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1. Introduction 

Now it is obvious that quantum mechanics enters in the 21st century into a principally new 
and important phase of its development which will cardinally change the currently used 
technical facilities in the areas of information and telecommunication technologies, exact 
measurements, medicine etc. Indisputably, all this on the whole will change the production 
potential of human civilization and influence its morality. Despite unquestionable success of 
quantum physics in the 20th century, including creation of lasers, nuclear energy use, etc. it 
seems that possibilities of the quantum nature are not yet studied and understood deeply, a 
fortiori, are used. 
The central question which arises on the way of gaining a deeper insight into the quantum 
nature of various phenomena is the establishment of well-known accepted criteria of 
applicability of quantum mechanics. In particular, the major of them is the de-Broglie 
criterion, which characterizes any body-system by a wave the length of which is defined as

p   , where  is the wavelength of the body-system, p is its momentum and  is the 
Plank constant. An important consequence of this formula is that it assigns the quantum 
properties only to such systems which have extremely small masses. Moreover, it is well 
known that molecular systems which consist of a few heavy atoms are, as a rule, well 
described by classical mechanics. In other words, the de-Broglie criterion is an extremely 
strong limitation for occurrence of quantum effects in macroscopic systems. Till now only a 
few macroscopic quantum phenomena have been known, such as superfluidity and 
superconductivity, which are not ordinary natural phenomena but most likely extremal 
states of nature. Thus, a reasonable question arises, namely, how much correct is the de-
Broglie criterion, or more precisely, how completely this criterion reflects the quantum 
properties of a system.  
In order to answer this essentially important question for development of quantum 
physics, it is necessary to expand substantially the concepts upon which quantum 
mechanics is based. The necessity for generalization of quantum mechanics is also 
dictated by our aspiration to consider such hard-to-explain phenomena as spontaneous 
transitions between the quantum levels of a system, the Lamb Shift of energy levels, EPR 
paradox, etc. within the limits of a united scheme. In this connection it seems important to 
realize finally the concept according to which any quantum system is basically an open 
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system, especially when we take into account the vacuum's quantum fluctuations [1- 3]. 
Specifically for a quantum noise coming from vacuum fluctuations we understand a 
stationary Wiener-type source with noise intensity proportional to the vacuum power 

2 /4,P    where 2  is the variance of the field frequencies averaged over some 
appropriate distribution (we assume 0   since   and −  must be considered as 
independent fluctuations). For example, in the cosmic background case where 2T K  we 
find, correspondingly, =1.15P pW . Calculation of 2  for quantum fluctuations is not 
trivial because vacuum energy density diverges as 3 [3] with uniform probability 
distribution denying a simple averaging process unless physical cutoffs at high 
frequencies exist. 
Thus, first of all we need such a generalization of quantum mechanics which includes 

nonperturbative vacuum as fundamental environment (FE) of a quantum system (QS). As our 

recent theoretical works have shown [4-9], this can be achieved by naturally including the 

traditional scheme of nonrelativistic quantum mechanics if we define quantum mechanics in 

the limits of a nonstationary complex stochastic differential equation for a wave function 

(conditionally named a stochastic Schrödinger equation). Indeed, within the limits of the 

developed approach it is possible to solve the above-mentioned traditional difficulties of 

nonrelativistic quantum mechanics and obtain a new complementary criterion which differs 

from de-Broglie's criterion. But the main achievement of the developed approach is that in 

the case when the de-Broglie wavelength vanishes and the system, accordingly, becomes 

classical within the old conception, nevertheless, it can have quantum properties by a new 

criterion.  

Finally, these quantum properties or, more exactly, quantum-field properties can be strong 

enough and, correspondingly, important for their studying from the point of view of 

quantum foundations and also for practical applications. 

The chapter is composed of two parts. The first part includes a general scheme of 

constructing the nonrelativistic quantum mechanics of a bound system with FE. In the 

second part of the chapter we consider the problem of a quantum harmonic oscillator with 

fundamental environment. Since this model is being solved exactly, its investigation gives 

us a lot of new and extremely important information on the properties of real quantum 

systems, which in turn gives a deeper insight into the nature of quantum foundations. 

2. Formulation of the problem 

We will consider the nonrelativistic quantum system with random environment as a closed 
united system QS and FE within the limits of a stochastic differential equation (SDE) of 
Langevin-Schrödinger (L-Sch) type: 

  ˆ , ;{ } , , .t s t c s t c t ti H t t            x f  (2.1) 

In equation (2.1) the stochastic operator  ˆ , ;{ }H tx f describes the evolution of the united 
system QS + FE, where { }f  is a random vector forces generating the environment 
fluctuations. In addition, in the units 1m   the operator has the form: 

     31ˆ , ;{ } , ;{ } , ,
2

H t V t    x f x f x R  (2.2) 
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where   denotes a Laplace operator,  , ;{ }V tx f describes the interaction potential in a 
quantum system which has regular and stochastic terms.  
We will suppose that when { } 0f , the system executes regular motion which is described 
by the regular nonstationary interaction potential      0 0, , ;{ } |V t V t  fx x f . In this case the 
quantum system will be described by the equation: 

      
 0 0

0

ˆ ˆ ˆ, , , , ;{ } .ti H t H t H t


    
f

x x x f  (2.3) 

We also assume that in the limit t     the QS passes to an autonomous state which 

mathematically equals to the problem of eigenvalues and eigenfunctions:  

    2 ( ) 0, , | ,iE t
tE V t e 

             x x   (2.4) 

where in the (in) asymptotic state E  designates the energy of the quantum system and, 
correspondingly, the interaction potential is defined by the limit: 0( ) lim ( , )tV V t  x x . 
In the (out) asymptotic state when the interaction potential tends to the limit: 

0lim ( , )tV V t   x , the QS is described by the orthonormal basis { ( | )} g x and 
eigenvalues { }E g , where ( , ,...)n mg designates an array of quantum numbers. 
Further we assume that the solution of problem (2.4) leads to the discrete spectrum of 
energy and wave functions which change adiabatically during the evolution (problem (2.3)). 
The latter implies that the wave functions form a full orthogonal basis: 

 
3

3( | , ) ( | , ) ,t t d 
   g g

R

g x g x x  (2.5) 

where the symbol  means complex conjugation. 
Finally, it is important to note that an orthogonality condition similar to (2.5) can be written 

also for a stochastic wave function:

 
3

3( | , ;{ }) ( '| , ;{ }) 1stc

R

t t d   g x ξ g x ξ x , where { }ξ

designates random field (definition see below ). 

2.1 The equation of environment evolution 

The solution of (2.1) can be represented, 

    , ;{ } ( ) | , .st c t U t t   g
g

x ξ g x  (2.6) 

Now substituting (2.6) into (2.1) with taking into account (2.3) and (2.5), we can find the 
following system of complex SDEs: 

   ( ) ( ) ;{ } , ( ) ( ) ,i U t i A t F t U U t dU t dt       g g g g g g g g g gf   (2.7) 

where the following designations are made: 

     

         
3

3

3

3
0

| , | , ,

;{ } | , , ;{ } , | , .

tA t t t d

F t t V t V t t d







   

     





g g

R

g g

R

g x g x x

f g x x f x g x x
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Recall that in (2.7) dummy indices denote summations; in addition, it is obvious that the 

coefficients  A tg g and  ;{ }F tg g f  are, in general, complex functions. 

For further investigations it is useful to represent the function  U tg  in the form of a sum of 

real and imaginary parts: 

 ( ) ( ) ( ).U t u t iv t g g g  (2.8) 

Now, substituting expression (2.8) into (2.7), we can find the following system of SDEs: 

 
   

   

(1) (2) (2) (1)

(2) (1) (1) (2)

( ) ;{ } ( ) ;{ } ,

( ) ;{ } ( ) ;{ } ,

u A t F t u A t F t v

v A t F t u A t F t v





       

       

           


          

g g g g g g g g g g g g g

g g g g g g g g g g g g g

f f

f f




 (2.9) 

where the following designations are made: 

   
   

(1) (1)

(2) (2)

( ) Re ( ), ;{ } Re ;{ } ,

( ) Im ( ), ;{ } Im ;{ } .

A t A t F t F t

A t A t F t F t

   

   

 

 

g g g g g g g g

g g g g g g g g

f f

f f
 

Ordering a set of random processes { ( ) , ( )}u t v tg g , the coefficients (1) (2){ ( ) , ( )}A t A t g g g g and 

random forces
 

(1) ( 2)
' '( ;{ }), ( ;{ })F t F t 

 
 g g g g

f f , one can rewrite the system of SDEs as:  

        
1

, , , .
n

i i i j j i i
j

a t b t f t t d dt  


  ξ ξ   (2.10) 

In the system of equations (2.10) the symbol ξ
 
describes a random vector process represented 

in the following form: (... ...,... ...), (1,... ..., ... , ),
i jg gu v i j nξ ξ where n  is the total number of 

random components which is twice as big as the total number of quantum states. In addition, 
the members ( , )ia tξ in equations (2.10) are composed of the matrix elements 

(1) (2){ ( ) , ( )}A t A t g g g g  and regular parts of matrix elements (1) (2){ ( ;{ }), ( ;{ })}F t F t g g g gf f  

while the random forces ( )jf t  are composed of random parts of the above matrix 

elements. 
Assuming that random forces satisfy the conditions of white noise: 

 ( ) 0, ( ) ( ) ( ) ,j i j i jf t f t f t t t      (2.11) 

where 0,i j  if i j  and 0.i i i    
Now, using the system of equations (2.10) and correlation properties (2.11), it is easy to 
obtain the Fokker-Planck equation for the joint probability distribution of fields { }ξ  (see in 
particular [6, 10]):  

 ( )ˆ ,n
t P L P   (2.12) 

where the operator ( )ˆ nL  is defined by the form: 
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      ( )

1 , , , 1

ˆ , , , ,
n n

n
i i k j l

i i ji i j k l

L a t b t b t
   

   
  
    

 ξ ξ ξ  (2.12’) 

The joint probability in (2.12) is defined by the expression: 

 0 0 0 0 0
1

( , | , ) ( ( ) ) , ( ),
n

i i i i
i

P t t t t    


   ξ ξ  (2.13) 

From this definition, in particular, it follows that equation (2.12) must satisfies to the initial 
condition:  

 
00 0 0

1
( , | , )| ( ),

n

t t i i
i

P t t   


  ξ ξ  (2.13’) 

where 0t is the moment of switching of environment influence; in addition, the coordinates 

i compose the n -dimensional non-Euclidian space n
i Ξ . 

Finally, since the function  0 0, | ,P t tξ ξ  has the meaning of probability distribution, we can 

normalize it: 

   1
0 0 0 0 0 0, | , 1, ( , | , ) ( ) ( , | , ) ,

n

nP t t d P t t N t P t t 
Ξ

ξ ξ ξ ξ ξ ξ ξ   (2.14) 

where the function ( )N t is the term which implements performing of the normalization 

condition to unit, defined by the expression: 
( )

0 0( ) ( , | , )
n

nN t P t t d


  ξ ξ ξ . 

2.2 Stochastic density matrix method 

We consider the following bilinear form (see representation (2.6)): 

  , ;{ }| , ;{ } ( ) ( ) ( | , ) ( | , ) ,st c t t U t U t t t  




         g g
g g

x ξ x ξ g x g x  (2.15) 

where the symbol " " means complex conjugation. 

After integrating (2.15) by the coordinates 3x R  and nξ Ξ
 
with taking into account the 

weight function (2.13), we can find: 

   2( ) , ;{ }| , ;{ '} | ( )| ,st cI t Tr Tr t t U t       ξ x g
g

x x  (2.16) 

where    2 2 2
0 0| ( )| | ( )| , | , | ( )|n

nU t Tr U t P t t U t d  g ξ g gΞ
ξ ξ ξ . 

Now, using (2.16) we can construct an expression for a usual nonstationary density matrix 
[12]: 

      , | , ( ) | , | , .t t t t t         g
g

x x g x g x  (2.17) 
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where 2( ) | ( )| / ( )t U t I t g g
 
has the meaning of level population of the quantum state 

under the conditions of equilibrium between the quantum system and fundamental 
environment. It is easy to check that the stochastic density matrix  , ;{ }| , ;{ }st c t t   x ξ x ξ  
satisfy to von Neumann equation while the reduced density matrix  , | ,t t  x x

 
does not 

satisfies the equation. Taking into account equations (2.1), (2.13) and (2.15), we can obtain 
the evolution equation for reduced density matrix: 

    , ;{ }| , ;{ } , , ;{ }| , ;{ } .t s t c st ci t t H t t          x ξ x ξ x ξ x ξ


 (2.18) 

where {...} ...Tr ξ , in addition  ... describes the quantum Poisson brackets which denote 
the commentator:  ,A B AB BA  .  
It is obvious that equation (2.18) is a nonlocal equation. Taking into account (2.12), one can 
bring equation (2.18) to the form: 

        ( )
0 0 0, , , , , , , ;{ } , | , ,

n

n n
t st ci t H t i t L P t t d         

Ξ

x x x x x x ξ ξ ξ ξ
    (2.19) 

where following designations are made; ( , , ) ( , | , )|t tt t t    x x x x
 

is a reduced density 
matrix, in addition,    , , ;{ } , ;{ }| , ;{ } | .st c st c t tt t t     x x ξ x ξ x ξ  
Thus, equation (2.19) differs from the usual von Neumann equation for the density matrix. 
The new equation (2.19), unlike the von Neumann equation, considers also the exchange 
between the quantum system and fundamental environment, which in this case plays the 
role of a thermostat. 

2.3 Entropy of the quantum subsystem 

For a quantum ensemble, entropy was defined for the first time by von Neumann [11]. In 
the considered case where instead of a quantum ensemble one united system QS + FE, the 
entropy of the quantum subsystem is defined in a similar way: 

      ; , , ln , , , { }.iS t Tr t t      xλ x x x x λ  (2.20) 

In connection with this , there arises an important question about the behavior of the 
entropy of a multilevel quantum subsystem on a large scale of times. It is obvious that the 
relaxation process can be nontrivial (for example, absence of the stationary regime in the 
limit t ) and, hence, its investigation will be a difficult-to-solve problem both by 
analytic methods and numerical simulation. 
A very interesting case is when the QS breaks up into several subsystems. In particular, when 
the QS breaks up into two fragments and when these fragments are spaced far from each 
other, we can write for a reduced density matrix of the subsystem the following expression: 

           3
1 2, , , , , , , ; , ; .      x x y y z z x x y z y zt t t R  (2.21) 

Recall that the vectors y and z describe the first and second fragments, correspondingly. 
Now, substituting the reduced density matrix ( , , )t x x  into the expression of the entropy of 
QS (2.20), we obtain: 

          1 2 2 1; ; ; ; ; ,S t J t S t J t S t λ λ λ λ λ  (2.22) 
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where the following designations are made in expression (2.22): 

   1 1; , , ,J t Tr t   yλ y y      1 ; , , ln , , ,S t Tr t t     yλ y y y y  

   2 2; , , ,J t Tr t   zλ z z      2 ; , , ln , , .S t Tr t t     zλ z z z z  

Since at the beginning of evolution the two subsystems interact with each other, it is easy to 
show that 1( ; ) 1J t λ

 
and 2( ; ) 1J t λ , moreover, they can be fluctuated depending on the 

time. The last circumstance proves that the subsystems of the QS are in the entangled state. 
This means that between the two subsystems there arises a new type of nonpotential 
interaction which does not depend on the distance and size of the subsystems. In the case 
when subsystems 1 and 2 have not interacted, 1 2 1J J   and, correspondingly, 1S  and 2S  
are constants denoting entropies of isolated systems. 

2.4 Conclusion 

The developed approach allows one to construct a more realistic nonrelativistic quantum 
theory which includes fundamental environment as an integral part of the quantum system. 
As a result, the problems of spontaneous transitions (including decay of the ground state) 
between the energy levels of the QS, the Lamb shift of the energy levels, ERP paradox and 
many other difficulties of the standard quantum theory are solved naturally. Equation (2.12) 
- (2.13’) describes quantum peculiarities of FE which arises under the influence of the 
quantum system. Unlike the de-Broglie wavelength, they do not disappear with an increase 
in mass of the quantum subsystem. In other words, the macroscopic system is obviously 
described by the classical laws of motion; however, space-times structures can be formed in 
FE under its influence. Also, it is obvious that these quantum-field structures ought to be 
interpreted as a natural continuation and addition to the considered quantum (classical) 
subsystem. These quantum-field structures under definite conditions can be quite 
observable and measurable. Moreover, it is proved that after disintegration of the 
macrosystem into parts its fragments are found in the entangled state, which is specified by 
nonpotential interaction (2.22), and all this takes place due to fundamental environment. 
Especially, it concerns nonstationary systems, for example, biological systems in which 
elementary atom-molecular processes proceed continuously [13]. Note that such a 
conclusion becomes even more obvious if one takes into account the well-known work [14] 
where the idea of universal description for unified dynamics of micro- and macroscopic 
systems in the form of the Fokker-Planck equation was for the first time suggested. 

Finally, it is important to add that in the limits of the developed approach the closed system 
QS + FE in equilibrium is described in the extended space 3 nR  , where n  can be 
interpreted as a compactified subspace in which FE in equilibrium state is described. 

3. The quantum one-dimensional harmonic oscillator (QHO) with FE as a 
problem of evolution of an autonomous system on the stochastic space-time 
continuum 

As has been pointed out in the first part of the chapter, there are many problems of great 

importance in the field of non-relativistic quantum mechanics, such as the description of the 
Lamb shift, spontaneous transitions in atoms, quantum Zeno effect [15] etc., which remain 

www.intechopen.com



 
Theoretical Concepts of Quantum Mechanics 168 

unsolved due to the fact that the concept of physical vacuum has not been considered within 
the framework of standard quantum mechanics. There are various approaches for 
investigation of the above-mentioned problems: the quantum state diffusion method [16], 

Lindblad density matrix method [17, 18], quantum Langevin equation [19], stochastic 
Schrödinger equation method (see [12]), etc. Recall that representation [17, 18] describes a 
priori the most general situation which may appear in a non-relativistic system. One of these 
approaches is based on the consideration of the wave function as a random process, for 

which a stochastic differential equation (SDE) is derived. However, the consideration of a 
reduced density matrix on a semi-group [20] is quite an ambiguous procedure and, 
moreover, its technical realization is possible, as a rule, only by using the perturbation 
method. For investigation of the inseparably linked closed system QSE, a new mathematical 

scheme has been proposed [5-8] which allows one to construct all important parameters of 
the quantum system and environment in a closed form. The main idea of the developed 
approach is the following. We suppose that the evolution time of the combined system 

consists of an infinite set of time intervals with different duration, where at the end of each 
interval a random force generated by the environment influences the quantum subsystem. 
At the same time the motion of the quantum subsystem within each time interval can be 
described by the Schrödinger equation. Correspondingly, the equation which describes the 

combined closed system QSE on a large scale of time can be represented by the stochastic 

differential equation of Langevin–Schrödinger (L–Sch) type. 
In this section, within the framework of the 1D L–Sch equation an exact approach for the 

quantum harmonic oscillator (QHO) model with fundamental environment is constructed. 

In particular, the method of stochastic density matrix (SDM) is developed, which permits to 

construct all thermodynamic potentials of the quantum subsystem analytically, in the form 

of multiple integrals from the solution of a 2D second-order partial differential equation. 

3.1 Description of the problem 

We will consider that the 1D QHO+FE closed system is described within the framework of 
the L-Sch type SDE (see equation (2.1)), where the evolution operator has the following 

form: 

    22 21ˆ , ;{ } ;{ } , .
2

xH x t f t f x x           (3.1) 

In expression (3.1) the frequency  ;{ }t f  is a random function of time where its stochastic 

component describes the influence of environment. For the analysis of a model of an 

environment a set of harmonic oscillators [21-25] and quantized field [26, 27] are often used. 

For simplicity, we will assume that frequency has the following form: 

  2 2
0 0;{ } ( ), , lim ( ) 0,

t
t f f t const f t

 
       (3.2) 

where ( )f t  is an independent Gaussian stochastic process with a zero mean and is a 

shaped correlation function: 

 ( ) 0 , ( ) ( ) 2 ( ).f t f t f t t t     (3.3) 
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The constant of   characterizes power of stochastic force ( )f t . Equation (2.1) with operator 

(3.1) has an asymptotic solution ( | , )n x t  in the limit t : 

 (3.4)

 

where 0,1,2...n  in addition; ( | )n x  is the wave function of a stationary oscillator and 

( )nH y  is the Hermitian polynomial. The formal solution of problem (2.1), (3.1)-(3.4) may be 

written down explicitly for arbitrary ( ;{ })t f  (see [28]). It has the following form: 

   2 ( )
( )1 ( )

, |{ } exp , , ( ) , ( ) ,
2 ( ) ( )( )

t i t
s t c t

r ti x dr t
x t x r t e r t

r t r t dtr t

   
          
    

 (3.5) 

where the function ( , )y  describes the wave function of the Schrödinger equation:  

 2 22
0

1
,

2
yi y          (3.6) 

for a harmonic oscillator on the stochastic space-time { , }y 
 

continuum. In (3.6) the 

following designations are made:  

2
0/ , ( )/ , ( ) / ( ).

t
y x r t t dt r t  


       

The random solution ( )t
 

satisfies the classical homogeneous equation of an oscillator 

which describes the stochastic fluctuating process flowing into FE: 

  2 ;{ } 0.t f    (3.7) 

Taking into account (3.5) and the well-known solution of autonomous quantum harmonic 

oscillator (3.6) (see [28]) for stochastic complex processes which describe the 1D QHO+FE 

closed system, we can write the following expression: 

 

 

0

1/2

0 0 2
0 02 2

| , |{ }

1 1 1
exp .

2 2( )2 !

st c

t

t
nn

t

n x t

dt r x
i n i x H

r r rr t rn





 

                               


 (3.8) 

The solution of (3.8) is defined in the extended space 1
{ }R R   , where 1R  is the one-

dimensional Euclidian space and { }R 
 
is the functional space which will be defined below 

(see section 3.3). Note that wave function (3.8) (a more specific wave functional) describes 

the quantum subsystem with taking into account the influence of the environment. It is easy 

to show that complex probabilistic processes (3.8) consist of a full orthogonal basis in the 

space of quadratically integrable functions 2L . 

       2
0 0

1/2

( 1/2) / 20

0

1
| , | , | ,

2 !

i n t x

nn
n x t e n x n x e H x

n
 


   

 
    

  
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Taking into account the orthogonal properties of (3.8), we can write the following 
normalization condition: 

    | , |{ } | , |{ } ,s t c st c nmn x t m x t dx  




 

    (3.9) 

where the symbol " "
 
means complex conjugation. 

So, the initial L-Sch equation (2.1) - (3.1) which satisfies the asymptotic condition (3.4) is 
reduced to autonomous Schrödinger equation (3.6) in the stochastic space-time using the 
etalon differential equation (3.7). Note that equation (3.7) with taking into account conditions 
(3.2) and (3.3) describes the motion of FE. 

3.2 The mean values of measurable parameters of 1D QHO 

For investigation of irreversible processes in quantum systems the non-stationary density 

matrix representation based on the quantum Liouville equation is often used. However, the 

application of this representation has restrictions [11]. It is used for the cases when the 

system before switching on the interaction was in the state of thermodynamic equilibrium 

and after switching on its evolution is adiabatic. Below, in the frames of the considered 

model the new approach is used for the investigation of the statistical properties of an 

irreversible quantum system without any restriction on the quantities and rate of interaction 

change. Taking into account definition (2.15), we can develop SDM method in the 

framework of which it is possible to calculate various measurable physical parameters of a 

quantum subsystem. 

Definition 1. The expression for a stochastic function: 

    ( ) ( )

1

, |{ }| , |{ } , |{ }| , |{ } ,m m
st c st c

m

x t x t w x t x t     




        (3.10) 

will be referred to as stochastic density matrix. Recall that the partial SDM 

 ( ) , |{ }| , |{ }m
st c x t x t      is defined by the expression: 

     ( ) , |{ }| , |{ } | , |{ } | , |{ } .m
st c st c st cx t x t m x t m x t          In addition, ( )mw  describes the 

level of population with the energy   01 /2mE n    until the moment of time 0t  when the 
random excitations of FE are turned on. Integrating (3.10) over the Euclidean space (1)R  
with taking into account (3.9), we obtain the normalization condition for weight functions: 

 ( ) ( )

1

1, 0.m m

m

w w



   (3.11) 

Below we define the mean values of various operators. Note that at averaging over the 
extended space   the order of integration is important. In the case when the integral from 
the stochastic density matrix is taken at first in the space, 1R  and then in the functional 
space, { }R   the result becomes equal to unity. This means that in the extended space   all 
conservation laws are valid, in other words, the stochastic density matrix in this space is 
unitary. In the case when we take the integration in the inverse order, we get another 
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picture. After integration over, { }R   the obtained density matrix describes quantum 
processes in the Euclidean space, 1R . Its trace is, in general, not unitary, which means that 
the conservation laws, generally speaking, can be invalid in the Euclidean space.  

Definition 2. The expected value of the operator  ˆ , |{ }A x t 
 
in the quantum state m  is 

defined by the expression: 

   1 ( ) ( )ˆ( ) lim ( ) , |{ }| , |{ } , ( ) .m m
m m x stc m x st c

t
A N t Tr Tr A x t x t N t Tr Tr     


           (3.12) 

The mean value of the operator  ˆ , |{ }A x t  over all quantum states, respectively, will be:  

   1 ˆ( ) lim ( ) , |{ }| , |{ } , ( ) .x st c x st c
t

A N t Tr Tr A x t x t N t Tr Tr     


           (3.13) 

Note that the operation Tr in (3.12) and (3.13) denotes functional integration:  

       0, | | , | , |{ }| , |{ } ( ) ,Tr K x t x t K x t x t D                  (3.14) 

where ( )D  designates the measure of functional space which will be defined below. 

If we wish to derive an expression describing the irreversible behavior of the system, it is 
necessary to change the definition of entropy. Let us remind that the von Neumann non-
stationary entropy (the measure of randomness of a statistical ensemble) is defined by the 
following form: 

  , { ln } , ( ) lim ( , ) ,N x
t

t Tr N N t    


    (3.15) 

where ( , ; ) { }st cx x t Tr   is a reduced density matrix, 1/3
0 /  is an interaction 

parameter between the quantum subsystem and environment. 
Let us note that the definition of the von Neumann entropy (3.15) is correct for the quantum 
information theory and agrees well with the Shannon entropy in the classical limit. 
Definition 3. For the considered system of 1D QHO with FE the entropy is naturally defined 
by the form: 

  { }( , ) ln , ( ) lim ( , ) ,G x stc st c G G
t

t Tr Tr t    


        (3.16) 

where the following designation  , , ;{ }st c st c x x t   is made. 

Finally, it is important to note that the sequence of integrations first in the functional space,

{ }R   and then in the Euclidean space, 1R corresponds to non-unitary reduction of the 

vector’s state (or non-unitary influence on the quantum subsystem). 

3.3 Derivation of an equation for conditional probability of fields. Measure of 

functional space { }R   

Let us consider the stochastic equation (3.7). We will present the solution of the equation in 
the following form: 
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 

0

0 0 0

0 0 0

( ) exp , ,

( )
( )exp ( ) , .

t

t

t i t t t

t
t t dt t t






   


       
 
 ǈ

 (3.17) 

After substitution of (3.17) into (3.7) we can define the following nonlinear SDE: 

 2 2
0 0 0 0 0 0 0( ) 0 , ( ) ( )/ ( ) , .tf t t i t t i        ǈ ǈ ǈ ǈ ǈ   (3.18) 

The second equation in (3.18) expresses the condition of continuity of the function ( )t  and 
its first derivative at the moment of time 0t t . Using the fact that the function ( )tǈ  
describes a complex-valued random process, the SDE (3.18) may be presented in the form of 
two SDE for real-valued fields (random processes). Namely, introducing the real and 
imaginary parts of ( )tǈ : 

 1 2 2( ) ( ) ( ) , ( ) 0 ,t u t i u t u t  ǈ  (3.19) 

the following system of SDEs can be finally obtained for the fields  1 2( ) ,t u uǈ ǈ : 

 
22 2

1 0 0 0 0 01 1 2 0

2 1 2 2 0 0 0 0 0 0

( ) Re ( ) / ( ) 0 ,( ) 0 ,

2 , ( ) Im ( ) / ( ) .

u t t tu u u f t

u u u u t t t

 

 

           
 

       




 (3.20) 

The pair of fields 1 2( , )u u  in this model is not independent because their evolution is 
influenced by the common random force ( )f t . This means that the joint probability 
distribution of fields can be represented by the form: 

    
2

0 0 0 0 0
1

, | , ( ) , ( ) ,i i i i
i

P t t u t u u u t


  ǈ ǈ  (3.21) 

which is a non-factorable function. After differentiation of functional (3.21) with respect to 
time and using SDEs (3.18) and correlation properties of the random force (3.3), as well as 
making standard calculations and reasonings (see [29,30]), we obtain for a distribution of 
fields the following Fokker-Planck equation: 

  0 0
ˆ , | , ,tP L t t P  ǈ ǈ  (3.22) 

    
2

22 2
0 0 1 2 1 2 102

1 1 2

ˆ , | , 2 4 ,L t t u u u u u
u u u


 

     
  

ǈ ǈ  (3.23) 

with the initial condition: 

  
0

1 2 1 01 2 02, , ( ) ( ).
t t

P u u t u u u u 


    (3.24) 

Thus, equation (3.22)-(3.23) describes the free evolution of FE.  
Now, our purpose consists in constructing the measure of functional space, which is a 
necessary condition for further theoretical constructions. The solution of equation (3.22)-
(3.23) for small time intervals can be presented in the form: 
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    
2

2 2 2
1 1 1 2 0

1 1
, | , exp ( ) , .

22
P t t u u u u t t t t t

tt 
                  

ǈ ǈ  (3.25) 

So, we can state that the evolution of fields 1 2( , )u u  in the functional space { }R   is 

characterized by regular displacement with the velocity 2 2 2
1 2 0( )u u   against the 

background of Gaussian fluctuations with the diffusion value  . The infinitely small 

displacement of the trajectory ( )tǈ  in the space { }R   is determined by expression [30]: 

 2 1/22 2
1 2 0( ) ( ) ( ) ( ) .t t t u u t f t t       ǈ ǈ  (3.26) 

As follows from expression (3.26), the trajectory is continuous everywhere, and, 

correspondingly, the condition 0( )| ( )tt t t  ǈ ǈ  is valid. However, expression (3.26) is 

undifferentiable everywhere owing to the presence of a term which is of the order 1/2t . If 

we divide the time into small intervals, each of which being equal to /t t N  , where

N  , then expression (3.25) can be interpreted as a probability of transition from 

( )k ktǈ ǈ  to 1 1( )k kt ǈ ǈ during the time t in the process of Brownian motion. With 

consideration of the above, we can construct probability of fields' change on finite intervals 

of time or the measure of the space, { }R   (see [4]): 

 

 

0 1 1 2 1

2
12 2 2

1 1 1 1 1 2 1 0
0

1
( ) ( ) lim ( ) ( )

2

exp ( ) ( ) ( ) ( ) ,
2

N

k k
N

N
k

k k k k
k

N
D D D du t du t

t

tN
u t u t u t u t

t N

  
 



 



  



           
         

   


ǈ ǈ

 (3.27) 

where 0 1 01 2 0 2 1 2( ) ( ) ( )D u u u u du du    ǈ  (see condition (3.25)). 

3.4 Entropy of the ground state of 1D QHO with fundamental environment 

For simplicity we will suppose that (0) 1w   and, correspondingly, ( ) 0mw   for all quantum 

numbers 1m  (see expression (3.10) ). In this case the SDM (3.10) with consideration of 

expressions (3.8), (3.14) and (3.16) may be represented by the following form: 

      
0

(0) 2 2 2 20
1 1 2

1
, , |{ } e , ( ) ( ) ( ) ,

2 2

t
A

st c

t

i
x x t A u t dt u t x x u t x x 


           (3.28) 

where the following designation (0) (0)( , , |{ }) ( , ,{ }| , ,{ })|st c st c t tx x t x t x t          is made. 

Now, we can calculate the reduced density matrix: (0)0( , , ) { ( , , |{ })}s t cx x t Tr x x t    . Using 

expressions for the continuous measure (3.27) and stochastic density matrix (3.28) we can 

construct the corresponding functional integral which can be further calculated by the 

generalized Feynman-Kac formula (see Appendix 4.1, [6]): 

     (0) 2 2 2 20
1 2 0 1 2 1 2

0

1
, , ( , , )exp ( ) ( ) ,

2 2

i
x x t du du Q u u t u t x x u t x x



   



        
    (3.29) 
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In expression (3.29) the function 0 1 2( , , )Q u u t  is a solution of the equation: 

 0 1 2 1 0
ˆ ( , , ) ,tQ L u u t u Q      (3.30) 

which satisfies the following initial and boundary conditions: 

 
00 1 2 1 01 2 0 2 0 1 2 || ||( , , ) ( ) ( ), ( , , ) 0.t tQ u u t u u u u Q u u t      ǈ  (3.31) 

Let us consider the expression for the entropy (3.17). Substituting (3.29) into (3.17) we can 
find: 

       1 2( ), ( ) , | ,(0)
{ } 1 2

1
, ( ), ( ) , | , e .

A u t u t t x x
xG t Tr Tr A u t u t t x x


     

 (3.32) 

After conducting integration in the space 1R  in (3.33), it is easy to find the expression: 

  (0)

0
( ) ,G N t      (3.33) 

where the following designations are made: 

    
0

1/2
12( ) ( ;{ }) , ( ;{ }) ( )exp 1 ( ) .

t

t
N t Tr I t I t u t u t dt               (3.34) 

Similarly, as in the case with (3.29), using expressions (3.34) it is possible to calculate the 

functional trace in the expression ( )N t : 

 1 2 1 2
20

1
( ) ( , , ) ,N t du du Q u u t

u
 

 



    (3.35) 

where the function 1 2( , , )Q u u t is the solution of the equation: 

 1 2 1
ˆ ( , , ) ( 1) .tQ L u u t u Q        (3.36) 

Recall that border conditions for (3.36) are similar to (3.31). Besides, if we assume that 0   
in (3.35), we will obtain the normalization function 0( )N t . After calculation of the function 

1 2( , , )Q u u t
 
we can also calculate the function 1 2 1 2( , , ) ( , , )D u u t Q u u t   . In particular, it 

is easy to obtain an equation for 1 2( , , )D u u t  by differentiation of equation (3.36) with 
respect to α: 

 1 2 1
ˆ ( , , ) ,tD L u u t u D       (3.37) 

which is solved by initial and border conditions of type (3.31). 

Introducing the designation 0 1 2 1 2 0
( , , ) ( , , )D u u t D u u t  

 , it is possible to find the 
expression: 

 0;0 1 2 0 1 2
20

1
( ) ( ) ( , , ).N t N t du du D u u t

u
 

 



      (3.38) 
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Using (3.38) we can write the final form of the entropy of «ground state» in the limit of 
thermodynamics equilibrium: 

  (0) 1/3
0;0 0( ) , / .G N       (3.39) 

It is simple to show that in the limit    entropy aspires to zero. 

Thus, at the reduction ( , , |{ }) ( , , )s t c x x t x x t     information in a quantum subsystem is 

lost, as a result of which the entropy changes, too. Let us remind that usually the entropy of 

a quantum subsystem at environment inclusion grows, however, in the considered case the 

behavior of the entropy depending on the interaction parameter   can be generally 

nontrivial.  

3.5 Energy spectrum of a quantum subsystem 

The energy spectrum is an important characteristic of a quantum system. In the considered 
case we will calculate the first two levels of the energy spectrum in the limit of 
thermodynamic equilibrium. Taking into account expressions (3.12) and (3.28) for the 
energy of the «ground state», the following expression can be written: 

     (0) 1
0 0

ˆlim ( ) , , |{ } ,osc x st c
t

E N t Tr Tr H x x t  

  
     (3.40) 

where the operator:  

 2 2 2
0 0

1ˆ ,
2

xH x       (3.41) 

describes the Hamiltonian of 1D QHO without an environment. 
Substituting (3.41) in (3.40) and after conducting simple calculations, we can find: 

    (0)
0 0

1
1 ( ) ,

2
oscE K     (3.42) 

where the following designations are made: 

2 2 2
1/31 2

0 1 2 0 1 2 1 ,2 1 ,2
0 220

1 1
( ) 1 ( , , ), / .

( ) 2

u u
K du du Q u u u u

N uu


  

 

 



       
  

   (3.43) 

In expression (3.43) the stationary solution 0 1 2 0 1 2( , , ) lim ( , , )tQ u u Q u u t     is a scaling 

solution of equation (3.30) or (3.36) for the case where 0  . Similarly, it is possible to 

calculate the average value of the energy of any excited state. In particular, the calculation of 

the energy level of the first excited state leads to the following expression: 

    (1)
1 0

3
1 ( ) ,

2
oscE K     (3.44) 
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where 

 
2 2 2
1 2

1 1 2 1 1 23/2
1 220

1 1
( ) 1 ( , , ) ,

( ) 2

u u
K du du Q u u

N uu


 

 

 



      
  

   (3.45) 

in addition: 

 1 1 2 1 1 23/2
20

1
( ) ( , , ).N du du Q u u

u
 

 



    (3.46) 

In expression (3.45) the stationary solution 1 1 2 1 1 2( , , ) lim ( , , )tQ u u Q u u t    is a scaling 

solution of equation (3.36)) for the case where 1  . 
 

 
 

Fig. 1. The first two energy levels of quantum harmonic oscillator without of FE (see 

quantum numbers 0,1,..n  ) and correspondingly with consideration of relaxation in the FE 

(see quantum numbers 0,1,..n ). 

As obviously follows from expressions (3.42)-(3.46), the relaxation effects lead to 
infringement of the principle of equidistance between the energy levels of a quantum 
harmonic oscillator Fig.1. In other words, relaxation of the quantum subsystem in 
fundamental environment leads to a shift of energy levels like the well-known Lamb shift. 

3.6 Spontaneous transitions between the energy levels of a quantum subsystem 

The question of stability of the energy levels of a quantum subsystem is very important. It is 
obvious that the answer to this question may be received after investigation of the problem 
of spontaneous transitions between the energy levels. Taking into account (3.4) and (3.8), we 
can write an expression for the probability of spontaneous transition between two different 
quantum states:  
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     2( ) | ( )| , ( ) lim | , |{ } | , ,n m nm nm x st c
t

W S S Tr Tr n x t m x t    


 
     (3.47) 

where the wave function ( | , )m x t  describes a pure state. 
It is obvious that in the considered formulation of the problem there might occur transitions 

between any energy levels, including transitions from the «ground state» to any excited 

states. Using expression (3.47), we can calculate the spontaneous decay of every quantum 

state. In particular, if (0) 1w   and ( ) 0nw   for any 1m , the probability of transition from 

the «ground state» to all other excited states may be calculated as follows: 

 0 2
0 0

1

( ) | ( )| ( ).m m
m m

S  


      (3.48) 

In (3.48) 0  characterizes the population of the «ground state» in the limit of equilibrium 
thermodynamics. The first two nonzero probabilities of spontaneous transitions are 
calculated simply (see Appendix 4.2): 

 

   

   

0 2 1 2 1 2 0 1 2

0

2

2 0 1 2 1 2 2 1 2

0

( ) , , , , ,

( ) , , , , ,

du du u u u u

du du u u u u

   

   

 




 




  

  

 

 

 (3.49) 

where 

 1 2
1 21 2

2
, , 1 .u u

iu uiu u

 


     
     

 

Let us note that in expressions (3.48) and (3.49) the functions 0 1 2( , , )u u   and 2 1 2( , , )u u 
are solutions of the equation: 

   1 2 1 2 1 2
ˆ( , , ) 1 2 ( , , ).t n nu u L n u u u u           (3.50) 

Comparing expressions (3.48) and (3.49) with taking into account the fact that equation 

(3.50) for a different number n  has different solutions, n m   if n m , we can conclude 

that the detailed balance of transitions between different quantum levels is violated, i. e. 

0 2 2 0   . Also, it is obvious that transitions between the quantum levels are possible if 

their parities are identical. 

3.7 Uncertainty relations, Weyl transformation and Wigner function for the ground 
state 

According to the Heisenberg uncertainty relations, the product of the coordinate and 
corresponding momentum of the quantum system cannot have arbitrarily small dispersions. 
This principle has been verified experimentally many times. However, at the present time 
for development of quantum technologies it is very important to find possibilities for 
overcoming this fundamental restriction. 
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As is well-known, the dispersion of the operator ˆ
iA
 
is determined by the following form: 

     2
2ˆ ˆ ˆ( ) ( ) ( ) .i x i x iA t Tr A t Tr A t        

 (3.51) 

In the considered case the dispersion of the operator at the arbitrary time t in the «ground 

state» can be calculated by the following expression: 

     2
(0) (0)1 2

0
ˆ ˆ ˆ( ) ( ) ( ) ( ) .i x st c i x st c iA t N t Tr Tr A t Tr Tr A t          

 (3.52) 

Using expression (3.52), we can calculate the dispersions of operators, the coordinate, x̂  and 

momentum, p̂ correspondingly:  

  
1/2

1 2 0 1 23/2
0 020

1 1 1
ˆ( ) , , ( ),

( ) 2 ( )
xx t du du Q u u A t

N t N tu


 



     
  

   (3.53) 

  
1/2

2 2
1 2

1 2 0 1 23/2
0 020

1 1
ˆ( ) , , ( ).

( ) 2 ( )
p

u u
p t du du Q u u t A t

N t N tu

 



     
  

   (3.54) 

The dispersions of operators at the moment of time 0t , when the interaction with the 

environment is not switched on, is described with the standard Heisenberg relation: 

0
ˆ ˆ( ) ( )| 1 /2.t tx t p t     The uncertainty relation for the large interval of time when the united 

system approaches thermodynamic equilibrium can be represented in the form: 

  
0

( ) ( )1
ˆ ˆ ˆ ˆlim ( ) ( ) ,

2 ( )

x p
st st

t

A A
x p x t p t

N

 

 
       (3.55) 

where average values of operators ˆ( )x   and ˆ( )p   can be found from (3.53) and (3.54) in the 

limit t   . 
It is obvious that expressions for operator dispersions (3.53)-(3.54) are different from 
Heisenberg uncertainty relations and this difference can become essential at certain values 
of the interaction parameter  . The last circumstance is very important since it allows 

controlling the fundamental uncertainty relations with the help of the   parameter. 

Definition 4. We will refer to the expression:  

       
1

, , ;{ } | , , ;{ } ,
m

st c st c
m

W p x t w W m p x t 



  (3.56) 

as stochastic Wigner function and, correspondingly, to ( | , , ;{ })st cW m p x t  as partial 

stochastic Wigner function. In particular, for the partial stochastic Wigner function the 

following expression may be found: 
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      1
| , , ;{ } | / 2, ;{ } | /2, ;{ } .

2
i p v

st c s t c s t cW m p x t e m x v t m x v t dv  






      (3.57) 

Using the stochastic Wigner function, it is possible to calculate the mean values of the 

physical quantity, which corresponds to the operator Â : 

    1
( ) lim , , ;{ } , , |{ } ,

( )
st c

t
A dp dxTr a p x t x x t

N t
   

   

 
   

      
  

   (3.58) 

where the stochastic function ( , , ;{ })a p x t 
 
is defined with the help of a Weyl transformation 

of the operator Â : 

    ˆ( , , ;{ }) | / 2, ;{ } | /2, ;{ } .i p v
st c st ca p x t e m x v t A m x v t dv  






      (3.59) 

Now we can construct a Wigner function for the «ground state»: 

 

  (0)

2 2
1 2

1 2 0 1 2
220

1
( , , ) 0| , , ;{ }

2

( ) ( )1 1
( , , )exp .

st cW x p t Tr W x p t

p u x u x
du du Q u u t

uu

 



   

 

 

    
  

 
 (3.60) 

As one can see, function (3.61) describes distribution of the coordinate x  and momentum p

in the phase space. The Wigner stationary distribution function can be found in the limit of 
the stationary processes 

(0) (0)( , , ) lim ( , , )tW x p W x p t    . It is important to note that in thesimilar to regular case 

after integration of the stochastic function ( | , , ;{ })st cW m p x t   over the phase space; it is easy 

to get the normalization condition: 

  | , , ;{ } 1.st cdx dpW m x p t 
   

   

   (3.61) 

Recall that for the Wigner function (3.61) in the general case the normalization condition of 
type (6.12) is not carried out. 

3.8 Conclusion 

Any quantum system resulting from the fact that all beings are immersed into a physical 
vacuum is an open system [1-3]. A crucially new approach to constructing the quantum 
mechanics of a closed non-relativistic system QS+FE has been developed recently by the 
authors of [5-8], based on the principle of local equivalence of Schrodinger representation. More 
precisely, it has been assumed that the evolution of a quantum system is such that it may be 
described by the Schrödinger equation on any small time interval, while the motion as a 
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whole is described by a SDE for the wave function. However, in this case there arises a non-
simple problem of how to find a measure of the functional space, which is necessary for 
calculating the average values of various parameters of the physical system. 

We have explored the possibility of building the non-relativistic quantum mechanics of a 

closed system QS+FE within the framework of one-dimensional QHO which has a random 

frequency. Mathematically, the problem is formulated in terms of SDE for a complex-valued 

probability process (3.1) defined in the extended space 1
{ }R R ξ .The initial SDE for complex 

processes is reduced to the 1D Schrödinger equation for an autonomous oscillator on a 

random space-time continuum (3.6). For this purpose the complex SDE of Langevin type has 

been used. In the case when random fluctuations of FE are described by the white noise 

correlation function model, the Fokker-Plank equation for conditional probability of fields is 

obtained (3.22)-(3.23) using two real-valued SDE for fields (3.20). With the help of solutions 

of this equation, a measure of the functional space { }R ξ  
is constructed (3.27) on infinitely 

small time intervals (3.24).In the context of the developed approach representation of the 

stochastic density matrix is introduced, which allows perform an exact computation scheme 

of physical parameters of QHO (of a quantum subsystem) and also of fundamental 

environment after relaxation under the influence of QS. The analytic formulas for energies 

of the «ground state» and for the first excited state with consideration of shift (like the Lamb 

shift) are obtained. The spontaneous transitions between various energy levels were 

calculated analytically and violation of symmetry between elementary transitions up and 

down, including spontaneous decay of the «ground state», was proved. The important 

results of the work are the calculation of expressions for uncertainty relations and Wigner 

function for a quantum subsystem strongly interacting with the environment. 
Finally, it is important to note that the developed approach is more realistic because it takes 
into account the shifts of energy levels, spontaneous transitions between the energy levels 
and many other things which are inherent to real quantum systems. The further 
development of the considered formalism in application to exactly solvable many-
dimensional models can essentially extend our understanding of the quantum world and 
lead us to new nontrivial discoveries. 

4. Appendix 

4.1 Appendix 1 

Theorem. Let us consider a set of random processes 1 2{ , ,... }n  ξ
 
satisfying the set of SDE: 

     
1

, , , 1,2,.... ,
n

i i j i j
j

a t b t f t i n


  ξ ξ  

where  

      0 , ( ),i i j i jf t f t f t t t      (4.1.1) 

so that the Fokker-Planck equation for the conditional transition probability density: 

    
1 1

(2)
2 2 1 1 2 1 ( ) 2 1, | , ( ) , ,tP t t t t t   ξ ξξ ξ ξ ξ  (4.1.2) 
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is given by the equation: 

      (2) (2) (2) ( ) (2)

1

ˆ .
n

n
t i l i k j

i i ki i j l k

P a P b b P L P
  

   
    

   
  ξ  (4.1.3) 

i  are assumed to be Markovian processes and satisfy the condition 0 0( ) .t ξ ξ  At the same time 

function (4.1.2) gives their exhaustive description: 

      ( ) (2) (2)
1 1 0 0 1 1 1 1 0 0, ;... , ; , , ; , ... , ; , ,n

n n n n n nP t t t P t t P t t ξ ξ ξ ξ ξ ξ ξ  (4.1.4) 

where ( )nP is the density of the probability that the trajectory ( )tξ would pass through the sequence of 

intervals    , ,.... ,n n nd d 1 1 1ξ ξ ξ ξ ξ ξ at the subsequent moments of time 2 ... nt t t 1 , respectively. 

Under these assumptions we can obtain the following representation for an averaging procedure: 

      2

0

( , )
1 2exp ( ), ( ) ( ) , , ,

t
V t

t

V t d V t d e Q t  
      
  
  ξξ ξ ξ ξ ξ ξ  (4.1.5) 

where 1 ... nd d dξ ξ ξ and the function  , ,Q tξ ξ is a solution of the following parabolic equation: 

    ( )
1

ˆ , , ,n
tQ L V t Q    ξ ξ ξ  (4.1.6) 

which satisfies the following initial and boundary conditions: 

      
0

0
|| ||

, , , , , 0 ,
t t

Q t t t Q t
  

   
ξ

ξ ξ ξ ξ  (4.1.7) 

where ||...||is a norm in nR . 
Proof. The proof is performed formally under the assumption that all the manipulations are 
legal. We will expand into the Taylor series the quantity under the averaging in the left-
hand side of (4.1.5): 

 
 

0

1
( ) ( ), 0,1,... ,

!

n

n
n

I t t m n
n







   (4.1.8) 

where  

     
0 0

1 1 2 1
0

!
( ) ( ) ( )

! !

n n
t t

n m
n

mt t

n
t V d V t V t V d

m n m
    






            
      

   

 
       

2

0 0 0

2 1 1 1 1 1 1 2
0

!
( ) ... ... .

! !

mt
n m

m m m m
m t t t

n
V t d d d V V V

m n m

 

     



 

      (4.1.9) 

The designations 1 1( ) ( ( ), ( ))V V t  ξ ξ  and 2 2( ) ( ( ))V t V t ξ  are introduced in (4.1.9) for 
brevity. Using the Fubini theorem, we can represent the averaging procedure in (4.1.9) as 
integration with the weight ( )nP  from (4.1.4): 
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     

           

12 2

0 0 0 0 0

2 1 1 1 1 1 1 2 1 1

(2) (2) (2)
1 1 2 2 1 1 1 1 12

( ) ... ... ... ...

, | , , | , ... , | , ... .

mmt
n m

m m m m m m

t t t t t

n m
m m m m m m m

V t d d d V V V d d d d d

P t P P V V V

  

       

    




 


 

        ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

 

Changing, where it is necessary, the order of integration, we can obtain the following 
representation for the n -th moment: 

    2
0

!
( ) , , ,

( )!

n
n m

n m
m

n
t d V Q t

n m
 




  ξ ξ ξ ξ  (4.1.10) 

where the countable set of functions ( , , )mQ tξ ξ is determined from the recurrence relations: 

          
0

(2)
1 12, , , | , , , , ,

t
n m

m m

t

Q t d d V P t V Q  
     ξ ξ Ǉ ξ ξ Ǉ Ǉ ξ Ǉ ξ  (4.1.11) 

where 

 (2)
0 0 0( , , ) ( , | , ),Q t P t t ξ ξ ξ ξ  (4.1.12) 

i.e. the function 0Q is, in fact, independent of ξ . Upon substitution of (4.1.10) into (4.1.8) we 

insert the summation procedure under the integration sign and then, changing the order of 
double summation, get the expression: 

  2 ( , )( ) , , ,V tI t d e Q t   ξξ ξ ξ  (4.1.13) 

where 

      
0

, , 1 , , .
n

n
n

Q t Q t




  ξ ξ ξ ξ  (4.1.14) 

The representation (4.1.5) is thus obtained. 

It remains to prove that the function Q from (4.1.13) is a solution of the problem (4.1.6) - 

(4.1.7). Using (4.1.14) and (4.1.11) we can easily show that Q satisfies the integral equation: 

          
0

(2)
1 0, , , | , , , , , , .

t

t

Q t d d P t V Q Q t       ξ ξ Ǉ ξ Ǉ Ǉ ξ Ǉ ξ ξ  (4.1.15) 

Taking into account the fact that 0Q satisfies equation (4.1.3) with the initial and border 

conditions (4.1.7) and also that it is an integrable function, it is easy to deduce from equation 

(4.1.16) that the Q  function coincides with the solution of the problem (4.1.6)-(4.1.7). Thus, 

the theorem is proved. 

4.2 Appendix 2 

Let us consider the bilinear form: 
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      , ,| , ;{ } | , |{ } | , ,s t cn m x t n x t m x t  ξ ξ  (4.2.1) 

which can be represented,taking into account expressions (3.4) and (3.8), by the following 
form: 

     
0

1/2
/20

2 1 2

1
, ,| , ;{ } ( ) exp ( ) ( )

22 ! !

t
n

n m
t

n m x t u t n u t u t dt
n m

 


                    
ξ  

      2
1 2 0 2 0

1
( ) ( ) ( ) .

2
n miu t u t x H u t x H x

    


 (4.2.2) 

After conducting functional integration of the expression  , ,| , ;{ }n m x t ξ  by the 

generalized Feynman-Kac formula (see Appendix 4.1), it is possible to find: 

    
1/2

0
{ }, ,| , ;{ } , ,| , ;{ }

2 ! !n m
n m x t Tr n m x t

n m




 
     

 
ξξ ξ  0 1 2

0

mH x du du

   

 

    

        /2 2
2 1 2 0 2 1 2

1
exp ( ) ( ) , , ,

2

n
n nu iu t u t x H u x u u t

       
 

 (4.2.3) 

where 1 2( , , )n u u t  is a solution of the complex equation: 

   1 2 1 2 1 2
ˆ( , , ) 1 2 ( , , ).t n nu u t L n u iu u u t          (4.2.4) 

The solution of equation (4.4) is useful to represent in the following form: 

 1 2 1 2 1 2( , , ) ( , , ) ( , , ).n n nu u t u u t i u u t     (4.2.5) 

By substituting (4.2.5) into equation (4.2.4), it is possible to find the following two real-value 
equations for the real and complex parts of solution: 

 
         
         

1 2 1 1 2 2 1 2

1 2 1 1 2 2 1 2

ˆ, , 1 2 , , 1 2 , , ,

ˆ, , 1 2 , , 1 2 , , .

t n n n

t n n n

u u t L n u u u t n u u u t

u u t L n u u u t n u u u t

  

  

       
       

 (4.2.6) 

The system of equations is symmetric in regard to the replacements: n n   and 

n n  . In other words, it means that for the solution 1 2( , , )n u u t  it is possible to write 

the following equation: 

       1 2 1 2 1 2
ˆ, , 1 2 , , .t n nu u t L n u u u u t         (4.2.7) 

Accordingly, for a complex solution 1 2( , , )n u u t we can write the expression: 

 1 2 1 2 1 2( , , ) (1 ) ( , , ) (1 ) ( , , ).n n nu u t i u u t i u u t       (4.2.8) 

Now it is possible to pass to the calculation of the amplitude of transition between different 
quantum states. For simplicity we will compute the first two probabilities of transitions: 
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0 2  and 2 0 . Integrating the expression  0,2,| , }x t  over x  with taking into 

account result (4.2.8), it is easy to find:  

      0 2 1 2 1 2 0 1 2

0

( ) lim 0,2,| , } , , , , ,
t

S x t dx du du u u u u    
   

  
  

       (4.2.9) 

where  0 1 2, ,u u   is the scaled solution of equation (4.2.7) in the limit ,t     in 

addition:  

   1/2 1
1 2 1 2 1 2, , ( ) 1 2 ( ) .u u iu u iu u              (4.2.10) 

In a similar way it is possible to calculate the transition matrix element 2 0( )S  : 

      2 0 1 2 1 2 2 1 2

0

( ) lim 2,0,| , } , , , , .
t

S x t dx du du u u u u    
   

  
  

       (4.2.11) 

As follows from expressions (4.2.9), (4.2.10) and (4.2.11), in the general case 0 2 2 0( ) ( ).S S   
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