµν R = 8π G Tµν + Λ, (2)

where Rµν is the Ricci tensor, R is the scalar curvature, Tµν is the energy-momentum tensor,
and G is Newton’s constant. From (1) we find the Ricci tensor Rµν and the scalar curvature R:

Rtt = −3
ä

a
, Rrr =

aä

h
+ 2

ȧ2

h
− h′

hr
=

2ȧ2 + aä + 2k

1 − kr2
,

Rφφ = Rθθ sin2 θ, Rθθ = aä r2 + 2ȧ2 r2 − h − h′r
2

+ 1 = 2ȧ2 r2 + aä2 r2 + 2kr2

(3)

R = gttRtt + grrRrr + gθθRθθ + gφφRφφ =
6ȧ2 + 6aä + 6k

a2
. (4)

The energy-momentum tensor has the form (see (Trodden & and Carroll, 2003), p. 8): Tµν =
(ρ + p) UµUν + p gµν, where ρ and p are energy density and pressure. Here, one needs to use

the normalized vector of 4-velocity Ut = 1, Ur = Uθ = Uφ = 0. Substituting the previously
calculated components (2) of the Ricci tensor Rµν, the scalar curvature (4), the components
of the energy-momentum tensor Tµν and including the component ρrad(a), describing the
radiation in the initial stage (equation of state for radiation: p(a) = ρrad(a)/3), into the
Einstein’s equation (2) at µ = ν = 0), we obtain the Friedmann equation with the cosmological
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4 Will-be-set-by-IN-TECH

constant (see p. 8 in Ref. (Trodden & and Carroll, 2003); p. 3 in Ref. (Brandenberger, 1999)):

ȧ2 + k − 8π G

3

{ ρrad

a2(t)
+ ρΛ a2(t)

}

= 0, ρΛ =
Λ

8π G
, (5)

where ȧ is derivative a at time coordinate. From here, we write a general expression for the
energy density:

ρ (a) = ρΛ +
ρrad

a4(t)
. (6)

2.2 Action, lagrangian and quantization

We define the action as

S =
∫

√

−g

(

R

16π G
− ρ

)

dx4. (7)

Substituting the scalar curvature (4), then integrating item at ä by parts with respect to variable
t, we obtain the lagrangian:

L (a, ȧ) =
3 a

8π G

(

−ȧ2 + k − 8π G

3
a2 ρ(a)

)

. (8)

Considering the variables a and ȧ as generalized coordinate and velocity respectively, we find
a generalized momentum conjugate to a:

pa =
∂L (a, ȧ)

∂ȧ
= − 3

4π G
a ȧ (9)

and then hamiltonian:

h (a, pa) = p ȧ −L (a, ȧ) = − 1

a

{

2π G

3
p2

a + a2 3 k

8π G
− a4 ρ(a)

}

. (10)

The passage to the quantum description of the evolution of the Universe is obtained by
the standard procedure of canonical quantization in the Dirac formalism for systems with
constraints. In result, we obtain the Wheeler–De Witt (WDW) equation (see (DeWitt, 1967;
Levkov et al., 2002; Wheeler, 1968)), which can be written as

{

− ∂2

∂a2
+ V (a)

}

ϕ(a) = Erad ϕ(a),

V (a) =

(

3

4π G

)2

k a2 − 3 ρΛ

2π G
a4,

Erad =
3 ρrad

2π G
,

(11)

where ϕ(a) is wave function of Universe. This equation looks similar to the one-dimensional
stationary Schrödinger equation on a semiaxis (of the variable a) at energy Erad with potential
V (a). It is convenient to use system of units where 8π G ≡ M−2

p = 1, and to rewrite V (a) in
a generalized form as

V(a) = A a2 − B a4. (12)
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A Fully Quantum Model of Big Bang 5

In particular, for the Universe of the closed type (k = 1) we obtain A = 36, B = 12 Λ (this
potential coincides with Ref. (Acacio de Barros et al., 2007)).

2.3 Potential close to the turning points: non-zero energy case

In order to find the wave function we need to know the shape of the potential close to the
turning points. Let us find the turning points atp, in and atp, out concerning the potential (12) at
energy Erad:

atp, in =

√

A

2B
·
√

1 −
√

1 − 4BErad

A2
, atp, out =

√

A

2B
·
√

1 +

√

1 − 4BErad

A2
. (13)

Let us expand the potential V(a) (13) in powers of qout = a − atp (where the point atp, in or
atp, out is used as atp. Expansion is calculated at these points), where (for small q) we restrict
ourselves to the liner term:

V(q) = V0 + V1 q, (14)

where the coefficients V0 and V1 are:

V0 = V(a = atp, in) = V(a = atp, out) = A a2
tp − B a4

tp = Erad,

V
(out)
1 = − 2 A ·

√

A

2B

(

1 − 4BErad

A2

)(

1 +

√

1 − 4BErad

A2

)

,

V
(int)
1 = 2 A ·

√

A

2B

(

1 − 4BErad

A2

)(

1 −
√

1 − 4BErad

A2

)

.

(15)

Now eq. (15) transforms into a new form at variable q with potential V(q):

− d2

dq2
ϕ(q) + V1 q ϕ(q) = 0. (16)

3. Tunneling boundary condition in cosmology

3.1 A problem of definition of “free” wave in cosmology and correction of the boundary

condition

Which boundary condition should be used to obtain a wave function that describes how the
wave function leaves the barrier accurately? A little variation of the boundary condition
leads to change of the fluxes concerning the barrier and, as result, it changes the coefficients
of penetrability and reflection. So, a proper choice of the boundary condition is extremely
important. However before, let us analyze how much the choice of the boundary condition is
natural in the asymptotic region.

• In description of collisions and decay in nuclear and atomic physics potentials of
interactions tend to zero asymptotically. So, in these calculations, the boundary conditions
are imposed on the wave function at infinity. In cosmology we deal with another, different
type of potential: its modulus increases with increasing of the scale factor a. The gradient
of the potential also increases. Therefore, here there is nothing common to the free propagation
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6 Will-be-set-by-IN-TECH

of the wave in the asymptotic region. Thus, a direct passage of the application of the boundary
condition in the asymptotic region into cosmological problems looks questionable.

• The results in Ref. (Maydanyuk, 2008), which show that when the scale factor a increases
the region containing solutions for the wave function enlarges (and its two partial
solutions), reinforce the seriousness of this problem. According to Ref. (Maydanyuk, 2008),
the scale factor a in the external region is larger, the period of oscillations of each partial
solution for the wave function is smaller. One has to decrease the time–step and as a
consequence increase the calculation time. This increases errors in computer calculations
of the wave function close the barrier (if it is previously fixed by the boundary condition in
the asymptotic region). From here a natural conclusion follows on the impossibility to use
practically the boundary condition at infinity for calculation of the wave (in supposition
if we know it maximally accurately in the asymptotic region), if we like to pass from the
semiclassical approach to the fully quantum one. Another case exists in problems of decay
in nuclear and atomic physics where calculations of the wave in the asymptotic region are
the most stable and accurate.

• One can add a fact that it has not been known yet whether the Universe expands at
extremely large value of the scale factor a. Just the contrary, it would like to clarify this
from a solution of the problem, however imposing a condition that the Universe expands
in the initial stage.

So, we shall introduce the following definition of the boundary condition (Maydanyuk,
2010):

The boundary condition should be imposed on the wave function at such value of
the scale factor a, where the potential minimally acts on the wave, determined by
this wave function.

The propagation of the wave defined in such a way is close to free one for the potential and at
used value of the scale factor a (we call such a wave conditionally “free”). However, when we
want to give a mathematical formulation of this definition we have to answer two questions:

1. What should the free wave represent in a field of a cosmological potential of arbitrary
shape? How could it be defined in a correct way close to an arbitrary selected point?

2. Where should the boundary condition be imposed?

To start with, let us consider the second question namely where we must impose the boundary
condition on the wave function. One can suppose that this coordinate could be (1) a turning
point (where the potential coincides with energy of radiation), or (2) a point where the
gradient from the potential becomes zero, or (3) a point where the potential becomes zero. But
the clear condition of free propagation of the wave is the minimal influence of the potential
on this wave. So, we define these coordinate and force so (Maydanyuk, 2010):

The point in which we impose the boundary condition is the coordinate where the force acting
on the wave is minimal. The force is defined as minus the gradient of the potential.

It turns out that according to such a (local) definition the force is minimal at the external
turning point atp, out. Also, the force, acting on the wave incident on the barrier in the internal
region and on the wave reflected from it, has a minimum at the internal turning point atp, in.
Thus, we have just obtain the internal and external turning points where we should impose
the boundary conditions in order to determine the waves.

346 Theoretical Concepts of Quantum Mechanics

www.intechopen.com



A Fully Quantum Model of Big Bang 7

3.2 Boundary condition at a = 0: stationary approach versus non-stationary one

A choice of the proper boundary condition imposed on the wave function is directly connected
with the question: could the wave function be defined at a = 0, and which value should it
be equal to at this point in such a case? The wave function is constructed on the basis of its
two partial solutions which should be linearly independent. In particular, these two partial
solutions can be real (not complex), without any decrease of accuracy in determination of the
total wave function. For any desirable boundary condition imposed on the total wave function, such
methods should work. In order to achieve the maximal linear independence between two partial
solutions, we choose one solution to be increasing in the region of tunneling and another one
to be decreasing in this tunneling region. For the increasing partial solution we use as starting
point ax the internal turning point atp, in at Erad �= 0 or zero point ax = 0 at Erad = 0. For the
second decreasing partial solution the starting point ax is chosen as the external turning point
atp, out. Such a choice of starting points turns out to give us higher accuracy in calculations of
the total wave function than starting calculations of both partial solutions from zero or from
only one turning point.
In order to obtain the total wave function, we need to connect two partial solutions using
one boundary condition, which should be obtained from physical motivations. According to
analysis in Introduction and previous section, it is natural not to define the wave function at
zero (or at infinity), but to find outgoing wave at finite value of a in the external region, where
this wave corresponds to observed Universe at present time. But, in practical calculations, we
shall define such a wave at point where forces minimally act on it. This is an initial condition
imposed on the outgoing wave in the external region1.
Let us analyze a question: which value has the wave function at a = 0? In the paper the
following ideas are used:

• the wave function should be continuous in the whole spatial region of its definition,
• we have outgoing non-zero flux in the asymptotic region defined on the basis of the total wave

function,
• we consider the case when this flux is constant.

The non-zero outgoing flux defined at arbitrary point requires the wave function to be
complex and non-zero. The condition of continuity of this flux in the whole region of
definition of the wave function requires this wave function to be complex and non-zero in
the entire region. If we include point a = 0 into the studied region, then we should obtain
the non-zero and complex wave function also at such point. If we use the above ideas, then
we cannot obtain zero wave function at a = 0. One can use notions of nuclear physics, field
in which the study of such questions and their possible solutions have longer history then in
quantum cosmology. As example, one can consider elastic scattering of particles on nucleus
(where we have zero radial wave function at r = 0, and we have no divergences), and alpha
decay of nucleus (where we cannot obtain zero wave function at r = 0). A possible divergence
of the radial wave function at zero in quantum decay problem could be explained by existence of source
at a point which creates the outgoing flux in the asymptotic region (and is the source of this flux).
Now the picture becomes clearer: any quantum decay could be connected with source at zero.
This is why the vanishing of the total wave function at a = 0, after introduction of the wall
at this point (like in Ref. (Acacio de Barros et al., 2007)), is not obvious and is only one of the
possibilities.
If we wanted to study physics at zero a = 0, we should come to two cases:

1 For example, on the basis of such a boundary condition for α-decay problem we obtain the asymptotic
region where the wave function is spherical outgoing wave.
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8 Will-be-set-by-IN-TECH

• If we include the zero point into the region of consideration, we shall use to quantum
mechanics with included sources. In such a case, the condition of constant flux is
broken. But a more general integral formula of non-stationary dependence of the fluxes
on probability can include possible sources and put them into frameworks of the standard
quantum mechanics also (see eq. (19.5) in Ref. (Landau & Lifshitz, 1989), p. 80). Perhaps,
black hole could be another example of quantum mechanics with sources and sinks.

• We can consider only quantum mechanics with constant fluxes and without sources. Then
we should eliminate the zero point a = 0 from the region of our consideration. In this way,
the formalism proposed in this paper works and is able to calculate the penetrability and
reflection coefficients without any lost of accuracy.

This could be a stationary picture of interdependence between the wave function at zero and
the outgoing flux in the asymptotic region. In order to study the non-stationary case, then we
need initial conditions which should define also the evolution of the Universe. In such a case,
after defining the initial state (through set of parameters) it is possible to connect zero value of
wave packet at a = 0 (i. e. without singularity at such a point) with non-zero outgoing flux in
the asymptotic region. In such direction different proposals have been made in frameworks of
semiclassical models in order to describe inflation, to introduce time or to analyze dynamics
of studied quantum system (for example, see (Finelli et al., 1998; Tronconi et al., 2003)).

4. Direct fully quantum method

4.1 Wave function of Universe: calculations and analysis

The wave function is known to oscillate above the barrier and increase (or decrease) under
the barrier without any oscillations. So, in order to provide an effective linear independence
between two partial solutions for the wave function, we look for a first partial solution
increasing in the region of tunneling and a second one decreasing in this tunneling region. To
start with, we define each partial solution and its derivative at a selected starting point, and
then we calculate them in the region close enough to this point using the method of beginning of
the solution presented in Subsection 4.4.1. Here, for the partial solution which increases in the
barrier region, as starting point we use the internal turning point atp, in at non-zero energy Erad

or equals to zero a = 0 at null energy Erad, and for the second partial solution, which decreases
in the barrier region, we choose the starting point to be equal to the external turning point
atp, out. Then we calculate both partial solutions and their derivatives in the whole required
range of a using the method of continuation of the solution presented in Subsection 4.4.2, which is
improvement of the Numerov method with constant step. So, we obtain two partial solutions
for the wave function and their derivatives in the whole studied region (Maydanyuk, 2010).
In order to clarify how the proposed approach gives convergent (stable) solutions, we compare
our results with the paper of (Acacio de Barros et al., 2007). Let us consider the behavior of
the wave function. The first partial solution for the wave function and its derivative in my
calculation are presented in Fig. 1, which increase in the tunneling region and have been
obtained at different values of the energy of radiation Erad. From these figures one can see
that the wave function satisfies the rules satisfied by the wave function inside the sub-barrier
and in above-barrier regions (Olkhovsky & Recami, 1992; Olkhovsky et al., 2004; Zakhariev
et al., 1990). Starting from very small a, the wave function has oscillations and its maxima
increase monotonously with increasing of a. This corresponds to the behavior of the wave
function in the internal region before the barrier (this becomes more obvious after essential
increasing of scale, see left panel in Fig. 2). Moreover, for larger values of a, the wave
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A Fully Quantum Model of Big Bang 9

Fig. 1. The first partial solution for the wave function and its derivative at different values of
the energy of radiation Erad, increasing in the tunneling region. The blue plot represents the
wave function; the green one, the derivative of this wave function): (a) Erad = 10; (b)
Erad = 1000; (c) Erad = 2000

function increases monotonously without any oscillation, that points out the transition into
the tunneling region (one can see this in a logarithmic presentation of the wave function, see
central panel in Fig. 2). A boundary of such a transformation in behavior of the wave function
must be the point of penetration of the wave into the barrier, i. e. the internal turning point
atp, in. Further, with increasing of a the oscillations appeared in the wave function, which
could be possible inside the above barrier region only (in the right panel of Fig. 2 one can see
that such a transition is extremely smooth, thing that characterizes the accuracy of the method
positively). The boundary of such a transformation in the behavior of the wave function
should be the external turning point atp, out. Like Ref. (Maydanyuk, 2008), but at arbitrary
non-zero energy Erad we obtain monotonous increasing of maximums of the derivative of the
wave function and smooth decreasing of this wave function in the external region. One can
see that the derivative is larger than the wave function. At large values of a we obtain the
smooth continuous solutions up to a = 100 (in Ref. (Acacio de Barros et al., 2007) the maximal
presented limit is a = 30).

Fig. 2. The first partial solution for the wave function and its derivative at the energy of
radiation Erad = 2000. The blue line represents the wave function; the green one, the
derivative of this wave function)

In Fig. 3, it is presented the second partial solution of the wave function and its derivative at
different values of the energy of radiation Erad According to the analysis, this solution close
to the turning points, in the tunneling region, in the sub-barrier and above-barrier regions
looks like the first partial solution, but with the difference that now the maxima of the wave
function and their derivatives are larger essentially in the external region in a comparison with
the internal region, and amplitudes in the tunneling region decrease monotonously.
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10 Will-be-set-by-IN-TECH

Fig. 3. The second partial solution for the wave function and its derivative at different values
of the energy of radiation Erad, decreasing in the tunneling region (the blue line represents
the wave function; the green one represents the derivative of this wave function): (a)
Erad = 10; (b) Erad = 1000; (c) Erad = 2000

Comparing the previous pictures of the wave function with the results of Ref. (Acacio de
Barros et al., 2007), one can see that the wave function, in this approach, is essentially
more continuous, has no divergencies and its behavior is everywhere clear. From here we
conclude that the developed method for the determination of the wave function and its derivative at
arbitrary energy of radiation is essentially more quick, more stable and accurate in comparison with the
non-stationary quantum approach in Ref. (Acacio de Barros et al., 2007). Note that:

• With increasing a, the period of the oscillations, both for the wave function and its
derivative, decreases uniformly in the external region and increases uniformly in the
internal region (this result was partially obtained earlier in Ref. (Maydanyuk, 2008) at
Erad = 0).

• At larger distance from the barrier (i. e. for increasing values of a, in the external region,
and at decreasing value of a, in the internal region) it becomes more difficult to get the
convergent continuous solutions for the wave function and its derivative (this result was
partially obtained earlier in Ref. (Maydanyuk, 2008) at Erad = 0).

• A number of oscillations of the wave function in the internal region increases with increasing of the
energy of radiation Erad (this is a new result).

4.2 Definition of the wave minimally interacting with the potential

Now we shall be looking for a form of the wave function in the external region, which
describes accurately the wave, whose propagation is the closest to the “free” one in the
external region at the turning point atp, out and is directed outside. Let us return back to eq. (16)
where the variable q = a − atp, out has been introduced. Changing this variable to

ξ =
∣

∣V
(out)
1

∣

∣

1/3
q, (17)

this equation is transformed into

d2

dξ2
ϕ(ξ) + ξ ϕ(ξ) = 0. (18)

From quantum mechanics we know two linearly independent exact solutions for the function
ϕ(ξ) in this equation — these are the Airy functions Ai (ξ) and Bi (ξ) (see Ref. (Abramowitz &
Stegan, 1964), p. 264–272, 291–294). Expansions of these functions into power series at small ξ,

350 Theoretical Concepts of Quantum Mechanics

www.intechopen.com



A Fully Quantum Model of Big Bang 11

their asymptotic expansions at large |ξ|, their representations through Bessel functions, zeroes
and their asymptotic expansions are known. We have some integrals of these functions, and
also the form of the Airy functions in the semiclassical approximation (which can be applied
at large |ξ|). In some problems of the analysis of finite solutions ϕ(ξ) in the whole range of
ξ it is convenient to use the integral representations of the Airy functions (see eq. (10.4.32) in
Ref. (Abramowitz & Stegan, 1964), p. 265. In eq. (10.4.1) we took into account the sign and
a = 1/3):

Ai (±ξ) =
1

π

+∞
∫

0

cos

(

u3

3
∓ ξu

)

du,

Bi (±ξ) =
1

π

+∞
∫

0

[

exp

(

− u3

3
∓ ξu

)

+ sin

(

u3

3
∓ ξu

)]

du.

(19)

Furthermore, we shall be interested in the solution ϕ(ξ) which describes the outgoing wave
in the range of a close to the atp point. However, it is not clear what the wave represents in
general near the point atp, and which linear combination of the Ai (ξ) and Bi (ξ) functions
defines it in the most accurate way.
The clearest and most natural understanding of the outgoing wave is given by the
semiclassical consideration of the tunneling process. However, at the given potential the
semiclassical approach allows us to define the outgoing wave in the asymptotic region only
(while we can join solutions in the proximity of atp by the Airy functions). But it is not clear
whether the wave, defined in the asymptotic region, remains outgoing near the atp. During
the whole path of propagation outside the barrier the wave interacts with the potential, and
this must inevitably lead to a deformation of its shape (like to appearance of a phase shift in
the scattering of a wave by a radial potential caused by interaction in scattering theory). Does
the cosmological potentials deform the wave more than the potentials used for description of
nuclear collisions in scattering theory? Moreover, for the given potential there is a problem
in obtaining the convergence in the calculation of the partial solutions for the wave function
in the asymptotic region. According to our calculations, a small change of the range of the
definition of the wave in the asymptotic region leads to a significant increase of errors, which
requires one to increase the accuracy of the calculations. Therefore, we shall be looking for a
way of defining the outgoing wave not in the asymptotic region, but in the closest vicinity of
the point of escape, atp. In a search of solutions close to the point atp, i. e. at small enough |ξ|,
the validity of the semiclassical method breaks down as |ξ| approaches zero. Therefore, we
shall not use the semiclassical approach in this paper.
Assuming the potential V(a) to have an arbitrary form, we define the wave at the point atp in
the following way (Maydanyuk, 2010).

Definition 1 (strict definition of the wave). The wave is a linear combination of two partial
solutions of the wave function such that the change of the modulus ρ of this wave function is
approximately constant under variation of a:

d2

da2
ρ(a)

∣

∣

∣

∣

a=atp

→ 0. (20)

According to this definition, the real and imaginary parts of the total wave function have
the closest behaviors under the same variation of a, and the difference between possible
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maximums and minimums of the modulus of the total wave function is the smallest. For some
types of potentials (in particular, for a rectangular barrier) it is more convenient to define the
wave less strongly.

Definition 2 (weak definition of wave):

The wave is a linear combination of two partial solutions of wave function such that the modulus
ρ changes minimally under variation of a:

d

da
ρ(a)

∣

∣

∣

∣

a=atp

→ 0. (21)

According to this definition, the change of the wave function caused by variation of a is
characterized mainly by its phase (which can characterize the interaction between the wave
and the potential).
Subject to this requirement, we shall look for a solution in the following form:

ϕ (ξ) = T · Ψ(+)(ξ), (22)

where

Ψ(±)(ξ) =

umax
∫

0

exp± i
(

− u3

3
+ f (ξ) u

)

du. (23)

where T is an unknown normalization factor, f (ξ) is an unknown continuous function
satisfying f (ξ) → const at ξ → 0, and umax is the unknown upper limit of integration. In
such a solution, the real part of the function f (ξ) gives a contribution to the phase of the
integrand function, while the imaginary part of f (ξ) deforms its modulus.
Let us find the first and second derivatives of the function Ψ(ξ) (a prime denotes a derivative
with respect to ξ):

d

dξ
Ψ(±)(ξ) = ±we

umax
∫

0

f ′u exp±i
(

− u3

3
+ f (ξ)u

)

du,

d2

dξ2
Ψ(±)(ξ) =

umax
∫

0

(

± i f ′′u − ( f ′)2u2
)

exp±i
(

− u3

3
+ f (ξ)u

)

du.

(24)

From this we obtain:

d2

dξ2
Ψ(±)(ξ) + ξ Ψ(±)(ξ) =

umax
∫

0

(

± i f ′′u − ( f ′)2u2 + ξ
)

exp±i
(

− u3

3
+ f (ξ)u

)

du. (25)

Considering the solutions at small enough values of |ξ|, we represent f (ξ) in the form of a
power series:

f (ξ) =
+∞

∑
n=0

fn ξn, (26)
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where fn are constant coefficients. The first and second derivatives of f (ξ) are

f ′(ξ) =
d

dξ
f (ξ) =

+∞

∑
n=1

n fn ξn−1 =
+∞

∑
n=0

(n + 1) fn+1 ξn,

f ′′(ξ) =
d2

dξ2
f (ξ) =

+∞

∑
n=0

(n + 1) (n + 2) fn+2 ξn.

(27)

Substituting these solutions into eq. (24), we obtain

d2

dξ2
Ψ(±)(ξ) + ξ Ψ(±)(ξ) =

umax
∫

0

{

(

± 2iu f2 − u2 f 2
1

)

+

+
(

± 6iu f3 − 4u2 f1 f2 + 1
)

ξ ++
+∞

∑
n=2

[

± iu (n + 1)(n + 2) fn+2−

−u2
n
∑

m=0
(n − m + 1)(m + 1) fn−m+1 fm+1

]

ξn

}

exp± i
(

− u3

3
+ f u

)

du.

(28)

Considering this expression at small |ξ|, we use the following approximation:

exp± i
(

− u3

3
+ f u

)

→ exp± i
(

− u3

3
+ f0u

)

. (29)

Then from eq. (18) we obtain the following condition for the unknown fn:

umax
∫

0

(

± 2iu f2 − u2 f 2
1

)

exp±i
(

− u3

3
+ f0u

)

du +

+ ξ ·
umax
∫

0

(

± 6iu f3 − 4u2 f1 f2 + 1
)

exp±i
(

− u3

3
+ f0u

)

du +

+
+∞

∑
n=2

ξn ·
umax
∫

0

[

± iu (n + 1)(n + 2) fn+2 − u2
n

∑
m=0

(n − m + 1)(m + 1) fn−m+1 fm+1

]

×

× exp±i
(

− u3

3
+ f0u

)

du = 0.

(30)

Requiring that this condition is satisfied for different ξ and with different powers n, we obtain
the following system:

ξ0 :

umax
∫

0

(

± 2iu f2 − u2 f 2
1

)

exp±i
(

− u3

3
+ f0u

)

du = 0,

ξ1 :

umax
∫

0

(

± 6iu f3 − 4u2 f1 f2 + 1
)

exp±i
(

− u3

3
+ f0u

)

du = 0,

ξn :

umax
∫

0

[

± iu (n + 1)(n + 2) fn+2 − u2
n

∑
m=0

(n − m + 1)(m + 1) fn−m+1 fm+1

]

×

× exp±i
(

− u3

3
+ f0u

)

du = 0.

(31)
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Assuming that the coefficients f0 and f1 are known, we find the following solutions for the
unknown f2, f3 and fn:

f
(±)
2 = ± f 2

1

2i
· J

(±)
2

J
(±)
1

, f
(±)
3 = ± 4 f1 f

(±)
2 J

(±)
2 − J

(±)
0

6i J
(±)
1

, (32)

f
(±)
n+2 =

n

∑
m=0

(n − m + 1)(m + 1) f
(±)
n−m+1 f

(±)
m+1

i (n + 1)(n + 2)
· J

(±)
2

J
(±)
1

, (33)

where the following notations for the integrals have been introduced:

J
(±)
0 =

umax
∫

0

exp±i
(

− u3

3
+ f0u

)

du, J
(±)
1 =

umax
∫

0

u exp±i
(

− u3

3
+ f0u

)

du, (34)

J
(±)
2 =

umax
∫

0

u2 e
±i

(

−
u3

3
+ f0u

)

du. (35)

Thus, we see that the solution (22) taking into account eq. (23) for the function ϕ (ξ) has
arbitrariness in the choice of the unknown coefficients f0, f1 and the upper limit of integration,
umax. However, the solutions found, eqs. (32), define the function f (ξ) so as to ensure that the
equality (22) is exactly satisfied in the region of a close to the escape point atp. This proves

that the function ϕ (ξ) in the form (22), taking into account eq. (23) for an arbitrary choice of f0, f1

and umax is the exact solution of the Schrödinger equation near the escape point atp. In order to write
the solution Ψ(ξ) in terms of the well-known Airy functions, Ai (ξ) and Bi (ξ), we choose

f0 = 0, f1 = 1. (36)

For such a choice of the coefficients f0 and f1, the integrand function in the solution (23) (up to
ξ2) has a constant modulus and a varying phase. Therefore, one can expect that the solution
(22) at the turning point atp describes the wave accurately.

4.3 Total wave function

Having obtained two linearly independent partial solutions ϕ1(a) and ϕ2(a), we can write the
general solution (a prime is for the derivative with respect to a) as:

ϕ (a) = T ·
(

C1 ϕ1(a) + C2 ϕ2(a)
)

, (37)

C1 =
Ψϕ′

2 − Ψ′ϕ2

ϕ1 ϕ′
2 − ϕ′

1 ϕ2

∣

∣

∣

∣

a=atp, out

,

C2 =
Ψ′ϕ1 − Ψϕ′

1

ϕ1 ϕ′
2 − ϕ′

1 ϕ2

∣

∣

∣

∣

a=atp, out

,

(38)

where T is a normalization factor, C1 and C2 are complex constants found from the boundary
condition introduced above: the ϕ (a) function should represent an outgoing wave at turning point
atp, out.
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Fig. 4 plots the total wave function calculated in this way for the potential (12) with parameters
A = 36, B = 12 Λ at Λ = 0.01 at different values of the energy of radiation Erad. One can

Fig. 4. The wave function at selected values of the energy of radiation Erad (the blue line,
represents the real part of the wave function; the green line the imaginary part of the wave
function): (a) Erad = 10; (b) Erad = 1000; (c) Erad = 2000

see that the number of oscillations of the wave function in the internal region increases with
increasing of the energy of radiation. Another interesting property are the larger maxima of
the wave function in the internal region at smaller distances to the barrier for arbitrary energy (result
found for the first time).
In Fig. 5 it has been shown how the modulus of this wave function changes at selected
values of the energy of radiation. From these figures it becomes clear why the coefficient

Fig. 5. The behavior of the modulus of the wave function at the selected energies of radiation
Erad: (a) Erad = 10; (b) Erad = 1000; (c) Erad = 2000.

of penetrability of the barrier is extremely small (up to the energy Erad = 2000). In order to
estimate, how effective is the boundary condition introduced above in building up the wave
on the basis of the total wave function close to the external turning point atp, out, it is useful
to see how the modulus of this wave function changes close to this point. In Fig. 6 we plot
the modulus of the found wave function close to the turning points at the energy of radiation
Erad = 2000 is shown. Here, one can see that the modulus at atp, out is practically constant (see
left panel in Fig. 6). It is interesting to note that the modulus of the wave function, previously
defined, does not change close to the internal turning point atp, in, and is close to maximum
(see right panel in Fig. 6).

4.4 Calculations of the wave function of Universe

4.4.1 Method of calculations of the wave function close to an arbitrary selected point ax

Here, we look for the regular partial solution of the wave function close to an arbitrary selected
point ax . Let us write the wave function in the form:
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16 Will-be-set-by-IN-TECH

Fig. 6. The behavior of the modulus of the total wave function at the energy of radiation
Erad = 2000, close to the turning points (for atp, in = 8.58, atp, out = 15.04, see also Table 1): (a)
the modulus decreases monotonously in the tunneling region, with increasing of a. It shows
maxima and holes connected with the oscillations of the wave function in the external region,
but the modulus is not equal to zero (thispoints out the existence of a non-zero flux); (b)
when a increases, the modulus reaches a minimum close to the external turning point atp, out

(this demonstrates the practical fulfillment of the definition for the wave at such a point); (c)
transition close to atp, in is shown, where at increasing of a the modulus with maximums and
holes is transformed rapidly into a monotonously decreasing function without maximums
and holes. This is connected with transition to the region of tunneling.

ϕ(a) = c2

+∞

∑
n=0

bn (a − ax)
n = c2

+∞

∑
n=0

bn ān,

ā = a − ax

(39)

and rewrite the potential through the variable ā:

V(a) = C0 + C1 ā + C2 ā2 + C3 ā3 + C4 ā4, (40)

where
C0 = A a2

x − B a4
x ,

C1 = 2ax(A − B a2
x)− 2B a3

x = 2A ax − 4B a3
x ,

C2 = A − B a2
x − 4B a2

x − B a2
x = A − 6B a2

x,
C3 = −2B ax − 2B ax = −4B ax,
C4 = −B.

(41)

Substituting the wave function (39), its second derivative and the potential (40) into
Schrödinger equation, we obtain recurrent relations for unknown bn:

b2 =
(C0 − E) b0

2
, b3 =

(C0 − E) b1 + C1 b0

6
, b4 =

(C0 − E) b2 + C1 b1 + C2 b0

12
, (42)

b5 =
(C0 − E) b3 + C1 b2 + C2 b1 + C3 b0

20
, (43)

bn+2 =
(C0 − E) bn + C1 bn−1 + C2 bn−2 + C3 bn−3 + C4 bn−4

(n + 1) (n + 2)
at n ≥ 4. (44)
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Given the values of b0 and b1 and using eqs. (42)–(44) one can calculate all bn needed. At limit
Erad → 0 and at ax = 0 all found solutions for bi transform into the corresponding solutions
(40), early obtained in (Maydanyuk, 2008) at Erad = 0. Using c2 = 1, from eqs. (39) we find:

b0 = ϕ (ax), b1 = ϕ′(ax). (45)

So, on the basis of the coefficients b0 and b1 one can obtain the values of the wave function and
its derivative at point ax. Imposing two different boundary conditions via b0 and b1, we obtain
two linearly independent partial solutions ϕ1(a) and ϕ2(a) for the wave function. Using the
internal turning point atp, in as the starting point, we calculate the first partial solution which
increases in the barrier region (we choose: b0 = 0.1, b1 = 1), and using the external turning
point atp, out as the starting point, we calculate the second partial solution which decreases in
the barrier region (we choose: b0 = 1, b1 = −0.1). Such a choice provides effectively a linear
independence between two partial solutions.

4.4.2 Method of continuation of the solution

Let us rewrite equation (18) in such a form2:

ϕ′′ (a) = f (a) ϕ (a). (46)

Let
{

an
}

be a set of equidistant points an = a0 + nh. Denoting the values of the wave function
ϕ (a) at points an as ϕn, we have constructed an algorithm of the ninth order to determine
ϕn+1 and ϕ′

n when ϕn and ϕn−1 are known:

ϕn+1 = ϕn−1
g11 + g01

g01 − g11
+ ϕn

g01 g10 − g00 g11

g01 − g11
+ O (h9),

ϕ′
n = ϕn−1

2

g01 − g11
+ ϕn

g10 − g00

g01 − g11
+ O (h9),

(47)

where

g00 = 2 + h2 fn +
2

4!
h4

(

f ′′n + f 2
n

)

+
2

6!
h6

(

f
(4)
n + 4

(

f ′n
)2

+ 7 fn f ′′n + f 3
n

)

+

+
2

8!
h8

(

f
(6)
n + 16 fn f

(4)
n + 26 f ′n f

(3)
n + 15

(

f ′′n

)2
+ 22 f 2

n f ′′n + 28 fn
(

f ′n
)2

+ f 4
n

)

,

g01 =
2

4!
h4 2 f ′n +

2

6!
h6

(

4 f
(3)
n + 6 fn f ′n

)

+
2

8!
h8

(

6 f
(5)
n + 24 fn f

(3)
n + 48 f ′n f ′′n + 12 f 2

n f ′n
)

,

g10 =
2

3!
h3 f ′n +

2

5!
h5

(

f
(3)
n + 4 fn f ′n

)

+
2

7!
h7

(

f
(5)
n + 11 fn f

(3)
n + 15 f ′n f ′′n + 9 f 2

n f ′n
)

,

g11 = 2 h +
2

3!
h3 fn +

2

5!
h5 (3 f ′′n + f 2

n

)

+
2

7!
h7

(

5 f
(4)
n + 13 fn f ′′n + 10

(

f ′n
)2

+ f 3
n

)

.

(48)
A local error of these formulas at point an equals to:

δn =
1

10!
h10 f ′n ϕ

(7)
n . (49)

2 Here, we used the algorithm of (Zaichenko & Kashuba, 2001)
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4.5 The penetrability and reflection in the fully quantum approach

Let us analyze whether a known wave function in the whole region of its definition allows us
to determine uniquely the coefficients of penetrability and reflection.

4.5.1 Problem of interference between the incident and reflected waves

Rewriting the wave function ϕtotal in the internal region through a summation of incident ϕinc

wave and reflected ϕref wave:
ϕtotal = ϕinc + ϕref, (50)

we consider the total flux:

j (ϕtotal) = i

[

(

ϕinc + ϕref

)

∇
(

ϕ∗
inc + ϕ∗

ref

)

− h. c.
)

]

= jinc + jref + jmixed, (51)

where

jinc = i
(

ϕinc∇ϕ∗
inc − h. c.

)

,

jref = i
(

ϕref∇ϕ∗
ref − h. c.

)

,

jmixed = i
(

ϕinc∇ϕ∗
ref + ϕref∇ϕ∗

inc − h. c.
)

.

(52)

The jmixed component describes interference between the incident and reflected waves in the
internal region (let us call it mixed component of the total flux or simply flux of mixing). From
the constancy of the total flux jtotal we find the flux jtr for the wave transmitted through the
barrier, and:

jinc = jtr − jref − jmixed, jtr = jtotal = const. (53)

Now one can see that the mixed flux introduces ambiguity in the determination of the penetrability
and reflection for the same known wave function.

4.6 Determination of the penetrability, reflection and interference coefficients

In quantum mechanics the coefficients of penetrability and reflection are defined considering
the potential as a whole, including asymptotic regions. However, in the radial calculation of
quantum decay such a consideration depends on how the incident and reflected waves are
defined inside finite internal region from the left of the barrier. The question is: does the
location of such a region influence the penetrability and reflection? In order to obtain these
coefficients, we shall include into definitions coordinates where the fluxes are defined (denote
them as xleft and xright):

T(xleft, xright) =
jtr(xright)

jinc(xleft)
,

R(xleft) =
jref(xleft)

jinc(xleft)
,

M(xleft) =
jmixed(xleft)

jinc(xleft)
.

(54)

So, the T and R coefficients determine the probability of transmission (or tunneling) and
reflection of the wave relatively the region of the potential with arbitrary selected boundaries
xleft, xright. When xright tends to the asymptotic limit, the coefficient defined before should
transform into standard ones. Assuming that jtr and jref are directed in opposite directions,
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jinc and jtr — in the same directions, from eqs. (53) and (54) we obtain (Maydanyuk, 2010):

|T|+ |R| − M = 1. (55)

Now we see that the condition |T| + |R| = 1 has sense in quantum mechanics only if there is no
interference between incident and reflected waves, and for this is enough that:

jmixed = 0. (56)

A new question appears: does this condition allow to separate the total wave function into the
incident and reflected components in a unique way? It turns out that the choice of the incident
and reflected waves has essential influence on the barrier penetrability, and different forms of
the incident ϕincand reflected ϕref waves can give zero flux jmix. Going from the rectangular
internal well to the fully quantum treatment of the problem would become more complicated.

4.7 Wave incident on the barrier and wave reflected from it in the internal region

One can define the incident wave to be proportional to the function Ψ(+) and the reflected

wave to be proportional to the function Ψ(−):

ϕtotal (a) = ϕinc (a) + ϕref (a),

ϕinc (a) = we · Ψ(+) (a),

ϕref (a) = R · Ψ(−) (a),

(57)

where I and R are new constants found from continuity condition of the total wave function
ϕtotal and its derivative at the internal turning point atp, int:

we =
ϕtotal Ψ(−),′ − ϕ′

total Ψ(−)

Ψ(+) Ψ(−),′ − Ψ(+),′ Ψ(−)

∣

∣

∣

∣

a=atp, int

,

R =
ϕ′

total Ψ(+) − ϕtotal Ψ(+),′

Ψ(+) Ψ(−),′ − Ψ(+),′ Ψ(−)

∣

∣

∣

∣

a=atp, int

.

(58)

On the basis of these solutions we obtain at the internal turning point atp, int the flux incident
on the barrier, the flux reflected from it and the flux of mixing. The flux transmitted through
the barrier was calculated at the external turning point atp, ext.

4.8 Penetrability and reflection: fully quantum approach versus semiclassical one

Now we shall estimate through the method described above the coefficients of penetrability
and reflection for the potential barrier with parameters A = 36, B = 12 Λ, Λ = 0.01 at different
values of the energy of radiation Erad. We shall compare the coefficient of penetrability
obtained with the values given by the semiclassical method. In the semiclassical approach
we shall consider two definitions of this coefficient:

P
WKB,(1)
penetrability =

1

θ2
, P

WKB,(2)
penetrability =

4
(

2θ + 1/(2θ)2
)2

,
(59)
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where

θ = exp

a
(ext)
tp
∫

a
(int)
tp

∣

∣V(a)− E
∣

∣ da. (60)

One can estimate also the duration of the formation of the Universe, using by definition (15) in
Ref. (Acacio de Barros et al., 2007):

τ = 2 atp, int
1

Ppenetrability
. (61)

The results are presented in Tabl. 1. In calculations the coefficients of penetrability, reflection

and mixing are defined by eqs. (54), the fluxes by eqs. (52) (calculated P
WKB,(2)
penetrability coincide

with P
WKB,(1)
penetrability up to the first 7 digits for energies in range 0 ≤ Erad ≤ 2500).

From this table one can see that inside the entire range of energy, the fully quantum
approach gives value for the coefficient of penetrability enough close to its value obtained
by the semiclassical approach. This differs essentially from results in the non-stationary
approach (Acacio de Barros et al., 2007). This difference could be explained by difference
in a choice of the boundary condition, which is used in construction of the stationary solution
of the wave function.

4.9 The penetrability in the FRW-model with the Chaplygin gas

In order to connect universe with dust and its accelerating stage, in Ref. (Kamenshchik et
al., 2001) a new scenario with the Chaplygin gas was proposed. A quantum FRW-model with
the Chaplygin gas has been constructed on the basis of equation of state instead of p (a) =
ρrad(a)/3 (where p (a) is pressure) by the following (see also Refs. (Bento et al., 2002; Bilic et
al., 2002)):

pCh = − A

ρα
Ch

, (62)

where A is positive constant and 0 < α ≤ 1. In particular, for the standard Chaplygin gas we
have α = 1. Solution of equation of state (62) gives the following dependence of density on
the scale factor:

ρCh(a) =

(

A +
B

a3 (1+α)

)1/(1+α)

, (63)

where B is a new constant of integration. Using the parameter α, this model describes
transition between the stage, when Universe is filled with dust-like matter, and its accelerating
expanding stage (through scenario of Chaplygin gas applied to cosmology, for details, see
Refs. (Bouhmadi-Lopez & Moniz, 2005; Bouhmadi-Lopez et al., 2008; Kamenshchik et al.,
2001), also historical paper (Chaplygin, 1904)).
Let us combine expression for density which includes previous forms of matter and the
Chaplygin gas in addition. At limit α → 0 eq. (63) transforms into the ρdust component plus
the ρΛ component. From such limit we find

A = ρΛ, B = ρdust (64)
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Energy Penetrability Ppenetrability Time τ Turning points

Erad Direct method Method WKB Direct method Method WKB atp, in atp, out

1.0 8.7126 × 10−521 2.0888 × 10−521 3.8260 × 10+519 1.5958 × 10+520 0.16 17.31

2.0 2.4225 × 10−520 5.5173 × 10−521 1.9460 × 10+519 8.5448 × 10+519 0.23 17.31

3.0 6.2857 × 10−520 1.3972 × 10−520 9.1863 × 10+518 4.1326 × 10+519 0.28 17.31

4.0 1.5800 × 10−519 3.4428 × 10−520 4.2201 × 10+518 1.9367 × 10+519 0.33 17.31

5.0 3.8444 × 10−519 8.2935 × 10−520 1.9392 × 10+518 8.9892 × 10+518 0.37 17.31

6.0 9.2441 × 10−519 1.9701 × 10−519 8.8350 × 10+517 4.1455 × 10+518 0.40 17.31

7.0 2.1678 × 10−518 4.5987 × 10−519 4.0694 × 10+517 1.9183 × 10+518 0.44 17.31

8.0 5.0192 × 10−518 1.0621 × 10−518 1.8790 × 10+517 8.8797 × 10+517 0.47 17.31

9.0 1.1604 × 10−517 2.4316 × 10−518 8.6212 × 10+516 4.1140 × 10+517 0.50 17.31

10.0 2.6279 × 10−517 5.5016 × 10−518 4.0128 × 10+516 1.9168 × 10+517 0.52 17.31

100.0 1.6165 × 10−490 3.1959 × 10−491 2.0717 × 10+490 1.0478 × 10+491 1.67 17.23

200.0 8.5909 × 10−465 1.6936 × 10−465 5.5397 × 10+464 2.8100 × 10+465 2.37 17.15

300.0 6.8543 × 10−441 1.3419 × 10−441 8.5461 × 10+440 4.3653 × 10+441 2.92 17.07

400.0 3.6688 × 10−418 7.1642 × 10−419 1.8531 × 10+418 9.4900 × 10+418 3.39 16.98
500.0 2.6805 × 10−396 5.2521 × 10−397 2.8508 × 10+396 1.4550 × 10+397 3.82 16.89

600.0 4.1386 × 10−375 8.0511 × 10−376 2.0338 × 10+375 1.0454 × 10+376 4.20 16.80

700.0 1.7314 × 10−354 3.3810 × 10−355 5.2806 × 10+354 2.7043 × 10+355 4.57 16.70

800.0 2.4308 × 10−334 4.7497 × 10−335 4.0448 × 10+334 2.0701 × 10+335 4.91 16.60

900.0 1.3213 × 10−314 2.5761 × 10−315 7.9408 × 10+314 4.0730 × 10+315 5.24 16.50
1000.0 3.0920 × 10−295 6.0272 × 10−296 3.5999 × 10+295 1.8468 × 10+296 5.56 16.40
1100.0 3.4274 × 10−276 6.6576 × 10−277 3.4289 × 10+276 1.7652 × 10+277 5.87 16.29
1200.0 1.9147 × 10−257 3.7259 × 10−258 6.4553 × 10+257 3.3174 × 10+258 6.18 16.18

1300.0 5.8026 × 10−239 1.1253 × 10−239 2.2333 × 10+239 1.1516 × 10+240 6.47 16.06

1400.0 9.9042 × 10−221 1.9252 × 10−221 1.3683 × 10+221 7.0393 × 10+221 6.77 15.93
1500.0 1.0126 × 10−202 1.9551 × 10−203 1.3965 × 10+203 7.2333 × 10+203 7.07 15.81

1600.0 6.2741 × 10−185 1.2155 × 10−185 2.3480 × 10+185 1.2119 × 10+186 7.36 15.67

1700.0 2.4923 × 10−167 4.8143 × 10−168 6.1488 × 10+167 3.1831 × 10+168 7.66 15.53

1800.0 6.4255 × 10−150 1.2437 × 10−150 2.4783 × 10+150 1.2803 × 10+151 7.96 15.38

1900.0 1.1189 × 10−132 2.1580 × 10−133 1.4776 × 10+133 7.6619 × 10+133 8.26 15.22

2000.0 1.3288 × 10−115 2.5653 × 10−116 1.2914 × 10+116 6.6895 × 10+116 8.58 15.04
2100.0 1.1105 × 10−98 2.1357 × 10−99 1.6036 × 10+99 8.3382 × 10+99 8.90 14.85

2200.0 6.6054 × 10−82 1.2690 × 10−82 2.7988 × 10+82 1.4567 × 10+83 9.24 14.64
2300.0 2.8693 × 10−65 5.4647 × 10−66 6.6952 × 10+65 3.5154 × 10+66 9.60 14.41

2400.0 9.1077 × 10−49 1.7297 × 10−49 2.1959 × 10+49 1.1562 × 10+50 10.00 14.14
2500.0 2.1702 × 10−32 4.0896 × 10−33 9.6290 × 10+32 5.1098 × 10+33 10.44 13.81

2600.0 3.9788 × 10−16 7.3137 × 10−17 5.5322 × 10+16 3.0096 × 10+17 11.00 13.37

2610.0 1.6663 × 10−14 3.0428 × 10−15 1.3290 × 10+15 7.2780 × 10+15 11.07 13.31

2620.0 6.9240 × 10−13 1.2606 × 10−13 3.2187 × 10+13 1.7678 × 10+14 11.14 13.25

2630.0 2.8842 × 10−11 5.2116 × 10−12 7.7789 × 10+11 4.3050 × 10+12 11.21 13.19

2640.0 1.2002 × 10−9 2.1495 × 10−10 1.8825 × 10+10 1.0511 × 10+11 11.29 13.12
2650.0 4.9881 × 10−8 8.8401 × 10−9 4.5642 × 10+8 2.5754 × 10+9 11.38 13.05
2660.0 2.0738 × 10−6 3.6263 × 10−7 1.1068 × 10+7 6.3303 × 10+7 11.47 12.97
2670.0 8.7110 × 10−5 1.4836 × 10−5 2.6596 × 10+5 1.5615 × 10+6 11.58 12.87

2680.0 3.6953 × 10−3 6.0519 × 10−4 6.3369 × 10+3 3.8693 × 10+4 11.70 12.76

2690.0 1.5521 × 10−1 2.4634 × 10−2 1.5293 × 10+2 9.3602 × 10+2 11.86 12.61

Table 1. The penetrability Ppenetrability of the barrier and the duration τ of the formation of the
Universe defined by eq. (61) in the fully quantum and semiclassical approaches
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and obtain the following generalized density:

ρ (a) =

(

ρΛ +
ρdust

a3 (1+α)

)1/(1+α)

+
ρrad

a4(t)
. (65)

Now we have:

ȧ2 + k − 8π G

3

{

a2

(

ρΛ +
ρdust

a3 (1+α)

)1/(1+α)

+
ρrad

a2(t)

}

= 0. (66)

After quantization we obtain the Wheeler-De Witt equation

{

− ∂2

∂a2
+ VCh (a)

}

ϕ(a) = Erad ϕ(a), Erad =
3 ρrad

2π G
, (67)

where

VCh (a) =

(

3

4π G

)2

k a2 − 3

2π G
a4

(

ρΛ +
ρdust

a3 (1+α)

)1/(1+α)

. (68)

For the Universe of closed type (at k = 1) at 8π G ≡ M−2
p = 1 we have (see eqs. (6)–(7) in

Ref. (Bouhmadi-Lopez & Moniz, 2005)):

VCh (a) = 36 a2 − 12 a4
(

Λ +
ρdust

a3 (1+α)

)1/(1+α)
, Erad = 12 ρrad. (69)

Fig. 7. Cosmological potentials with and without Chaplygin gas: Left panel is for potential
V(a) = 36 a2 − 12 Λ a4 with parameter Λ = 0.01 (turning point atp = 17.320508 at zero
energy Erad = 0), Right panel is for potential (69) with parameters Λ = 0.01, ρdust = 30,
α = 0.5 (minimum of the hole is -93.579 and its coordinate is 1.6262, maximum of the barrier
is 177.99 and its coordinate is 5.6866).

Let us expand the potential (69) close to arbitrary selected point ā by powers of q = a − ā and
restrict ourselves to linear terms:

VCh (q) = V0 + V1q. (70)
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For coefficients V0 and V1 we find:

V0 = VCh (a = ā),

V1 =
dVCh (a)

da

∣

∣

∣

∣

a=ā

= 72 a + 12 a3
{

−4 Λ − ρdust

a3 (1+α)

}

·
(

Λ +
ρdust

a3 (1+α)

)−α/(1+α) (71)

and eq. (67) has the form:

− d2

dq2
ϕ(q) + (V0 − Erad + V1 q) ϕ(q) = 0. (72)

After the change of variable

ζ = |V1|1/3 q,
d2

dq2
=

( dζ

dq

)2 d2

dζ2
= |V1|2/3 d2

dζ2
(73)

eq. (72) becomes:

d2

dζ2
ϕ(ζ) +

{

Erad − V0

|V1|2/3
− V1

|V1|
ζ

}

ϕ(ζ) = 0. (74)

After the new change

ξ =
Erad − V0

|V1|2/3
− V1

|V1|
ζ (75)

we have
d2

dξ2
ϕ(ξ) + ξ ϕ(ξ) = 0. (76)

From eqs. (73) and (75) we have:

ξ =
Erad − V0

|V1|2/3
− V1

|V1|2/3
q. (77)

Using such corrections after inclusion of the density component of the Chaplygin gas, we
have calculated the wave function and on its basis the coefficients of penetrability, reflection
and mixing by the formalism presented above. Now following the method of Sec. 3.1, we have
defined the incident and reflected waves relatively to a new boundary which is located in the
minimum of the hole in the internal region. Results are presented in Tabl. 3. One can see that
penetrability changes up to 100 times, in such a coordinate, in dependence on the location
of the boundary or in the internal turning point (for the same barrier shape and energy
Erad)! This confirms that the coordinate where incident and reflected waves are defined has
essential influence on estimation of the coefficients of penetrability and reflection. This result
shows that the method proposed in the present paper has physical sense. In the next Tabl. 4,
we demonstrate the fulfillment of the property (55) inside the entire energy range, which
is calculated on the basis of the coefficients of penetrability, reflection and mixing obtained
before.

5. Multiple internal reflections fully quantum method

5.1 Passage to non-stationary WDW equation: motivations

Tunneling is a pure quantum phenomenon characterized by the fact that a particle crosses
through a classically-forbidden region of the barrier. By such a reason, the process of incidence
of the particle on the barrier and its further tunneling and reflection are connected by unite
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cause-effect relation. So, the dynamical consideration of the tunneling process through
cosmological barriers is a natural one (Aharonov, 2002; Esposito, 2003; Jakiel et al., 1999;
Olkhovsky & Recami, 1992; Olkhovsky et al., 1995; 2004; 2005; Olkhovsky & Recami, 2008;
Olkhovsky, 2011; Recami, 2004). The rejection of the dynamical consideration of tunneling
from quantum cosmology limits the possible connection between initial stage, when the wave
is incident on the barrier, and next propagation of this wave. This leads to uncertainties in
determination of penetrability and rates. According to quantum mechanics, a particle is a
quantum object having properties both particle and wave. In the classically forbidden regions
the wave properties of the studied object are evident. So, the wave description of tunneling is
natural.
So, we define a non-stationary generalization of WDW equation as

(

∂2

∂a2
− Veff (a)

)

Ψ(a, τ) = −i
∂

∂τ
Ψ(a, τ), (78)

where τ is a new variable describing dynamics of evolution of the wave function being analog
of time. According to quantum mechanics, the penetrability and reflection are stationary
characteristics, and such characteristics, obtained in the following, are independent on the
parameter τ. Note that all these characteristics are solutions of stationary WDW equation,
while non-stationary consideration of multiple packets moving along barrier gives clear
understanding of the process.
In order to give a basis to readers to estimate ability of the approach developed in this
paper, let us consider results in (Monerat et al., 2007) (see eq. (19)). Here was studied the
non-stationary WDW equation

(

1

12

∂2

∂a2
− Veff (a)

)

Ψ(a, τ) = −i
∂

∂τ
Ψ(a, τ) (79)

with the potential for the closed FRW model with the included generalized Chaplygin gas.

Veff(a) = 3 a2 − a4

π

√

Ā +
B̄

a6 (80)

After change of variable anew = aold

√
12 the non-stationary eq. (79) transforms into

our eq. (78) since the Veff potential is independent on the τ variable (such a choice
allows a correspondence between energy levels, convenient in comparative analysis). The
potential (79) after such a transformation is shown in figs. 8. We shall analyze the behavior of
the wave function.

5.2 Tunneling of the packet through a barrier composed from arbitrary number of

rectangular steps

Now let us come to another more difficult problem, namely that a packet penetrating through
the radial barrier of arbitrary shape in a cosmological problem. In order to apply the idea of
multiple internal refections for study the packet tunneling through the real barrier, we have
to generalize the formalism of the multiple internal reflections presented above (Maydanyuk,
2011). We shall assume that the total potential has successfully been approximated by finite
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Fig. 8. Behavior of the potential (80) after change anew = aold

√
12 at Ā = 0.001 and B̄ = 0.001

(choice of parameters see in fig. 1, tables I and II in (Monerat et al., 2007)): (a) shape of the
barrier (Vmax = 223.52 at a = 42.322); (b) there is a little internal well close to zero
(Vmin = −8.44 at a = 0.00581)

number N of rectangular steps:

V(a) =

⎧

⎪

⎪

⎨

⎪

⎪



V1, at amin < a ≤ a1 (region 1),
V2, at a1 < a ≤ a2 (region 2),
. . . . . . . . .
VN , at aN−1 < a ≤ amax (region N),

(81)

where Vi are constants (i = 1 . . . N). Let us assume that the packet starts to propagate outside
inside the region with some arbitrary number M (for simplicity, we denote its left boundary
aM−1 as astart) from the left of the barrier. We are interested in solutions for energies above
that of the barrier while the solution for tunneling could be obtained after by change i ξi → ki.
A general solution of the wave function (up to its normalization) has the following form:

ϕ (a) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪



α1 eik1a + β1 e−ik1a,
at amin ≤ a ≤ a1 (region 1),

. . .

αM−1 eikM−1a + βM−1 e−ikM−1a,
at aM−2 ≤ a ≤ aM−1 (region M − 1),

eikMa + AR e−ikMa,
at aM−1 < a ≤ aM (region M),

αM+1 eikM+1a + βM+1 e−ikM+1a,
at aM ≤ a ≤ aM+1 (region M + 1),

. . .

αn−1 eikN−1a + βN−1 e−ikN−1a,
at aN−2 ≤ a ≤ aN−1 (region N − 1),

AT eikN a, at aN−1 ≤ a ≤ amax (region N),

(82)

where αj and βj are unknown amplitudes, AT and AR are unknown amplitudes of

transmission and reflection, ki =
1
h̄

√

2m(E − Vi) are complex wave numbers. We have fixed
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the normalization so that the modulus of the starting wave eikMa equals to one. We look for a
solution of such a problem by the approach of the multiple internal reflections.
Let us consider the initial stage when the packet starts to propagate to the right in the region
with number M. According to the method of the multiple internal reflections, propagation
of the packet through the barrier is considered by steps of its propagation relatively to each
boundary (see (Cardone et al., 2006; Maydanyuk et al., 2002a; Maydanyuk, 2003; Maydanyuk
& Belchikov, 2011), for details). Each next step in such a consideration of propagation of
the packet will be similar to the first 2N − 1 steps. From analysis of these steps recurrent

relations are found for calculation of all unknown amplitudes A
(n)
T , A

(n)
R , α

(n)
j and β

(n)
j for

arbitrary step n (for region with number j), summation of these amplitudes are calculated. We
shall look for the unknown amplitudes, requiring the wave function and its derivative to be
continuous at each boundary. We shall consider the coefficients T±

1 , T±
2 . . . and R±

1 , R±
2 . . . as

additional factors to amplitudes e±i k a. Here, the bottom index denotes the number of the
region, upper (top) signs “+” and “−” denote directions of the wave to the right or to the left,
correspondingly. To begin with, we calculate T±

1 , T±
2 . . . T±

N−1 and R±
1 , R±

2 . . . R±
N−1:

T+
j =

2kj

kj + kj+1
ei(k j−k j+1)aj , T−

j =
2kj+1

kj + kj+1
ei(k j−k j+1)aj ,

R+
j =

kj − kj+1

kj + kj+1
e2ik jaj , R−

j =
kj+1 − kj

kj + kj+1
e−2ik j+1aj .

(83)

Analyzing all possible “paths” of the propagations of all possible packets inside the barrier
and internal well, we obtain (Maydanyuk, 2011):

+∞

∑
n=1

A
(n)
inc = 1 + R̃+

M R̃−
M−1 + R̃+

M R̃−
M−1 · R̃+

M R̃−
M−1 + ... =

= 1 +
+∞

∑
m=1

(

R̃+
M R̃−

M−1

)m
=

1

1 − R̃+
M R̃−

M−1

,

+∞

∑
n=1

A
(n)
T =

(+∞

∑
n=1

A
(n)
inc

)

·
{

T̃+
N−2 T+

N−1+

+ T̃+
N−2 · R+

N−1 R̃−
N−2 · T+

N−1 + ...
}

=

=
(+∞

∑
n=1

A
(n)
inc

)

· T̃+
N−1,

+∞

∑
n=1

A
(n)
R = R̃+

M + R̃+
M · R̃−

M−1 R̃+
M+

+ R̃+
M · R̃−

M−1 R̃+
M · R̃−

M−1 R̃+
M + ... =

= R̃+
M ·

(

1 +
+∞

∑
m=1

(

R̃−
M−1 R̃+

M

)m
)

=

=
R̃+

M

1 − R̃−
M−1 R̃+

M

=
(+∞

∑
n=1

A
(n)
inc

)

· R̃+
M,

(84)
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where

R̃+
j−1 = R+

j−1 + T+
j−1R̃+

j T−
j−1

(

1 +
+∞

∑
m=1

(R̃+
j R−

j−1)
m
)

=

= R+
j−1 +

T+
j−1R̃+

j T−
j−1

1 − R̃+
j R−

j−1

,

R̃−
j+1 = R−

j+1 + T−
j+1R̃−

j T+
j+1

(

1 +
+∞

∑
m=1

(R+
j+1R̃−

j )
m
)

=

= R−
j+1 +

T−
j+1R̃−

j T+
j+1

1 − R+
j+1R̃−

j

,

T̃+
j+1 = T̃+

j T+
j+1

(

1 +
+∞

∑
m=1

(R+
j+1R̃−

j )
m
)

=
T̃+

j T+
j+1

1 − R+
j+1R̃−

j

.

(85)

Choosing as starting points, the following:

R̃+
N−1 = R+

N−1,

R̃−
M = R−

M,

T̃+
M = T+

M,

(86)

we calculate the coefficients R̃+
N−2 . . . R̃+

M, R̃−
M+1 . . . R̃−

N−1 and T̃+
M+1 . . . T̃+

N−1.
We shall consider propagation of all packets in the region with number M, to the left. Such
packets are formed in result of all possible reflections from the right part of potential, starting
from the boundary aM. In the previous section to describe their reflection from the left
boundary R0 to the right one, we used coefficient R−

0 . Now since we want to pass from
simple boundary aM−1 to the left part of the potential well starting from this point up to amin,
we generalize the coefficient R−

M−1 to R̃−
M−1. The middle formula in (85) is applicable when

we use eqs. (83) for definition of T±
i and R±

i . Finally, we determine coefficients αj and βj :

+∞

∑
n=1

α
(n)
j = T̃+

j−1

(

1 +
+∞

∑
m=1

(R+
j R̃−

j−1)
m
)

=

=
T̃+

j−1

1 − R+
j R̃−

j−1

=
T̃+

j

T+
j

,

+∞

∑
n=1

β
(n)
j = T̃+

j−1

(

1 +
+∞

∑
m=1

(R̃+
j R̃−

j−1)
m
)

R+
j =

=
T̃+

j−1 R+
j

1 − R̃+
j R̃−

j−1

=
T̃+

j R+
j

T+
j

,

(87)

the amplitudes of transmission and reflection:

AT =
+∞

∑
n=1

A
(n)
T , AR =

+∞

∑
n=1

A
(n)
R ,

αj =
+∞

∑
n=1

α
(n)
j =

T̃+
j

T+
j

, βj =
+∞

∑
n=1

β
(n)
j = αj · R+

j

(88)
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and coefficients T and R describing penetration of the packet from the internal region outside
and its reflection from the barrier

TMIR ≡ kN

kM

∣

∣AT

∣

∣

2
=

∣

∣Ainc

∣

∣

2 · Tbar, Tbar =
kN

kM

∣

∣T̃+
N−1

∣

∣

2
,

RMIR ≡
∣

∣AR

∣

∣

2
=

∣

∣Ainc

∣

∣

2 · Rbar, Rbar =
∣

∣R̃+
M

∣

∣

2
.

(89)

Choosing amin = 0, we assume full propagation of the packet through such a boundary (with
no possible reflection) and we have R−

0 = −1 (it could be interesting to analyze results with

varying R−
0 ). We use the test:

kN

kM
|AT |2 + |AR|2 = 1 or TMIR + RMIR = 1. (90)

Now if energy of the packet is located below then height of one step with number m, then the
following change

km → i ξm (91)

should be used to describe the transition of this packet through such a barrier with its
tunneling. In the case of a barrier consisting from two rectangular steps of arbitrary heights
and widths we have already obtained coincidence between amplitudes calculated by method
of MIR and the corresponding amplitudes found by standard approach of quantum mechanics
up to first 15 digits. Even increasing the number of steps up to some thousands has the right
accuracy to fulfill the property (90).
In particular, we reconstruct completely the pictures of the probability and reflection
presented in figs. 9 (a) and (b), figs. 10 (a) and (b), figs. 11 (b), but using such a standard
technique. So, the result concerning the oscillating dependence of the penetrability on the position
of the starting point astart in such figures is independent on the fully quantum method chosen for
calculations.
This is an important test which confirms reliability of the method MIR. So, we have obtained
full coincidence between all amplitudes, calculated by method MIR and by standard approach
of quantum mechanics. This is why we generalize the method MIR for description of
tunneling of the packet through potential, consisting from arbitrary number of rectangular
barriers and wells of arbitrary sizes (Maydanyuk, 2011).

5.3 Results

We have applied the above method to analyze the behavior of the packet tunneling through

the barrier (80) (we used anew →
√

12 aold). The first interesting result is a visible change of
the penetrability on the displacement of the starting point amin ≤ a ≤ a1, where we put the packet.
Using the possibility of decreasing the width of intervals up to an enough small value (and
choosing, for convenience, the width of each interval to be the same), we choose amin as
starting point (and denote it as astart), from where the packet begins to propagate outside. We
have analyzed how the position of such a point influences the penetrability. In fig. 9 (a) one
can see that the penetrability strongly changes in dependence of astart for arbitrary values of
energy of radiation Erad: it has oscillating behavior (Maydanyuk, 2011). Difference between
its minimums and maximums is minimal at astart in the center of the well (i. e. its change
tends to zero in the center of the well), this difference increases with increasing value of astart

and achieves the maximum close to the turning point. With this result, we may conclude that
exists a dependence of penetrability on the starting point astart of the packet. The coefficients of
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Fig. 9. Dependencies of the coefficients of the penetrability Tbar (a), reflection Rbar (b),
coefficient of oscillations Kosc (c) and coefficient of penetration TMIR (d) in terms of the
position of the starting point astart for the energy E = 220 (A = 0.001, B = 0.001, amax = 70.
The total number of intervals is 2000, for all presented cases the achieved accuracy is
|Tbar + Rbar − 1| < 10−15). These figures clearly demonstrate oscillating (i.e. not constant)
behavior of all considered coefficients on astart.

reflection, oscillations and penetration on the position of the starting point astart are presented
in next figs. 9 (b), (c), (d) and have similar behavior.
Usually, in cosmological quantum models the penetrability is determined by the barrier shape.
In the non-stationary approach one can find papers where the role of the initial condition is
analyzed in calculations of rates, penetrability etc.3 But, the stationary limit does not give us
any choice on which to work. We conclude: (a) the penetrability should be connected with the
initial condition (not only in non-stationary consideration, but also in the stationary one). (b)
Even in the stationary consideration, the penetrability of the barrier should be determined in
dependence on the initial condition.
The first question is how much these results are reliable. In particular, how stable will such
results be if we shift the external boundary outside? The results of such calculations are
presented in fig. 10, where it is shown how the penetrability changes with amax (for clearness
sake, we have fixed the starting point astart = 10, (Maydanyuk, 2011)). One can see that

3 Such papers are very rare and questions about dynamics have not been studied deeply.
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Fig. 10. Dependencies of the coefficients of penetrability (a), reflection (b), oscillations (c) and
penetration (d) on the position of the external region, amax for the energy E = 223
(A = 0.001, B = 0.001). For all presented values we have achieved accuracy
|Tbar + Rbar − 1| < 1 · 10−15 (the maximum number of intervals is 2000).

all calculations are well convergent, that confirms efficiency of the method of the multiple
internal reflections. On the basis of such results we choose amax = 70 for further calculations.
However, one can see that inclusion of the external region can change the coefficients of
penetrability and penetration up to 2 times for the chosen energy level.
The second question is how strong this affects the calculations of the penetrability. If it was
small than, the semiclassical approaches would have enough good approximation. From
figs. 9 it follows that the penetrability is not strongly changed in dependence on shift of the
starting point. However, such small variations are connected with relatively small height
of the barrier and depth of the well, while they would be not small for another choice of
parameters (the coefficient of oscillation and penetration turn out to change at some definite
energies of radiation, see below). So, this effect is supposed to be larger at increasing height
of the barrier and depth of the well, and also for near-barrier energies (i. e. for energies
comparable with the barrier height, and above-barrier energies of radiation).
We have analyzed how these characteristics change in dependence on the energy of radiation.
We did not expect the results that we got (see figs. 11). The coefficient of penetration has
oscillations with peaks clearly shown (Maydanyuk, 2011). These peaks are separated by
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Fig. 11. Dependencies of the coefficient of the coefficient of penetration TMIR (a), the
coefficient of the penetrability Tbar (b), coefficient of oscillations Kosc (c) and difference
Eres, next − Eres, previous between two closest energy peaks (d) on the Erad energy (we have
choose: A = 0.001 and B = 0.001, astart = 10, amax = 70, number of intervals inside the scale
axis a 1000, number of intervals of energy 100000). Inside the energy region Erad = 200 − 223
we observe 19 resonant peaks in the dependencies of coefficients TMIR and Kosc while the
penetrability increases monotonously with increasing the Erad energy.

similar distances and could be considered as resonances in energy scale. So, by using the
fully quantum approach we observed for the first time clear pictures of resonances which
could be connected with some early unknown quasi-stationary states. At increasing energy
of radiation the penetrability changes monotonously and determines a general tendency of
change of the coefficient of penetration, while the coefficient of oscillations introduces the
peaks. Now the reason of the presence of resonances has become clearer: oscillations of the
packet inside the internal well produce them, while the possibility of the packet to penetrate
through the barrier (described by the penetrability of the barrier) has no influence on them.
In general, we observe 134 resonant levels inside energy range Erad = 0–200, and else 19 levels
inside Erad = 200–223.
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Fig. 12. Accuracy of the obtained penetrability Tbar and reflection Rbar for the energy E = 220
used in previous figs. 9 and 10. As a test, we calculate Tbar + Rbar − 1 in dependence on the
position of the starting point astart (a) and the external boundary amax (b)
(A = 0.001, B = 0.001, total number of intervals is 2000).

In the last fig. 12 one can see that we have achieved |Tbar + Rbar − 1| < 10−15 inside whole
region of changes of astart and amax (such data were used in the previous figs. 9 and 10). This
is the accuracy of the method of the multiple internal reflections in obtaining Tbar and Rbar.

5.4 The fully quantum penetrability versus semiclassical one in cosmology: a quick

comparison

Does the penetrability, determined according to the semiclassical theory by a shape of the
barrier between two turning points, give exhaustive answers and the best estimations of rates
of evolution of universe? If we look at figs. 9 (a), we shall see that this is not the case. The
penetrability is depended on the position (coordinate) of maximum of the packet which begins
to propagate outside at time moment t = 0. So, the penetrability should be a function of
some parameters of the packet at beginning. For the first time, it has been demonstrated the
difference between the fully quantum approach and the semiclassical one. However, let us
perform a general analysis (Maydanyuk, 2011).
(1) If we wanted to check the semiclassical approach, we should miss some of the parameters.
One can use test of T + R = 1 (where T and R are the penetrability through the barrier
and reflection from it). But, note that the semiclassical approximation neglects the reflected
waves in quantum mechanics (see (Landau & Lifshitz, 1989), eq. (46.10), p. 205, p. 221–222).
Therefore, we cannot use the test above for checking T in the semiclassical theory.
(2) If we would like to determine the reflection coefficient, then we should find a more accurate
semiclassical approximation (in order to take into account both decreasing and increasing
components of the wave function in the tunneling region). In such a case, we shall face another
problem, namely the presence of a non-zero interference between the incident and reflected
waves. Now the relation T + R = 1 cannot be used as test, and one needs to take the third
component M of interference into account (see (Maydanyuk, 2010)). If we improperly separate
the exactly known full wave function in the incident and reflected waves4, the interference
component should increase without limit. In such a case, the penetrability and reflection

4 However, the semiclassical approaches have no apparatus for such an analysis.
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can freely exceed unit and increase without limit. What is now the general meaning of the
penetrability?
(3) We shall give only some examples from quantum mechanics. (i) If we consider
two-dimensional penetration of the packet through the simplest rectangle barrier (with finite
size), we shall see that the penetrability is directly dependent on direction of tunneling of
the packet. So, the penetrability is not a single value but a function. (ii) If we consider
one-dimensional tunneling of the packet through the simplest rectangular barrier, we shall
obtain “interference picture” of its amplitude in the transmitted region, which is dependent
on time and space coordinates and is an exact analytical solution. Of course, the stationary
part of such a result exactly coincides with well known stationary solutions (Maydanyuk,
2003).
(4) A tunneling boundary condition (Vilenkin, 1994) seems to be natural and clear, where the
wave function should represent an outgoing wave at large scale factor a. However, is such a
wave free? In contrast to problems of quantum atomic and nuclear physics, in cosmology we
deal with potentials, which modules increase with increasing the scale factor a (their gradients
increase, which have sense of force acting on the wave). Therefore, in quantum cosmology we
should define the boundary condition on the basis of the waves propagating inside strong
fields (see (Maydanyuk, 2010)).
These points destroy the semiclassical basis of the cosmological models. Now the statement
concerning reliability of the semiclassical approach become a question of “ faith” (note that
this is widespread (Maydanyuk, 2010; 2011)). The semiclassical approach could be compared
with “black box”, where deeper and more detailed information about the dynamics of the
universe is hidden.

6. A brief review on the problems of the Universe origin

In the science history and in the science philosophy of XX-XXI cc. (especially in the field of the
natural sciences, beginning from physics) there has been a lot of interesting things, which had
not obtained a sufficiently complete elucidation and analysis yet. Firstly, under the influence
of scientific and technological progress a great attention has been paid to the justification of
such direction in the science philosophy as the scientific realism (i.e. the correspondence of
the science to the reality), which has successively acquired three forms: the naive realism,
the usual realism and the critical science realism. Secondly, some new important problems of
physics (especially the problem of the essentially probabilistic description of the reality of the
microscopic world, the problem of the essential influence of the observer on the reality, the
collapse of the wave function) had been revealed in the development of quantum mechanics,
the continuously complicated interpretation of the Universe origin and the expansion after the Big
Bang, and also no succeeded attempt in explaining the origin of the biological life in terms
of physics and other natural sciences, all being with a variety of interpretation versions,
connected with the world-views of the researchers.
As to “great” and “grand” problems of natural sciences: There is an extensive introduction
in the large number of open problems in many fields of physics, published by the Russian
physicist V. Ginzburg in (Ginzburg, 1999) which is rather interesting to study. Inside this large
list of open problems of modern physics (and in a certain degree of modern natural sciences),
represented by V. Ginzburg repeatedly in Russian editions, some of them are marked him
“great” or “grand” problems. Between namely these problems we would like to underline
three of them.
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a) The problem of interpretation and comprehension of quantum mechanics (even of the non-relativistic
quantum theory) remains still topical. The majority of critics of quantum mechanics are
unsatisfied with the probabilistic nature of its predictions. One can add here also the
questions and paradoxes of the theory of quantum measurements theory, especially like
the wave-function reduction. The appearance of quantum mechanics, and, in particular,
the discussion of N. Bohr with A. Einstein (lasting many years), had seriously undermined
the traditional forms of the naive realism in the philosophy of the scientific realism and
had strongly influenced (and are continuating to influence) not only on physics but also
on other kinds of knowledge in the sense of the dependence of the reality on the observer
and, moreover, on our understanding of the human knowledge at all. More lately the new
interpretation of quantum mechanics is appeared: in it the hypothesis of many universes,
which are the exactly same as ours, permits to avoid the wave-function reduction.
b) The relationship between physics and biology and, specifically, the problem of reductionism. The
main problem, according to V. Ginzburg, is connected with the explanation of the origin of the
biologic life and the origin of the human abstract thinking (but the second one is connected
not with biology but with the origin of the human spiritual life which is far beyond natural
sciences). V. Ginzburg assumes that for a possible explanation of the origin of the biologic life
one can naturally imagine a certain jump which is similar to some kind of phase transition (or,
may be, certain synergetic process). But there are other points of view too.
c) The cosmological problem (in other words, the problem of the Universe origin). According
to V. Ginzburg, it is also a grand problem, or strictly speaking, a great complex of cosmic
problems many of which is far from the solution.
We did also analyzed in (Olkhovsky, 2010) these three problems in the context of other
aspects, first of all regarding the increasing discussions between the supporters of two
different meta-theoretical, meta-philosophical doctrines: either the beginning of the Universe
formation from vacuum (“nothing”) is either a result of the irrational randomness after
passing from other space-time dimensions or from other universe, caused by some unknown
process, or a result of the creation of the expanding Universe (together with the laws of its
functioning) by the supreme intelligent design from nigilo.

6.1 Schematic description of the problems connected with the Universe origin and

expansion

Earlier, after Enlightenment till approximately 1920, scientists in the natural sciences did
usually consider the Universe as eternally existing and eternally moving. Now the most
convincing arguments against the model of the eternally existing Universe are:

(a) the second law of thermodynamics which does inevitably bring to heat death of Universe,

(b) the observed cosmic microwave background.

The most surprising conclusion of the revealed non-stationary state of the Universe is the
existence of the “beginning”, under which the majority of physicists understand the beginning
of the Universe expansion.
The cosmologic problem as the problem of the origin and evolution of the Universe has
initiated to be analyzed by A. Einstein (after 1917) and now it is connected with papers of
many other physicists. The first several authors had been G. Lemaitre (who proposed what
became known as the Big Bang theory of the origin of the Universe, although he called it his
“hypothesis of the primeval atom”), A. Friedman and G. Gamow.
And what namely had been in the “beginning”? Gamow had assumed in 1921 that the
expansion had initiated from the super-condensed hot state as a result of the Big Bang,
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to which he and others had ascribed the time moment t = 0, i.e. the beginning of the
Universe history. The initial state in this model is in fact postulated. The nature of the
initial super-condensed hot Universe state is not known. Such initial point (or super-small
region), in which the temperature, pressure, energy density etc had reached the anomalous
huge (almost infinite) values, can be considered as a particular point, where the “physical”
processes cannot be described by physical equations and in fact are excluded from the model
analysis. Under these conditions the theory of grand unification (or superunification) of all
four known interactions (strong, weak, electromagnetic and gravitational) is assumpted to act.
But no satisfactory superunification has yet been constructed. The superstring theory claims
the role of such superunification, but this goal has not yet been achieved (Ginzburg, 1999).
Strictly speaking, namely in the region of this point (from t = 0 till t0 = 10−44 sec., where
t0 is the Planck time) is arising the general problem of the world origin and also the choice
dilemma: the beginning of the Universe formation from vacuum (“nothing”) is either a result
of the irrational randomness after passing from other space-time dimensions or from other
universe, caused by some unknown process, or a result of the creation of the expanding
Universe (together with the laws of its functioning) by the supreme intelligent design from
nigilo.
The framework for the standard cosmologic model relies on Einstein’s general relativity and
on simplifying assumptions (such as homogeneity and isotropy of space). There are even
non-standard alternative models. Now there are many supporters of Big Bang models. The
number of papers and books on standard versions of the cosmologic Big Bang models is too
enormous for citing in this short paper (it is possible to indicate, only for instance, (Hartle &
Hawking, 1983; Kragh, 1996; Peacock, 1999; Vilenkin, 1994) for the initial reading in cosmology
of the Universe and in the different quasi-classical and quantum approaches in cosmology for
description of the creation and the initial expansion of the Universe). However, there is no
well-supported model describing the Universe history prior to 10−15 sec. or so. Apparently
a new unified theory of quantum gravitation is needed to break this barrier but the theory
of quantum gravitation is only schematically constructed in the quasilinear approximation.
Understanding this earliest era in the history of the Universe is currently one of the most
important unsolved problems in physics. Further, over the time interval 10−35 sec., which
is much larger than the Planck time and so can still be considered classically, the Universe
was expanding (inflating) much more rapidly than in the known Friedman models. After
the inflation, the Universe had been as though developing in accord with the Friedman’s
scenario (Ginzburg, 1999). It may be possible to deduce what happened before inflation
through observational tests yet to be discovered, and a crucial role at the inflation stage could
be played the so-called Λ-term added to the Einstein equations of the General Relativity.
A lot of observations testify that there is exists non-luminous matter in the Universe which
manifests itself owing to its gravitational interaction and is present everywhere — both in the
galaxies and in the intergalactic space. And what is the nature of dark mass? According to the
very popular hypothesis, the role of dark matter is played by the hypothetical WIMPs (Weakly
Interacting Massive Particles) with masses higher than protons (Ginzburg, 1999). There
are also exist some other candidates for the role of dark matter (for instance, pseudoscalar
particles — axions) (Ellis, 1998). Cosmic strings can be also mentioned (Ginzburg, 1999).
The possibility of the existence of the above-mentioned Λ-term in equations of the General
Relativity is now frequently referred to as “dark energy” or quintessence. For Λ > 0 it
“works” as “antigravity” (against the normal gravitational attraction) and testifies to the
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acceleration of the Universe expansion in our epoch (Armendariz-Picon et al., 2000; Ginzburg,
1999).
Moreover, it is worth to underline that many physicists consider that the second law of
thermodynamics is universal for all closed systems, including also our Universe as a whole
(which is closed in naturalistic one-world view). Therefore the heat death is inevitable (see,
for instance, (Ginzburg, 1999) and especially (Adams & Laughlin, 1997)).
There are also versions of the non-standard versions of the cosmologic Big Bang models
(Albrecht & Magueijo, 1999; Moffat, 1993; Petit, 1988; Petit & Viton, 1989; Setterfield &
Norman, 1987; Troitskii, 1987). We shall shortly refer to these models, noting that at least
one of them (by B. Setterfield and T. Norman (Setterfield & Norman, 1987)) clearly speaks
on the young Universe: They indicate that after the Big Bang the light speed had been
gradually decreased approximately 106 − 107 times and it was deduced that the velocities
of the electromagnetic and radioactive decays had been gradually decreased near 107 times
too. In (Setterfield & Norman, 1987; Troitskii, 1987) it was deduced that after the inflation the
Universe had not been really expanding.

6.2 On the anthropic principle

From 1973 (and particularly after eighties) the term “anthropic principle”, introduced by
B. Carter, has become to acquire in the science and out of the science a certain popularity
(Barrow & Tipler, 1986; Carter, 1974). Carter and other authors had been noted that physical
constants must have values in the very narrow interval in order the existence of the biologic
life can become possible, and that the measured values of these constants are really found in
this interval. In other words, the Universe seems to be exactly such as it is necessary for the
origin of the life. If physical constants would be even slightly other, then the life could be
impossible. After meeting such testimonies, a number of scientists had formulated several
interpretations of anthropic principle each of which brings the researchers to the worldview
choice in its peculiar way. We shall consider here two of them. According to the weak anthropic
principle (WAP), the observed values of physical and cosmological constants caused by the
necessary demand that the regions, where the organic life would be developed, ought to be
possible. And in the context of WAP there is the possibility of choice between two alternatives:

1. Either someone does irrationally believe that there are possible an infinity of universes, in
the past, in the present and in the future, and we exist and are sure in the existence of our
Universe namely because the unique combination of its parameters and properties could
permit our origin and existence.

2. Or someone does (also irrationally) believe that our unique Universe is created by
Intelligent Design of a Creator (God) and the human being is also created by Creator in
order to govern the Universe.

According to the strong anthropic principle (SAP), the Universe has to have such properties
which permit earlier or later the development of life. This form of the anthropic principle does
not only state that the universe properties are limited by the narrow set of values, compatible
with the development of the human life, but does also state that this limitation is necessary for
such purpose. So, one can interpret such tuning of the universe parameters as the testimony
of the supreme intelligent design of a certain creative basis. There is also a rather unexpected
interpretation of SAP, connected with the eastern philosophy, but it is not widely known.
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7. Conclusions and perspectives

In this Chapter the closed Friedmann–Robertson–Walker model with quantization in the
presence of a positive cosmological constant and radiation was studied. We have solved it
numerically and have determined the tunneling probability for the birth of an asymptotically
de-Sitter, inflationary Universe as a function of the radiation energy. Note the following.

1. A fully quantum definition of the wave which propagates inside strong field and which
interact minimally with them, has been formulated for the first time, and approach for its
determination has been constructed.

2. A new stationary approach for the determination of the incident, reflected and transmitted
waves relatively to the barrier has been constructed. The tunneling boundary condition
has been corrected.

3. A quantum stationary method of determination of coefficients of penetrability and
reflection relatively to the barrier with analysis of uniqueness of solution has been
developed, where for the first time non-zero interference between the incident and
reflected waves has been taken into account and for its estimation the coefficient of mixing
has been introduced.

4. In this chapter a development of the method of multiple internal reflections is presented
(see Refs. (Cardone et al., 2006; Maydanyuk et al., 2002a;b; Maydanyuk, 2003; Olkhovsky
& Maydanyuk, 2000), also Refs. (Anderson, 1989; Fermor, 1966; McVoy et al., 1967)). When
the barrier is composed from arbitrary number n of rectangular potential steps, the exact
analytical solutions for amplitudes of the wave function, the penetrability Tbar through
the barrier and the reflection Rbar from it are found. At n → ∞ these solutions can be
considered as exact limits for potential with the barrier and well of arbitrary shapes.

In such a quantum approach the penetrability of the barrier for the studied quantum
cosmological model with parameters A = 36, B = 12 Λ (Λ = 0.01) has been estimated with a
comparison with results of other known methods. Note the following.

1. The modulus of the coefficient of mixing is less 10−19. This points out that there is no
interference between the found incident and reflected waves close to the internal turning point.

2. On the basis of the calculated coefficients we reconstruct a property (55) inside the whole
studied range of energy of radiation (see Fig. 12).

3. The probability of penetration of the packet from the internal well outside with its
tunneling through the barrier of arbitrary shape is determined. We call such coefficient as
coefficient of penetration. This coefficient is separated on the penetrability and a new coefficient,
which characterizes oscillating behavior of the packet inside the internal well and is called
coefficient of oscillation. The formula found, seems to be the fully quantum analogue of the
semiclassical formula of Γ width of decay in quasistationary state proposed in Ref. (Gurvitz &
Kälbermann, 1987). Here, the coefficient of oscillations is the fully quantum analogue for
the semiclassical F factor of formation and the coefficient of penetration is analogue for the
semiclassical Γ width.

4. The penetrability of the barrier visibly changes in dependence of the position of the starting
point Rstart inside the internal well, where the packet begins to propagate (see figs. 9).
We note the following peculiarities: the penetrability has oscillating behavior, difference
between its minimums and maximums is minimal at Rstart in the center of the well,
with increasing Rstart this difference increases achieving to maximum near the turning
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point. The coefficients of reflection, oscillations and penetration have similar behavior.
We achieve coincidence (up to the first 15 digits) between the amplitudes of the wave
function obtained by such a method, and the corresponding amplitudes obtained by the
standard approach of quantum mechanics (see Appendix B in (Maydanyuk & Belchikov,
2011) where solutions for amplitudes were calculated in general quantum decay problem).
This confirms that this result does not depend on a choice of the fully quantum method
applied for calculations. Such a peculiarity is shown in the fully quantum considerations
and it is hidden after imposing the semiclassical restrictions.

5. The coefficient of penetration has oscillating dependence on the energy of radiation.
Here, peaks are clearly shown. They are localized at similar distances (see figs. 11). So,
for the first time we have obtained in the fully quantum approach a clear and stable
picture of resonances, which indicate the presence of some early unknown quasistationary
states. If the energy of radiation increases, the penetrability is monotonously changed.
It describes a general tendency of behavior of the coefficient of penetration, while the
coefficient of oscillations gives peaks. Now the reason of existence of resonances becomes
clear: oscillations of the packet inside the internal well give rise to them. In particular,
we establish 134 such resonant levels inside range Erad = 0–223 for the barrier (8) with
parameters A = 0.001 and B = 0.001.

6. A dependence of the penetrability on the starting point has maxima and minima. This
allows to predict some definite initial values of the scale factor, when the universe begins
to expand. Such initial data is direct result of quantization of the cosmological model.

7. The modulus of the wave function in the internal and external regions has minima and
maxima which were clearly established in (Maydanyuk, 2008; 2010). This indicates, in
terms of values of the scale factor, where the probable “appearance” of the universe is
maximal or minimal. So, the radius of the universe during its expansion changes not
continuously, but consequently passes through definite discrete values connected with
these maxima. It follows that space-time of universe on the first stage after quantization
seems to be rather discrete than continuous. According to results (Maydanyuk, 2008; 2010;
2011), difference between maxima and minima is slowly smoothed with increasing of the
scale factor a. In this way, we obtain the continuous structure of the space-time at latter
times. The discontinuity of space-time is direct result of quantization of cosmological
model. This new phenomenon is the most strongly shown on the first stage of expansion
and disappears after imposition of the semiclassical approximations.
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